

3. Boolean Algebra - Binary Signals (1) -

Dinary orginale (1)

- Digital logic hides the analog world by mapping the infinite set of real values into 2 subsets (0 and 1).
- A logic value, 0 or 1, is often called a <u>binary digit (bit)</u>.
- With n bits, 2ⁿ different entities are represented.
- When using electronic circuits, digital designers often use the words "LOW" and "HIGH", in place of "0" and "1".
- The assignment of 0 to LOW and 1 to HIGH is called <u>positive</u> logic. The opposite assignment is called <u>negative logic</u>.
- Other technologies can be used to represent bits with physical states.

3. Boolean Algebra - Binary Signals (2) -

	Slafe Nepresenting Dd			
Xechnology		1		
Presentic logic	Finid a low possess	Pixel at high possess		
Retay logie	Claratioper	Circuit closed		
Complete many menul-axide sets iconductor (CMDS1 logic	04.54	33-84 V		
Transisto - transisto rilogio (TTL)	0-8.8 V	2.0-3.0 X		
Prine: optical	Lighteff	Lighten		
Osmunic menti si	Capacitor discharged.	Capacitor changed		
threadest a, manafile concerny	Destroy and	Dissistent educated		
Bigolar mad-only manage	Pas Noue	Prae intart		
Bubble coursery	bio cargoratie bolibie	Dia Shi a penna ta		
Magnetic tape or dele	Plan descrive "wath"	First direction "south"		
Pulymen analysis	Mathematic in state A	Malescale in state 18		
Read-only compact dias	hio pit	Pit		
Rew & wable corrowst class	Ope increase in exam-	Optimizers pauling state		

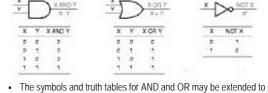
3. Boolean Algebra

- Combinational vs. Sequential Systems -

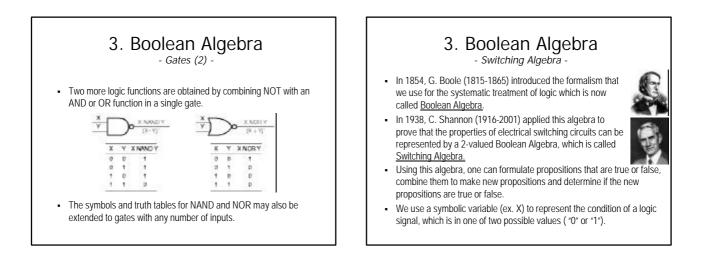
- A <u>combinational</u> logic system is one whose outputs depend only on its current inputs.
- A combinational system can be described by a truth table
- The outputs of a <u>sequential</u> logic circuit depend not only on the current inputs but also on the past sequence of inputs ⇒ memory.
- A sequential system can be described by a state table.
- A combinational system may contain any number of logic gates but no feedback loops.
- A feedback loop is a signal path of a circuit that allows the output of a gate to propagate back to the input of that same gate.
- · Feedback loops generally create sequential circuit behaviour.

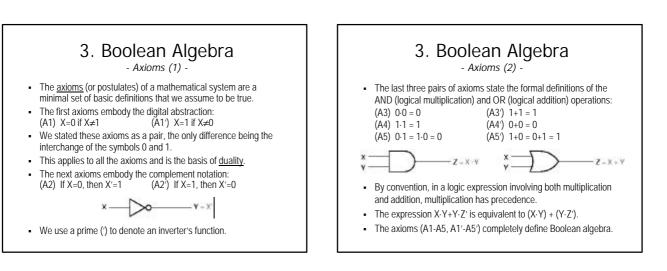
3. Boolean Algebra

 Three basic gates (AND, OR, NOT) are sufficient to build any combinational digital logic system. They form a complete set.



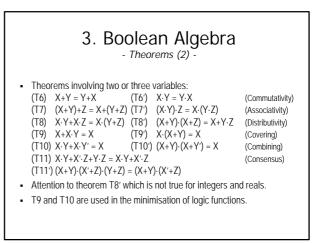
- gates with any number of inputs.
- The <u>bubble</u> on the inverter output denotes "inverting" behaviour.

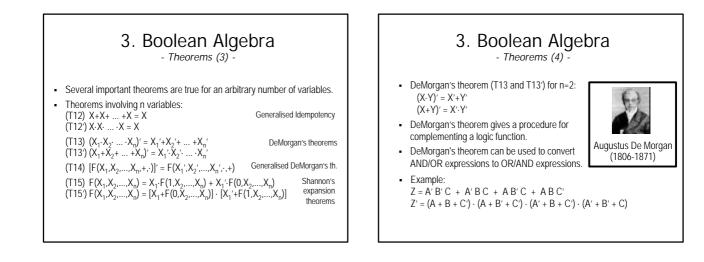


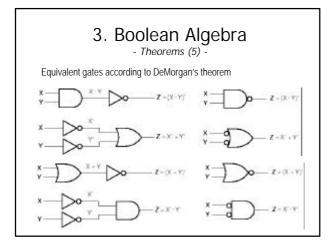


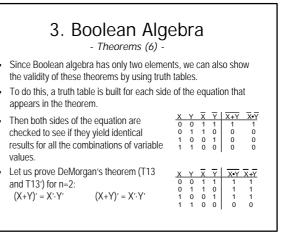
3. Boolean Algebra - Theorems (1) · Theorems are statements, known to be true, that allow us to manipulate algebraic expressions to have simpler analysis or more efficient synthesis of the corresponding circuits. - Theorems involving a single variable: (T1) X+0 = X $(T1') X \cdot 1 = X$ (Identities) (T2) X+1 = 1 $(T2') X \cdot 0 = 0$ (Null elements) (T3) X + X = X(T3') $X \cdot X = X$ (Idempotency) (T4) (X')' = X(Involution) (T5) X + X' = 1 $(T5') X \cdot X' = 0$ (Complements) These theorems can be proved to be true. Let us prove T1: [X=0] 0+0=0 (true, according to A4')

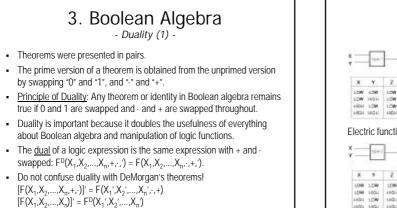
[X=1] 1+0=1 (true, according to A5')

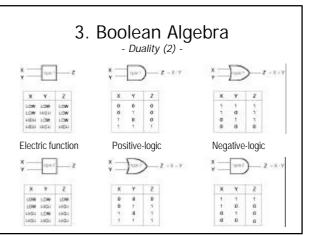


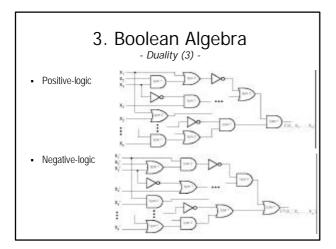












	-	St	and	dard Repr	esentati	UII	(1	/-		
e most	basi	ic re	enre	esentation of	of a logic fi	unc	tior	ı is	a tri	ith table
			· ·	output of th	0					
nbinatio		515	uie	output of th		ULE	:vei	уp	0221	nie inhr
ere are	2 ⁿ r	OW3	s in	a truth table	e for an n-	var	iab	le f	unct	ion.
				the second se						
Asw	×	Y	Z	F	(inter-	х	Υ.	z	- F	
Asw	×	Y 0	Z 0	F F83.0.05		X	Y Q	2	1	
	XOO	Q Q Q	- 7		0 1	X 0 0	9 0 0	0	r L Q	
0 1 2	× 0 0 0	9 0 1	- 7	F81,0.0)	0 1 2	0	9 0 1	2 0 1 0	1 0 0	-
0 1 2 3	x 0 0 0 0	Y 0 0 1 1	0 1	F83,0.05 F83,0.15	0 1 2 3	0 0	9 0 1 1	2 1 0 1	T Q Q L	
0 1 2 3	× 0 0 0 0 1	Y 0 0 1 1 0	0 1	F81,0.0) F81,0.17 F81,1.0)	0 1 2 3 4	0 0	9 0 1 1 0	2 0 1 0 1 0	F 0 1 1	
0 1 2 3	X 0 0 0 0 1 1	Y 0 0 1 1 0 0	0 1 0 1	FI0.0.0) FI0.0.1) FI0.1.0) FI0.1.1)	0 1 2 3 4 5	0 0	9 0 1 1 0 0	2 0 1 0 1 0 1		
0 1 2	× 0000111	Y 0 0 1 1 0 0 1	0 1 0 1	FI0.0.05 FI0.0.17 FI0.1.05 FI0.1.15 FI0.1.05	0 1 2 3 4 5 8	0 0	9 0 1 1 0 1 1 0	2 0 1 0 1 0 1 0 1 0 1 0		

3. Boolean Algebra

- Standard Representation (2) -

- Truth tables can be converted to algebraic expressions.
- A literal is a variable or the complement of a variable. Ex: X, Y, X'.
- A <u>product term</u> is a single literal or a logical product of two or more literals. Ex: Z', W·X·Y, W·X·Y'.
- A <u>sum-of-products</u> (SOP) is a logical sum of product terms.
 Ex: Z' + W·X·Y.
- A <u>sum term</u> is a single literal or a logical sum of two or more literals. Ex: Z', W+X+Y, W+X'+Y'.
- A <u>product-of-sums</u> (POS) is a logical product of sum terms. Ex: Z' · (W+X+Y).

3. Boolean Algebra

- Standard Representation (3) -

- A <u>normal term</u> is a product or sum term in which no variable appears more than once.
 Examples (non-normal terms): W·X·X'.Z', W'+Y'+Z+W'.
- A n-variable <u>minterm</u> is a normal product term with n literals. Examples (with 4 variables): W-X-Y-Z', W-X'-Y-Z.
- A n-variable <u>maxterm</u> is a normal sum term with n literals. Examples (with 4 variables): W+X+Y+Z', W'+X'+Y+Z.
- There is a correspondence between the truth table and minterms and maxterms.
- A minterm is a product term that is 1 in one row of the truth table.
- A maxterm is a sum term that is 0 in one row of the truth table.

3. Boolean Algebra

- Standard Representation (4) -

Minterms and maxterms for a 3-variable function F(X,Y,Z)

Acres	х	۷	z	F	Merican	Mexicon
0	0	0	0	F(0,0,0)	X'.Y'.Z'	X+Y+Z
1	0	۵	L	F(0,0,1)	X'.Y'.Z	X + Y + Z'
2	0	L	0	F(0,1,0)	X'.Y-Z'	X + Y"+ Z
3	0	1	t.	F(0,1,1)	X'-Y-Z	X+Y'+Z'
4	1	0	0	F(1,0,0)	X-Y'-Z'	X'+Y+Z
5	1	0	l,	F(1,0,1)	X - Y' - Z	X'+ Y + Z'
6	1	L	0	F(1,1,0)	X - Y - Z'	X'+ Y'+ Z
7	1	t.	L	F(1,1,1)	X·Y·Z	X'+Y'+Z'

3. Boolean Algebra

- Standard Representation (5) -

- An n-variable minterm can be represented by an n-bit integer (the minterm number).
- In minterm i, a variable appears complemented if the respective bit in the binary representation of i is 0; otherwise it is uncomplemented.
- For example, row 5 (101) is related to minterm X·Y·Z.
- In maxterm i, a variable appears complemented if the corresponding bit in the binary representation of i is 1; otherwise it is unprimed.
- For example, row 5 (101) is related to maxterm X'+Y+Z'.
- To specify the minterms and maxterms, it is mandatory to know the number of variables in the function and their order.

3. Boolean Algebra

- Standard Representation (6)

fice-

0 0

ù. ū. Ť.

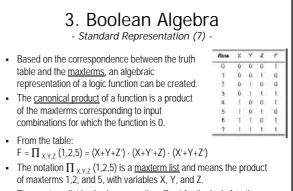
ii.

0 0 0

-Ū

ų t

- · Based on the correspondence between the truth table and the minterms, an algebraic representation of a logic function can be created.
- The canonical sum of a logic function is a sum of the minterms corresponding to truth table rows for which the function is 1.
- From the table:
- $\mathsf{F} = \sum_{X,Y,Z} \left(0,3,4,6,7\right) = X' \cdot Y' \cdot Z' + X' \cdot Y \cdot Z + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z' + X \cdot Y \cdot Z'$
- The notation $\sum_{x,y,z}$ (0,3,4,6,7) is a minterm list and means the sum of minterms 0,3,4,6, and 7, with variables X, Y, and Z.
- The minterm list is also known as the on-set for the logic function.



· The maxterm list is also known as the off-set for the logic function.

3. Boolean Algebra - Standard Representation (8) -

- · It is easy to convert between a minterm list and a maxterm list.
- · For a function of n variables, the minterms and maxterms are in the set {0, 1, ..., 2ⁿ-1}.
- A minterm or maxterm list contains a subset of these numbers.
- To switch between the lists, one takes the set complement.
- Examples:
 - $\sum_{A,B,C} (0,1,2,3) = \prod_{A,B,C} (4,5,6,7)$

$$\begin{split} & \sum_{X,Y}^{A,B,C} (1) = \prod_{X,Y}^{A,B,C} (0,2,3) \\ & \sum_{W,X,Y,Z} (1,2,3,5,8,12,13) = \prod_{W,X,Y,Z} (0,4,6,7,9,10,11,14,15) \end{split}$$

3. Boolean Algebra

- Standard Representation (9) -

- · We have learned 5 possible representations for a combinational logic function.
 - A truth table;
 - An algebraic sum of minterms (the canonical sum);
 - A minterm list, using the Σ notation;
 - An algebraic product of maxterms (the canonical product);
 - A maxterm list, using the Π notation;
- · Each one of these representations specifies exactly the same information.
- · Given any of them, we can derive the other four using a simple mechanical process.

3. Boolean Algebra

- Examples (1) -

- Ex.1: Let F = X·Y + X·Y·Z + X·Y·Z. Derive the expression for F' in the product of sums form.
 - F' = (XY + XY'Z + X'YZ)' $= (XY)' \cdot (XY'Z)' \cdot (X'YZ)'$

 - = (X'+Y')(X'+Y+Z')(X+Y'+Z')
- Ex.2: Express the function G(X,Y,Z) = X + Y'·Z as a sum of minterms.
- $G = X + Y \cdot Z$

 - $\begin{array}{l} x \cdot (Y + Y') \cdot (Z + Z') + Y \cdot Z \cdot (X + X') \\ = X Y Z + X Y Z' + X Y' Z' + X Y' Z' + X Y Z + X' Y Z \\ = X' Y Z + X Y' Z' + X Y' Z + X Y Z' + X Y Z' + X' Y Z \end{array}$

 - = $\sum_{X,Y,Z} (3,4,5,6,7)$

3. Boolean Algebra - Examples (2) -

- Ex.3: Derive the product-of-maxterms form for H = X'·Y' + X·Z. • H = X'Y' + XZ= (X'Y'+X)(X'Y'+Z) = (X'+X)(Y'+X)(X'+Z)(Y'+Z)= (X+Y')(X'+Z)(Y'+Z)
- · Each OR term in the expression is missing one variable:
 - -X+Y' = X+Y'+ZZ' = (X+Y'+Z)(X+Y'+Z')
 - -X'+Z = X'+Z+YY' = (X'+Y+Z)(X'+Y'+Z)
 - Y' + Z = Y' + Z + XX' = (X + Y' + Z)(X' + Y' + Z)
- Finally we combine these terms:
 H = (X+Y'+Z)(X+Y'+Z')(X'+Y+Z)(X'+Y'+Z) ∏ _{X,Y,Z} (2,3,4,6)

