Sistemas Digitais |
LESI - 29 ano

Lesson 5 - VHDL

Prof. Joao Miguel Fernandes
(m guel @li . um nho. pt)

Dept. Informatica

" UNIVERSIDADE DO MINHO

5 4%; ESCOLA DE ENGENHARIA

5. VHDL

- Introduction -

« VHDL was developed, in the mid-1980s, by DoD and |IEEE.

« VHDL stands for VHSIC Hardware Description Language;
VHSIC stands for Very High Speed Integrated Circulit.

= VHDL has the following features:

Designs may be decomposed hierarchically.

Each design element has both an interface and a behavioural
specification.

Behavioural specifications can use either an algorithm or a structure to
define the element's operation.

Concurrency, timing, and clocking can all be modelled.
The logical operation and timing behaviour of a design can be simulated.

« VHDL started out as a documentation and modelling language,
allowing the behaviour of designs to be specified and simulated.

5. VHDL

- Design flow -

« Synthesis tools are also commercially available. A synthesis tool can

create logic-circuit structures directly from VHDL specifications.

steps

framt-end l hierarchy/ " codin
4 " |blockdiagram | & :

' tvery painfully
er fully
' {very painfull

back-end
steps T ca

| compilation _ | simulation/
2 P | werification
{painful, but not uncommon) -
; fitting/ timing
Byriesly place+route ~ | werification

¥

5. VHDL

- Entities and Architectures (1) -

VHDL was designed with the principles of structured programming.
Pascal and Ada influenced the design of VHDL.

An interface defines the boundaries of a hardware module, while
hiding its internal details.

A VHDL entity is a declaration of a
module’s inputs and outputs.

A VHDL architecture Is a detailed
description of the module’s internal
structure or behaviour.

5. VHDL

- Entities and Architectures (2) -

entity A

An architecture may use
other entities.

A high-level architecture
may use a lower-level
entity multiple times.

Multiple top-level
architectures may use the
same lower-level entity.

This forms the basis for

hierarchical system design.

antity B /

architecture A
1 k Ry
1

’)
7
entity &

|/

4

architecture B

architecture C

r’ *I

architecture D

o L2 2

/

\

entity E %

////

architecture E

architecture F

5. VHDL

- Entities and Architectures (3) -

= Inthe text file of a VHDL program, the entity —
declaration and the architecture definition are 1=-====-------------=
separated.

entity declaration

I
1
I
I
I
. . - . I
entity Inhibkit 1= I
port [(X,Y: in BIT; :
i cut BIT); I

I

I

I

I

I

I

I

I

end Inhibkit; architecture definition

architecture Inhibkbit_arch of Inhibit 1=
begin

Z «= '"1l'" when X='l"'" and ¥='0" el=ze '0°';
end Inhikit _areh; | laeeeesessseee e eeemm—-- |

= The language Is not case sensitive.
« Comments begin with 2 hyphens (--) and finish at the end of the line.

= VHDL defines many reserved words (port,i s, i n, out, begi n,
end,entity,architecture,if,case,)

5. VHDL

- Entity declaration syntax -

« Syntax of an entity declaration:

antity erfifp-rame ix
port (stgnal-rares © mode sigral-type;
stenal-names © mode sienal-type;

stgnal-rames © mode signal-type) ;
end entitp-rare

= mode specifies the signal direction:
— 1 n:input to the entity
— out : output of the entity
— buf f er : output of the entity (value can be read inside the architecture)
— 1 nout : input and output of the entity.

= signal-type is a built-in or user-defined signal type.

5. VHDL

- Architecture definition syntax -

= Syntax of an architecture definition:

architecture architectur -name of enfip-name 1=
type declarations
stgnal declarations
constant declarattons
Jurcton definitions
Procedure defirtttons
corporenrt declarattons
begin
CORCUF R -Sta e et

CORCUFRERE-StAle e Rt
and arcRifectne -Rare ;

= The declarations can appear in any order.

= In signal declarations, internal signals to the architecture are defined:
signal signal-nanes : signal -type;

5. VHDL

- Types (1) -

All signals, variables, and constants must have an associated type.

A type specifies the set of valid values for the object and also the
operators that can be applied it b ADT.

VHDL is a strongly typed language.
VHDL has the following pre-defined types:

bit character zoverity lewvel
bit_ wector integer =tring
booclean real time

i nt eger Includes the range -2 147 483 647 through +2 147 483 647.
bool ean has two values, true and false.
char act er Includes the characters in the ISO 8-bit character set.

5. VHDL

- Types (2) -

« Built-in operators for i nt eger and bool ean types.

intager Operalors

baolzan Qperslors

rem

abx
P

addition
subtraction
multiplication
division

modulo division
modulo remaindet
abzolote valoe
ExXponentlation

and

AND

R

MAMND

MNOR

Exclusive OR
Exclusie NOR
complementation

5. VHDL

- Types (3) -

= User-defined types are common in VHDL programs.
« Enumerated types are defined by listing the allowed values.

t ype type-nane ix= (valve-fist) ; type STO_ULOGIC i= |

subt ype subtype name Lx type-name start to end; :E: g TR IE-']nJ:n:!-tLﬂl'[J_]_LEd

=ubt ype subtype -Hame ix type-name start downto end; R T -
B -— Forcing 0

const ant constaRt-Hame ; type -Hake = value ; ks —-— Forcing 1
'2', —— High Impedance
W', —— Weak Unknown
'L', —— Weak 0
'H', —— Weak 1

'-'l; —— Don't care
subtype 3TD_LOGIC ix= resclwved STD_ULOGIC;

= type traffic light is (reset, stop, start, go);
= subtype bitnumis integer range 31 downto O;
= constant BUS SIZE: integer := 32;

5. VHDL

- Types (4) -

= Array types are also user-defined.

type type-Kame ix array(start to end) of element-type;

type type-rame ix array(start downto end) of element-tipe;

type type-Kame ix arrcay(range-type) of element-type ;

type type-Hame ix array(range-tppe range start to end) of element-tppe;

t ype type-Hame ix array(rorge-type range start downto end) of #lement-type;

type monthly_count i= array (1 to 12) of integer;
type byte 1= array (7 downte 0) of S3TD_LOGIC;

conztant WIRD_LEW: integer (= 32;
type word 1=z array (WORD_LEW-1 dewnte 0] of STD_LOGIC;
con=tant NUM_REGS: integer = §;

type reg_file iz array (1 to WUM_REGZ) of word;

type =tatecount i= array (traffic_light_=tate) of integer;

5. VHDL

- Types (5) -

Array literals can be specn‘led by Ilstlng the values In parentheses:

xyz :=(C1,'’1r,'’0,’1,’1,'0,'0,'1);

abc := (0= > 0’ 3=> o, 9=>"0", others > 1),
Strings can be used for STD _LOGIC arrays:

Xyz = "11011001";

abc :=70110111110111111";

Array slices can be specified:

xyz(2 to 4) abc(9 downto 0)

Arrays and array elements can be combined with the concatenation
operator (&):

"0’ & 1' & 17" Isequivalentto "0112".

B(6 downto 0)&B(7) represents a 1-bit left rotate of the B array.

5. VHDL

- Functions and Procedures (1) -

= A function accepts a set of arguments and returns a resuit.
= The arguments and the result must have a type.
« Syntax of a function definition.

function fimetion -rame |
stgnal-names © sighal-type;
stenal-names © sighal-type ;

steral-names : sighal-type

] return returr-type 1=

type declarations

econstant declarattons

vartable declarations

Jurcton definittons

Procedure defintttons
begin

Fequernal-statere it

sequerntal-stateme nt
end furction -rame ;

architecture Inhibkit _archf of Inhikit i=

function But®det (A, B: bit]) return kit i=x

begin
if B = '0" then return A;
elze return '0';
end 1f;

ennd BiutWot;

begin
7 <= ButNot (X, ¥ ;

end Inhibkit_ archif;
= — — — — — — — — — — —]

5. VHDL

- Functions and Procedures (2) -

It is often necessary to convert a signal from one type to another.

Assume that the following unconstrained array type is defined:
type STD LOEd C VECTOR is array (natural range <>) of STD LCd C

Conversion from STD_LOG C_VECTORINto | NTEGER

function COWV_INTEGER [(X: STD_LOGIC _WVECTOR) return INTEGER ix
wariakle RESULT: INTEGER;
begin
RESULT = 0;
for 1 in X'range loop
RESULT := RESULT #* Z;
caze X[(1] 1i=x
when '0" | "L' => null;
when "1" | "H' = RESULT := RESULT + 1;
when octhers = mmall;
end caze;
end loop;
return RESULT;
and CONV_INTEGER;

5. VHDL

- Functions and Procedures (3) -

= A procedure Is similar to a function, but it does not return a result.

« Whereas a function call can be used in the place of an expression, a
procedure call can be used in the place of a statement.

= Procedures allow their arguments to be specified with mode out or
i nout , SO Itis possible for a procedure to “return” a result.

5. VHDL

- Libraries and Packages (1) -

A library is a place where the VHDL compiler stores information
about a particular design project.

For any design, the compiler creates and uses the wor k library.
A design may have multiple files, each containing different units.
When a file is compiled, the results are placed in the wor k library.

Not all information needed in a design must be in the wor k library. A
designer may rely on common definitions or functions across a family
of different projects.

A project can refer libraries containing shared definitions:
|1 brary | eee;

5. VHDL

- Libraries and Packages (2) -

Specifying a library gives access to any

previously analysed entities and architectures, . oraz etmename e
but does not give access to types and the like. 2 Firiammmns

constant declarattons

A package Is a file with definitions of objects component dectarations
(signals, types, constants, functions, procedures, component j;f;i:;ﬁf iﬁ?ﬁ;ﬁf{fm
declarations) t0 be used by other programs. T s
A design can use a package: ;ifiﬁ;

use ieee.std logic _1164. all; procedume definitions

end packape-rame ;

Within the ieee library, the definitions are on
file std_logic_1164.

5. VHDL

- Structural Design (1) -

The body of an architecture Is a series of concurrent statements.

Each concurrent statement executes simultaneously with the other
concurrent statements in the same architecture body.

Concurrent statements are necessary to simulate the behaviour of
hardware.

The most basic concurrent statement is the component statement.

fabel: component-name port map (stgrall, sigral?, .., stgrale) ;

fabel: component-nape port map (portl=rsigrall por2=:gigral?, ..., porth=rsigrain]) ;

conponent - nane Is the name of a previously defined entity.
One instance of the entity Is created for each component statement.

5. VHDL

- Structural Design (2) -

= Before being instantiated, a component must be declared in the
conponent decl ar at i on In the architecture’s definition.

= A component declaration is essentially the same as the port
declaration part of an entity declaration.

component componeRf-Hame
port (stgral-rares © mode sigral-type;
stenal-names : mode stenal-type ;
stenal-names : mode signal-type) ;
and component ;

= The components used in an architecture may be those previously
defined as part of a design, or they may be part of a library.

5. VHDL

- Structural Design (3) -

library IEEE;
uxze IEEE.=td leogic_11lé4d.all;
aentity prime i=
poert [M: in S3TD_LOGIC VECTOR (3 dewnte 0); F: ocwut STD_LOGIC g

and prime;
architecture primel_arch ot prime 1=
=ignal M3_L, W L, Wl_L: 3TD_LIOGIC;
=ignal M3L N0, W3L_W2L_MN1, M2L_N1_N0, W2_W1L_N0: STD_LOGIC;
component INWV peort (I: in STD_LAGIC; O: out STD_LOGIC); end compeonent;
component ANDZ port (I0,Il: in 32TD _LOGIC; Q: cut 3TD_LAGIC); end component;
component ANDI port (I0,I1,IZ: in STD_LAGIC; O: owt 2TD_LIGIC) ; end compeonent;
component JR4 peort (I0,I1,I¢,TI3: in 3TD_LOGIC; Jd:ecwut STD_LOGIC);end component;
begin

Ul: IWV port map (W3], M3_L];

U¢: IWV port map (MiZ), W2_L);

Ui: IWV port map (Wi(l), W1_L];

Ud: ANDZ peort map (M3 _L, W(0), W3IL_MW0);

U5: AMD3 port map [(MW3_L, WZ_L, M({l), W3L_N2L Wl};

Ué: AWD3 port map [(WZ_L, Wil), ™W(0), WN2L_mWl_m0);

U7: AWD: port map (M(2]), W1_L, W(0), WMZ_WlL_m0);

Uf: OR4 port map [(N3L_W0, W3L_W2L_M1, W2L_N1_W0, WZ_NWI1L_NO, FJ;
and primel_arch;

5. VHDL

- Structural Design (4) -

= An architecture that uses components is a structural description, since
It describes the structure of signals and entities that realise the entity.

= The gener at e statement allows repetitive structures to be created.

label: for Hertifier in range generate
CORCY Fre HE-State eHt
and generate;

library IEEE;
u=e IEEE.=td_logic_lléd4.all;
entity inwvd i=
port [X: in 3TD_LOGIC VECTOR (1 to 8);
Y: out STD_LOGIC VECTOR (1 to)) ;
end inwd;
architecture invd_arch of inwvd i=
component INV port (I: in 3TD _LOGIC; Q:ewt STOD_LAGIC) ; end component;
begin
gl: for b in 1 to 8 generate
Ul: IWNV port map (Xik), Yik));
end generate;
end inwvd_arch;

5. VHDL

- Structural Design (5) -

= Generic constants can be defined in an entity declaration.

anitity entiy-rame ix
generlc [CORSTART-RARIES ¢ CORSTERt-type ;
CORSTART-RAMES | CORSTARt-type ;

CORSIART-RAMES | CORSIARI-tYPe) ;
port (sienal-ranwes @ mode stenal-type ;
signal-rames © mode sweral-type;

stgnal-names © mode signal-type) ;
anid entitp-Rame;

« Each constant can be used within the respective architecture and the
value is deferred until the entity is instantiated in another architecture,

using a component statement.

« Within the component statement, values are assigned to the generic
constants using a generi ¢ nap clause.

5. VHDL

- Structural Design (6) -

library IEEE;
u=ze JEEE.=td_logic_lléd.all;

entity bu=zinv i=
generic (WIDTH: positive);
pert [X: in STD_LOGIC_VECTOR (WIDTH-1 deownte 0);
Y: ocut STD_LOGIC VWECTOR [(WIDTH-1 downteo 01) ;
end businw;

architecture bu=zinv_arch of buzinv 1=
compeonent IMNV pert (I: in STD _LOGIC; J: ocut STD_LOIGIC) ; end component;
begin
gl: for b in WID-1 downte 0 generate
Ul: IWV port map (X(k), Yibll;
end generate;

end buzinwv_arch;
e ——

5. VHDL

- Structural Design (7) -

library IEEE;
uxe IEEE.=td_logic_l1lé4.all;

aentity businv_example ix=
pert [IN8: in 3TD_LOGIC_VECTOR (7 deownto 0);

JUTE: owut STD_LAGIC _VECTOR (7 downte 0);
IMléEé: inm STD LOGIC VECTOR (15 downte 0);
QUT16: owut =TD_LOGIC WECTOR (15 downto 07 ;
IM2Z2: in STD _LOGIC VECTOR (21 downte 0);
QUT32: out STD_LOGIC WECTOR (31 downte 01 J;

aend buzinv_example;

architecture bu=zinv_ex_arch of bu=minv_sexample 1=
component bu=zinwv

generic [(WIDTH: De=itiwve];

pert [X: in STD_LOGIC VECTOR [(WIDTH-1 downte 0);

Y: out STD_LOGIC VECTOR [(WIDTH-1 dowateo 01

end compeonent ;
begin
Ul: bu=inwv generic map [(WIDTH=:3) port map (INE, OUTE);
UZ: buzinv generic map [(WIDTH=rlé] port map [(INlé, QUTLl&);
U3: bu=inwv generic map [(WIDTH=:3?) port map [(IM32, QUT3Z);

end buzinv_ex_arch;

5. VHDL

- Dataflow Design (1) -

= Other concurrent statements allow circuits to be described in
terms of the flow of data and operations on it within the circuit.

= This gives origin to the dataflow description style.
« Syntax of concurrent signal assignments statements.

stgral-name <= expression;

stpral-name <= expressior when boolean-expression else
expression when boolean-expression elxe

expression when boolear-expression else
EXPrESSEON ;

5. VHDL

- Dataflow Design (2) -

architecture prime?_ arch of prime i=
=ignal W3L_WO0, W3L_WZL_M1, W2L_W1_W0, W2_W1L_W0: STD_LOGIC;

begin
MAL_MO <= not W3] and W0} ;
MEL_MZL_M]1l <= net W3] and net W(Z) and Wil ;
MZL_M1 W0 <= not WiZ)] and WMill and W0} ;
MZ_W1IL_W0 <= M(2) and net Wi(l] and W(0);

F <= W3L_M0 or W3L_HW2L_Wl or WZL W1l N0 or WZ_MW1L_N0;

and prime?_arch;

architecture primeli_arch of prime i=

=ignal M3L W0, W3L_N2L_N1, WZ2L_N1_M0, W2 _N1L_N0: STD_LOGIC;

begin
WaL_WO0 <= '"1' when W(3I="0" and W(O0)="1"' el=ze "0';
M3L_MAL_MN1 <= '"1' when Wi3)="0'" and W(2]="0" and W(l)="'1" el=e '0O"';
MAL_MW1_ WO <= '1"' when Wi21="0'" and W(li="1l" and W(0)="'1l" el=e '0O';
M2 W1L WO <= '"1' when Wi2)1="'l' and W(l]="0" and W(0)="1l" el=e '0O';
F <= MN3L N0 or N3L NZL Wl or NZL_ Wl N0 or N2 _WLlL NO;

and prime3 arch;

5. VHDL

- Dataflow Design (3) -

= Another concurrent statement is the selected signal assignment,
which is similar to a typical CASE constructor.

« Syntax of selected signal assignments.

with expresston =zelect
stenal-name <= sipral-valte when chotees,
stgral-value when chotres,

steral-valve when chotces;

architecture primed_arch of prime i=x= architecture prime5 _arch of prime i=
begin begin
with ™ =elect with COWV_INTEGER(M] =elect
F <= 'l"'" when "0001", B <= '"l" when 112|257 |11]| 13,
'1" when "00107, '0' when others;

'1'" when "0OO0O11" | "OlO1"™ | "O111°", and prime5 arch;
'1*" when "1011"™ | ™1101",
'0' when others;

end primed_arch;
-

5. VHDL

- Behavioural Design (1) -

= The main behavioural construct is the process which is a
collection of sequential statements that executes in parallel with

other concurrent statements and Processes.

= A process simulates in zero time.
« A VHDL process is a concurrent statement, with the syntax:

proce== [stgral-rawe, sigral-name, . . ., sigral-rane)
type declarations
vartable declarations
constant declarattons
Terecton definitions
procedure defirtttons
begin
sequenttal-statere nt

seguenttal-staterie nt
end proces=;

5. VHDL

- Behavioural Design (2) -

A process can not declare signals, only variables, which are used to
keep track of the process state.

The syntax for defining a variable is:
vari abl e vari abl e-nanes : vari abl e-type;

A VHDL process Is either running or suspended.

The list of signals in the process definition (sensitivity list) determines
when the process runs.

A process is initially suspended. When a sensitivity list’s signal changes
value, the process resumes, starting at the 1st statement until the end.

If any signal in the sensitivity list change value as a result of running the
process, it runs again.

5. VHDL

- Behavioural Design (3) -

This continues until the process runs without any of these signals
changing value.

In simulation, this happens in zero simulation time.

Upon resumption, a properly written process will suspend after a couple
of runs.

It Is possible to write an incorrect process that never suspends.

Consider a process with just one sequential statement “X <= not X;”
and a sensitivity list of “(X) ".

Since X changes on every pass, the process will run forever in zero
simulated time.

In practice, simulators can detect such behaviour, to end the simulation.

5. VHDL

- Behavioural Design (4) -

« The sequential signal assignment statement has the same syntax as
the concurrent version (but it occurs within the body of a process):
si gnhal - nane <= expression;

= The variable assignment statement has the following syntax:
vari abl e- nane : = expression;

architecture primeéd_arch of primeé 1=
begin
proce=zx= (M)
variable M3L_ M0, M3L_WZL M1, W2L Ml WO, WZ WlL WO: STD LOGIC;
begin

M2L_MO0 = not W3] and Wi0);
M3L_MZL_ Ml = not W3] and net W(Z] and Wil H
MZL_M1 ™0 = not Wi2] and Wil) and Wi0);
MZ_M1L,_m0 = M(Z2)] and act W(l)] and W(0);

F <= ML MO0 or N3L MZL_ Nl or NZL Ml M0 or M2 NL1L_ MO;
end proce=zz;
and primeé arch;

5. VHDL

- Behavioural Design (5) -

« Other sequential statements include popular constructs, such asi f,

case, | oop, for, and whi | e.

if Boolear-expression then segquerttal-staterment
end 1f;

if Boolean-expression then segquential-statement
elxe seguential-statement
end 1f;

i1f Boofean-expression then sequential-staterment
elx=if boolean -expression then seguenttal-statement

el=if boolean-expression then sequential-statement
end 1f;

if Boolean-expression then segquernal-staterment
elx=if boolean-expression then seguenttal-statement

elx=if booleanexpression then seguential-statement
alxe seguential-statement

end if;

Caxe eXPrESSion 1x
when chowes == sequential-statements

when chowes == sequential-statements
end caxze;

for tdentifier in range loop
geguernnal-staterie nt

loop
segquenttal-statement

seguernttal-statere nt
end loop;

seguernttal-state et
end loop;

while boolean-exprssion loop
seguernttal-statemert

sequential-statement
end loop;

5. VHDL

- Behavioural Design (6) -

architecture prime’_arch of prime i=
begin

proce=s= (M)

wariable ®WMI: INTEGER;
begin
NI := CONV_IWNTEGER (M) ;

1f WI=l or WI=2 then F «<= "1"';
elzif WI=2 or MI=5 or WI=T7 or WI=1ll or
WI=13% then F <= "1';
elze F <= '0';
end 1f;
end proce==;
and prime’_arch;

architecture primef_arch of prime i=
begin

proce== (M)

begin
caze COWV_INTEGER (M) 1=
when 1 = F <= '1"';
when 2 = F «= '1';
when 3 | 5 | 7 11 | 13 = P == "1";

|
when other= = B <=
end caze;

'U',‘

end proce=sz;
end primed_arch;

5. VHDL

- Behavioural Design (7) -

architecture primef% arch of prime% 1=
begin

proce=s= (M)

wvariable WI: IWTEGER;

wariakle prime: boolean;

begin
NI := COWNWV_INTEGER (W] ;
prime = true;
1f WNI=l or WI=Z then mull; —-- boundary caxze=x

alze for 1 in 2 to 253 loop

if WI moed 1 = 0 then

prime := falme; exit;
end 1f;
end loop;
end 1f;
1f prime then F <= 'l'; el=e F <= '0'; end i1f;
end proce=s=;
end prime% arch;

5. VHDL

- Time Dimension (1) -

None of the previous examples deal with the time dimension of
circuit operation: everything happens in zero simulated time.

VHDL has excellent facilities for modelling the time.

VHDL allows a time delay to be specified by using the keyword
af t er In any signal-assignment statement.
Z <= "'1 after 4ns when X='1" else

‘0’ after 3ns;
This models a gate that has 4ns of delay on a 0-to-1 output
transition and only 3ns on a 1-to-0 transition.

With these values, a VHDL simulator can predict the approximate
timing behaviour of a circuit.

5. VHDL

- Time Dimension (2) -
Another way to invoke the time dimension is with wai t .
This sequential statement can be used to suspend a process for a
specified time period.
A wai t statement can be used to create simulated input waveforms
to test the operation of a circulit.

entity InhibitTestBench is
end InhibitTestBench ;

architecture InhikitTE_arch of InhibkitTestBench i=s
component Inhikit port (¥X,Y: in BIT; Z: out BIT); end component;
signal XT, YT, &T: BIT;
begin
Ul: Inhikit port map (XT, YT, ZT);
process
begin
KT <= '0'; ¥T «<= '0"';
wait for 10 ns;
XT = T0Yp ¥T o= Y%
wait for 10 ns;
ML g= BEMe o s Bt
wait for 10 ns;
KT <= '1'; ¥T «<= "1"';
wait; —— this suspends the process indefinitely
end process;
end InhikitTB_arch;

5. VHDL

- Simulation (1) -

Once we have a VHDL program whose syntax and semantics are
correct, a simulator can be used to observe its operation.

Simulator operation begin at simulation time of zero.
At this time, the simulator initialises all signals to a default value.

It also Initialises any signals and variables for which initial values
have been explicitly declared.

Next, the simulator begins the execution of all processes (and
concurrent statements) in the design.

The simulator uses a time-based event list and a signal-sensitivity
matrix to simulate the execution of all the processes.

5. VHDL

- Simulation (2) -

At simulation time zero, all processes are scheduled for execution.

One of them is selected and all of its sequential statements are
executed, including any looping behaviour that is specified.

When the execution of this process is completed, another one is
selected, and so on, until all processes have been executed.

This completes one simulation cycle.
During its execution, a process may assign new values to signals.

The new values are not assigned immediately. They are placed on
the event list and scheduled to become effective at a certain time.

5. VHDL

- Simulation (3) -

If the assignment has an explicit simulation time (af t er clause),
then it Is scheduled on the event list to occur at that time.

Otherwise, It s supposed to occur “immediately”.

It is actually scheduled to occur at the current simulation time plus
one delta delay.

The delta delay is an infinitesimally short time, such that the current
simulation time plus any number of delta delays still equals the
current simulation time.

The delta delay concept allows processes to execute multiple times
(If necessary) in zero simulated time.

After a simulation cycle completes, the event list is scanned for the
signals that change at the next earliest time on the list.

5. VHDL

- Simulation (4) -

This may be as little as one delta delay, or it may be a real delay, in
which case the simulation time is advanced.

In any case, the scheduled signal changes are made.
Some processes may be sensitive to the changing signals.

All the processes that are sensitive to a signal that just changed are
scheduled for execution in the next simulation cycle (begins now).

The simulator’s operation goes on indefinitely until the list is empty.

The event list mechanism makes it possible to simulate the
operation of concurrent processes in a uni-processor system.

The delta delay mechanism ensures correct operation even though
a set of processes may require multiple executions.

