Sistemas Digitais I

LESI - 2 ${ }^{\circ}$ ano

Lesson 3 - Boolean Algebra

Prof. J oão Miguel Fernandes
(miguel@di.uminho.pt)

Dept. Informática

Universidade do Minho
Escola de Engenharia

3. Boolean Algebra

- Introduction -
- The success of computer technology is primarily based on simplicity of designing digital circuits and ease of their manufacture.
- Digital circuits are composed of basic processing elements, called gates, and basic memory elements, called flip-flops.
- The simplicity in digital circuit design is due to the fact that input and output signals of each gate or flip-flop can assume only two values, 0 and 1.
- The changes in signal values are governed by laws of Boolean algebra.
- The fact that Boolean algebra is finite and richer in properties than ordinary algebra leads to simple optimisation techniques for functions.
- In order to learn techniques for design of digital circuits, we must understand the properties of Boolean algebra.

3. Boolean Algebra
 - Binary Signals (1) -

- Digital logic hides the analog world by mapping the infinite set of real values into 2 subsets (0 and 1).
- A logic value, 0 or 1 , is often called a binary digit (bit).
- With n bits, 2^{n} different entities are represented.
- When using electronic circuits, digital designers often use the words "LOW" and "HIGH", in place of " 0 " and " 1 ".
- The assignment of 0 to LOW and 1 to HIGH is called positive logic. The opposite assignment is called negative logic.
- Other technologies can be used to represent bits with physical states.

3. Boolean Algebra
 - Binary Signals (2) -

3. Boolean Algebra

- Combinational vs. Sequential Systems -
- A combinational logic system is one whose outputs depend only on its current inputs.
- A combinational system can be described by a truth table.
- The outputs of a sequential logic circuit depend not only on the current inputs but also on the past sequence of inputs \Rightarrow memory.
- A sequential system can be described by a state table.
- A combinational system may contain any number of logic gates but no feedback loops.
- A feedback loop is a signal path of a circuit that allows the output of a gate to propagate back to the input of that same gate.
- Feedback loops generally create sequential circuit behaviour.

3. Boolean Algebra

- Gates (1) -
- Three basic gates (AND, OR, NOT) are sufficient to build any combinational digital logic system. They form a complete set.

- The symbols and truth tables for AND and OR may be extended to gates with any number of inputs.
- The bubble on the inverter output denotes "inverting" behaviour.

3. Boolean Algebra

- Gates (2) -
- Two more logic functions are obtained by combining NOT with an AND or OR function in a single gate.

- The symbols and truth tables for NAND and NOR may also be extended to gates with any number of inputs.

3. Boolean Algebra

- Switching Algebra -

- In 1854, G. Boole (1815-1865) introduced the formalism that we use for the systematic treatment of logic which is now called Boolean Algebra.
- In 1938, C. Shannon (1916-2001) applied this algebra to prove that the properties of electrical switching circuits can be represented by a 2-valued Boolean Algebra, which is called Switching Algebra.
- Using this algebra, one can formulate propositions that are true or false, combine them to make new propositions and determine if the new propositions are true or false.
- We use a symbolic variable (ex. X) to represent the condition of a logic signal, which is in one of two possible values (" 0 " or " 1 ").

3. Boolean Algebra

- Axioms (1) -
- The axioms (or postulates) of a mathematical system are a minimal set of basic definitions that we assume to be true.
- The first axioms embody the digital abstraction:

(A1) $X=0$ if $X \neq 1$

($\left.\mathrm{A} 1^{\prime}\right) \mathrm{X}=1$ if $\mathrm{X} \neq 0$

- We stated these axioms as a pair, the only difference being the interchange of the symbols 0 and 1 .
- This applies to all the axioms and is the basis of duality.
- The next axioms embody the complement notation: (A2) If $X=0$, then $X^{\prime}=1$ (A2') If $\mathrm{X}=1$, then $\mathrm{X}^{\prime}=0$

- We use a prime (') to denote an inverter's function.

3. Boolean Algebra

\author{

- Axioms (2)
}
- The last three pairs of axioms state the formal definitions of the AND (logical multiplication) and OR (logical addition) operations:
(A3) $0.0=0$
(A3') $1+1=1$
(A4) $1 \cdot 1=1$
(A4') $0+0=0$
(A5) $0 \cdot 1=1 \cdot 0=0$
(A5') $1+0=0+1=1$

- By convention, in a logic expression involving both multiplication and addition, multiplication has precedence.
- The expression $X \cdot Y+Y \cdot Z^{\prime}$ is equivalent to $(X \cdot Y)+\left(Y \cdot Z^{\prime}\right)$.
- The axioms (A1-A5, A1'-A5') completely define Boolean algebra.

3. Boolean Algebra

- Theorems (1) -
- Theorems are statements, known to be true, that allow us to manipulate algebraic expressions to have simpler analysis or more efficient synthesis of the corresponding circuits.
- Theorems involving a single variable:

(T1) $X+0=X$	(T1') $X \cdot 1=X$	(Identities)
(T2) $X+1=1$	(T2') $X \cdot 0=0$	(Null elements)
(T3) $X+X=X$	(T3') $X \cdot X=X$	(Idempotency)
(T4) $\left(X^{\prime}\right)^{\prime}=X$		(Involution)
(T5) $X+X^{\prime}=1$	(T5') $X \cdot X^{\prime}=0$	(Complements)

(T5) $X+X^{\prime}=1 \quad$ (T5') $X \cdot X^{\prime}=0 \quad$ (Complements)

- These theorems can be proved to be true. Let us prove T1: [$\mathrm{X}=0$] $0+0=0$ (true, according to A^{\prime}) [$\mathrm{X}=1$] $1+0=1$ (true, according to $A 5$ ')

3. Boolean Algebra

- Theorems (2) -
- Theorems involving two or three variables:
$\left.\begin{array}{llll}\text { (T6) } & X+Y=Y+X & \text { (T6') } & X \cdot Y=Y \cdot X \\ \text { (T7) } & (X+Y)+Z=X+(Y+Z) & \left(T 7^{\prime}\right) & (X \cdot Y) \cdot Z=X \cdot(Y \cdot Z) \\ \text { (T8) } & X \cdot Y+X \cdot Z=X \cdot(Y+Z) & \text { (Commutativity) } \\ \text { (T9) } & X+X \cdot Y=X & \left(X 8^{\prime}\right) & (X+Y) \cdot(X+Z)=X+Y \cdot Z\end{array}\right)$ (Distributivivity) $)$
- Attention to theorem $T 8$ ' which is not true for integers and reals.
- T9 and T10 are used in the minimisation of logic functions.

3. Boolean Algebra

- Theorems (3) -
- Several important theorems are true for an arbitrary number of variables.
- Theorems involving n variables:
(T12) $X+X+\ldots+X=X$
Generalised Idempotency
(T12') $X \cdot X \cdot \ldots \cdot X=X$
(T13) $\left(X_{1} \cdot X_{2} \cdot \ldots \cdot X_{n}\right)^{\prime}=X_{1}{ }^{\prime}+X_{2}{ }^{\prime}+\ldots+X_{n}{ }^{\prime}$
DeMorgan's theorems
(T13) $\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{\prime}=X_{1}^{\prime} \cdot X_{2}^{\prime} \cdot \ldots \cdot X_{n}^{\prime}$
(T14) $\left[F\left(X_{1}, X_{2}, \ldots, X_{n},+, \cdot\right)\right]^{\prime}=F\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}, \cdot,+\right) \quad$ Generalised DeMorgan's th.
(T15) $F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{1} \cdot F\left(1, X_{2}, \ldots, X_{n}\right)+X_{1}^{\prime} \cdot F\left(0, X_{2}, \ldots, X_{n}\right) \quad$ Shannon's
(T15') $F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left[X_{1}+F\left(0, X_{2}, \ldots, X_{n}\right)\right] \cdot\left[X_{1}^{\prime}+F\left(1, X_{2}, \ldots, X_{n}\right)\right] \quad$ expansion
theorems

3. Boolean Algebra

- Theorems (5) -

Equivalent gates according to DeMorgan's theorem

3. Boolean Algebra

- Duality (1) -
- Theorems were presented in pairs.
- The prime version of a theorem is obtained from the unprimed version by swapping " 0 " and " 1 ", and "." and " + ".
- Principle of Duality: Any theorem or identity in Boolean algebra remains true if 0 and 1 are swapped and • and + are swapped throughout.
- Duality is important because it doubles the usefulness of everything about Boolean algebra and manipulation of logic functions.
- The dual of a logic expression is the same expression with + and swapped: $F D\left(X_{1}, X_{2}, \ldots, X_{n},+, \cdot, '\right)=F\left(X_{1}, X_{2}, \ldots, X_{n} \cdot,+,{ }^{\prime}\right)$.
- Do not confuse duality with DeMorgan's theorems! $\left[F\left(X_{1}, X_{2}, \ldots, X_{n},+, \cdot\right)\right]^{\prime}=F\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime},,+\right)$ $\left[F\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]^{\prime}=F^{D}\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right)$

3. Boolean Algebra

- Theorems (4) -
- DeMorgan's theorem (T13 and T13') for $\mathrm{n}=2$: $(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$
- DeMorgan's theorem gives a procedure for complementing a logic function.
- DeMorgan's theorem can be used to convert AND/OR expressions to OR/AND expressions.
- Example:
$Z=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C$
$Z^{\prime}=\left(A+B+C^{\prime}\right) \cdot\left(A+B^{\prime}+C^{\prime}\right) \cdot\left(A^{\prime}+B+C^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}+C\right)$

3. Boolean Algebra

- Theorems (6)

- Since Boolean algebra has only two elements, we can also show the validity of these theorems by using truth tables.
- To do this, a truth table is built for each side of the equation that appears in the theorem.
- Then both sides of the equation are checked to see if they yield identical results for all the combinations of variable values.
- Let us prove DeMorgan's theorem (T13 and $\mathrm{T} 13^{\prime}$) for $\mathrm{n}=2$:
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime} \quad(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$

3. Boolean Algebra

Electric function

- Duality (2) -

Positive-logic

Negative-logic

3. Boolean Algebra

- Duality (3) -
- Positive-logic

- Negative-logic

3. Boolean Algebra
 - Standard Representation (2) -

- Truth tables can be converted to algebraic expressions.
- A literal is a variable or the complement of a variable. Ex: X, Y, X^{\prime}.
- A product term is a single literal or a logical product of two or more literals. Ex: $Z^{\prime}, W \cdot X \cdot Y, W \cdot X^{\prime} \cdot Y^{\prime}$.
- A sum-of-products (SOP) is a logical sum of product terms. Ex: $Z^{\prime}+W \cdot X \cdot Y$.
- A sum term is a single literal or a logical sum of two or more literals. Ex: $Z^{\prime}, W+X+Y, W+X^{\prime}+Y^{\prime}$.
- A product-of-sums (POS) is a logical product of sum terms. Ex: $Z^{\prime} \cdot(W+X+Y)$.

3. Boolean Algebra

- Standard Representation (1) -
- The most basic representation of a logic function is a truth table.
- A truth table lists the output of the circuit for every possible input combination.
- There are 2^{n} rows in a truth table for an n-variable function.

- There are $2^{8}\left(8=2^{3}\right)$ different logic functions for 3 variables.

3. Boolean Algebra
 - Standard Representation (3) -

- A normal term is a product or sum term in which no variable appears more than once.
Examples (non-normal terms): W•X•X'Z $Z^{\prime}, W^{\prime}+Y^{\prime}+Z+W^{\prime}$.
- A n-variable minterm is a normal product term with n literals. Examples (with 4 variables): W•X.Y•Z', W'X'X.Y.Z.
- A n-variable maxterm is a normal sum term with n literals. Examples (with 4 variables): $W+X+Y+Z^{\prime}, W^{\prime}+X^{\prime}+Y+Z$.
- There is a correspondence between the truth table and minterms and maxterms.
- A minterm is a product term that is 1 in one row of the truth table.
- A maxterm is a sum term that is 0 in one row of the truth table.

3. Boolean Algebra

- Standard Representation (4) -

Minterms and maxterms for a 3-variable function $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$

Rowr	X	Y	Z	F	Menlaent	Masham
0	0	0	0	$F(0,0,0)$	$X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}$	$X+Y+Z$
1	0	0	1	$F(0, Q, 1)$	$X^{\prime} \cdot Y^{\prime} \cdot Z$	$X+Y+Z^{\prime}$
2	0	1	0	$F(0,1,0)$	$X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}$	$X+Y^{\prime}+Z$
3	0	1	1	$F(0,1,1)$	$X^{\prime} \cdot Y^{\prime} \cdot Z$	$X+Y^{\prime}+Z^{\prime}$
4	1	0	0	$F(1,0,0)$	$X \cdot Y^{\prime} \cdot Z^{\prime}$	$X^{\prime}+Y+Z$
5	1	0	1	$F(1,0,1)$	$X \cdot Y^{\prime} \cdot Z$	$X^{\prime}+Y^{\prime}+Z^{\prime}$
6	1	1	0	$F(1, L 0)$	$X \cdot Y \cdot Z^{\prime}$	$X^{\prime}+Y^{\prime}+Z$
7	1	1	1	$F(1,1,1)$	$X \cdot Y \cdot Z$	$X^{\prime}+Y^{\prime}+Z^{\prime}$

3. Boolean Algebra

- Standard Representation (5) -

- An n-variable minterm can be represented by an n-bit integer (the minterm number)
- In minterm i, a variable appears complemented if the respective bit in the binary representation of i is 0 ; otherwise it is uncomplemented.
- For example, row 5 (101) is related to minterm $X \cdot Y^{\prime} \cdot Z$.
- In maxterm i, a variable appears complemented if the corresponding bit in the binary representation of i is 1 ; otherwise it is unprimed.
- For example, row 5 (101) is related to maxterm $\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}^{\prime}$.
- To specify the minterms and maxterms, it is mandatory to know the number of variables in the function and their order.

3. Boolean Algebra

- Standard Representation (6) -
- Based on the correspondence between the truth table and the minterms, an algebraic representation of a logic function can be created.
- The canonical sum of a logic function is a sum of the minterms corresponding to truth table rows for which the function is 1 .

From the table:
$F=\sum_{X, Y, Z}(0,3,4,6,7)=X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+X^{\prime} \cdot Y \cdot Z+X \cdot Y^{\prime} \cdot Z^{\prime}+X \cdot Y \cdot Z^{\prime}+X \cdot Y \cdot Z$

- The notation $\sum_{X, Y, Z}(0,3,4,6,7)$ is a minterm list and means the sum of minterms $0,3,4,6$, and 7 , with variables X, Y, and Z .
- The minterm list is also known as the on-set for the logic function.

3. Boolean Algebra

- Standard Representation (7) -
- Based on the correspondence between the truth table and the maxterms, an algebraic representation of a logic function can be created.
- The canonical product of a function is a product of the maxterms corresponding to input combinations for which the function is 0
- From the table:
$F=\prod_{X, Y, Z}(1,2,5)=\left(X+Y+Z^{\prime}\right) \cdot\left(X+Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Y+Z^{\prime}\right)$
- The notation $\prod_{X Y Z}(1,2,5)$ is a maxterm list and means the product of maxterms 1,2 , and 5 , with variables X, Y, and Z.
- The maxterm list is also known as the off-set for the logic function.

3. Boolean Algebra
 - Standard Representation (8) -

- It is easy to convert between a minterm list and a maxterm list.
- For a function of n variables, the minterms and maxterms are in the set $\left\{0,1, \ldots, 2^{n-1}\right\}$.
- A minterm or maxterm list contains a subset of these numbers.
- To switch between the lists, one takes the set complement.
- Examples:
$\sum_{A, B, C}(0,1,2,3)=\prod_{A, B, C}(4,5,6,7)$
$\sum_{X, Y}(1)=\Pi_{X, Y}(0,2,3)$
$\sum_{W, X, Y, Z}(1,2,3,5,8,12,13)=\prod_{W, X, Y, Z}(0,4,6,7,9,10,11,14,15)$

3. Boolean Algebra

- Standard Representation (9) -

We have learned 5 possible representations for a combinational logic function.

- A truth table;
- An algebraic sum of minterms (the canonical sum);
- A minterm list, using the \sum notation;
- An algebraic product of maxterms (the canonical product);
- A maxterm list, using the Π notation;
- Each one of these representations specifies exactly the same information.
- Given any of them, we can derive the other four using a simple mechanical process.

3. Boolean Algebra

- Examples (1) -
- Ex.1: Let $F=X \cdot Y+X \cdot Y^{\prime} \cdot Z+X^{\prime} \cdot Y \cdot Z$. Derive the expression for F^{\prime} in the product of sums form.
- $\mathbf{F}^{\prime}=\left(X Y+X Y^{\prime} \mathbf{Z}+X^{\prime} \mathbf{Y Z}\right)^{\prime}$
$=(X Y)^{\prime} \cdot\left(X Y^{\prime} Z\right)^{\prime} \cdot\left(X^{\prime} Y Z\right)$
$=\left(X^{\prime}+Y^{\prime}\right)\left(X^{\prime}+Y+Z^{\prime}\right)\left(X+Y^{\prime}+Z^{\prime}\right)$
- Ex.2: Express the function $G(X, Y, Z)=X+Y^{\prime} \cdot Z$ as a sum of minterms.
- $\mathbf{G}=\mathbf{x}+\mathbf{y} \cdot \mathbf{z}$
$=X \cdot\left(Y+Y^{\prime}\right) \cdot\left(Z+Z^{\prime}\right)+Y \cdot Z \cdot\left(X+X^{\prime}\right)$
$=X Y Z+X Y Z \quad+X Y^{\prime} Z+X Y^{\prime} Z^{\prime}+X Y Z+X Y Z$
$=X^{\prime} \mathbf{Y Z}+\mathbf{X Y} \mathbf{Z}^{\prime}+\mathbf{X Y} \mathbf{Z}^{\prime} \mathbf{+ X Y Z}{ }^{\prime}+\mathbf{X}^{\prime} \mathbf{Y Z}$
$=\sum_{X, Y, Z}(3,4,5,6,7)$

3. Boolean Algebra

- Examples (2) -
- Ex.3: Derive the product-of-maxterms form for $H=X^{\prime} \cdot Y^{\prime}+X \cdot Z$.
- $H=X^{\prime} \mathbf{Y}^{\prime}+x z$
$=\left(\mathbf{X}^{\prime} \mathbf{Y}^{\prime}+\mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{Y}^{\prime}+\mathbf{Z}\right)$
$=\left(X^{\prime}+X\right)\left(Y^{\prime}+X\right)\left(X^{\prime}+Z\right)\left(Y^{\prime}+Z\right)$
$=\left(X+Y^{\prime}\right)\left(\mathbf{X}^{\prime}+\mathrm{Z}\right)\left(\mathrm{Y}^{\prime}+\mathrm{Z}\right)$
- Each OR term in the expression is missing one variable:
$X+Y^{\prime}=X+Y^{\prime}+Z Z^{\prime}=\left(X+Y^{\prime}+Z\right)\left(X+Y^{\prime}+Z^{\prime}\right)$
$-X^{\prime}+Z=X^{\prime}+Z+Y Y^{\prime}=\left(X^{\prime}+Y+Z\right)\left(X^{\prime}+Y^{\prime}+Z\right)$
$\mathbf{Y}^{\prime}+\mathbf{Z}=\mathrm{y}^{\prime}+\mathbf{Z}+\mathbf{X X} X^{\prime}=\left(X^{\prime}+Y^{\prime}+Z\right)\left(X^{\prime}+Y^{\prime}+Z\right)$
- Finally we combine these terms:
$\mathrm{H}=\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right)\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)$ $\Pi_{X, Y, Z}(2,3,4,6)$

3. Boolean Algebra

- Examples (3)
- Ex.4: Derive the product-of-maxterms form for $H=X^{\prime} \cdot Y^{\prime}+X \cdot Z$.

X	Y	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- From the table, we obtain: $\mathbf{H}=\prod_{X, Y, Z}(2,3,4,6)$ $\mathbf{H}=\sum_{X, Y, Z}(0,1,5,7)$
- Compare this solution with the solution of ex. 3 .
- Ex.5: Derive a standard form with a reduced number of operators for $\mathrm{J}=\mathrm{XYZ}+\mathrm{XYZ}$ + XY'Z + X'YZ.
- J = XYZ + XYZ ${ }^{\prime}+X Y Z+X Y^{\prime} Z+X Y Z+X X Z$
$X Y\left(Z+Z^{\prime}\right)+X\left(Y+Y^{\prime}\right) Z+\left(X+X^{\prime}\right) Y Z$
$X Y^{\prime}+X Z+Y Z$

