
Sistemas Digitais I
LESI - 2º ano

Lesson 5 - VHDL

UNIVERSIDADE DO MINHO

ESCOLA DE ENGENHARIA

Prof. João Miguel Fernandes
(miguel@di.uminho.pt)

Dept. Informática

5. VHDL
- Introduction -

§ VHDL was developed, in the mid-1980s, by DoD and IEEE.
§ VHDL stands for VHSIC Hardware Description Language;

VHSIC stands for Very High Speed Integrated Circuit.
§ VHDL has the following features:

– Designs may be decomposed hierarchically.
– Each design element has both an interface and a behavioural

specification.
– Behavioural specifications can use either an algorithm or a structure to

define the element's operation.
– Concurrency, timing, and clocking can all be modelled.
– The logical operation and timing behaviour of a design can be simulated.

5. VHDL
- Design flow -

§ VHDL started out as a documentation and modelling language,
allowing the behaviour of designs to be specified and simulated.

§ Synthesis tools are also commercially available. A synthesis tool can
create logic-circuit structures directly from VHDL specifications.

5. VHDL
- Entities and Architectures (1) -

§ VHDL was designed with the principles of structured programming.
§ Pascal and Ada influenced the design of VHDL.
§ An interface defines the boundaries of a hardware module, while

hiding its internal details.
§ A VHDL entity is a declaration of a

module’s inputs and outputs.
§ A VHDL architecture is a detailed

description of the module’s internal
structure or behaviour.

5. VHDL
- Entities and Architectures (2) -

§ An architecture may use
other entities.

§ A high-level architecture
may use a lower-level
entity multiple times.

§ Multiple top-level
architectures may use the
same lower-level entity.

§ This forms the basis for
hierarchical system design.

5. VHDL
- Entities and Architectures (3) -

§ In the text file of a VHDL program, the entity
declaration and the architecture definition are
separated.

§ The language is not case sensitive.
§ Comments begin with 2 hyphens (--) and finish at the end of the line.
§ VHDL defines many reserved words (port, is, in, out, begin,

end, entity, architecture, if, case, ...).

5. VHDL
- Entity declaration syntax -

§ Syntax of an entity declaration:

§ mode specifies the signal direction:
– in: input to the entity
– out: output of the entity
– buffer: output of the entity (value can be read inside the architecture)
– inout: input and output of the entity.

§ signal-type is a built-in or user-defined signal type.

5. VHDL
- Architecture definition syntax -

§ Syntax of an architecture definition:

§ The declarations can appear in any order.
§ In signal declarations, internal signals to the architecture are defined:

signal signal-names : signal-type;

5. VHDL
- Types (1) -

§ All signals, variables, and constants must have an associated type.
§ A type specifies the set of valid values for the object and also the

operators that can be applied it ⇒ ADT.
§ VHDL is a strongly typed language.
§ VHDL has the following pre-defined types:

§ integer includes the range -2 147 483 647 through +2 147 483 647.
§ boolean has two values, true and false.
§ character includes the characters in the ISO 8-bit character set.

5. VHDL
- Types (2) -

§ Built-in operators for integer and boolean types.

5. VHDL
- Types (3) -

§ User-defined types are common in VHDL programs.
§ Enumerated types are defined by listing the allowed values.

§ type traffic_light is (reset, stop, start, go);

§ subtype bitnum is integer range 31 downto 0;

§ constant BUS_SIZE: integer := 32;

5. VHDL
- Types (4) -

§ Array types are also user-defined.

5. VHDL
- Types (5) -

§ Array literals can be specified by listing the values in parentheses:
xyz := (’1’,’1’,’0’,’1’,’1’,’0’,’0’,’1’);
abc := (0=>’0’, 3=>’0’, 9=>’0’, others=>’1’);

§ Strings can be used for STD_LOGIC arrays:
xyz := ”11011001”;
abc := ”0110111110111111”;

§ Array slices can be specified:
xyz(2 to 4) abc(9 downto 0)

§ Arrays and array elements can be combined with the concatenation
operator (&):
’0’&’1’&”1Z” is equivalent to ”011Z”.
B(6 downto 0)&B(7) represents a 1-bit left rotate of the B array.

5. VHDL
- Functions and Procedures (1) -

§ A function accepts a set of arguments and returns a result.
§ The arguments and the result must have a type.
§ Syntax of a function definition.

5. VHDL
- Functions and Procedures (2) -

§ It is often necessary to convert a signal from one type to another.
§ Assume that the following unconstrained array type is defined:

type STD_LOGIC_VECTOR is array (natural range <>) of STD_LOGIC;

§ Conversion from STD_LOGIC_VECTOR into INTEGER.

5. VHDL
- Functions and Procedures (3) -

§ A procedure is similar to a function, but it does not return a result.
§ Whereas a function call can be used in the place of an expression, a

procedure call can be used in the place of a statement.
§ Procedures allow their arguments to be specified with mode out or

inout, so it is possible for a procedure to “return” a result.

5. VHDL
- Libraries and Packages (1) -

§ A library is a place where the VHDL compiler stores information
about a particular design project.

§ For any design, the compiler creates and uses the work library.
§ A design may have multiple files, each containing different units.

§ When a file is compiled, the results are placed in the work library.
§ Not all information needed in a design must be in the work library. A

designer may rely on common definitions or functions across a family
of different projects.

§ A project can refer libraries containing shared definitions:
library ieee;

5. VHDL
- Libraries and Packages (2) -

§ Specifying a library gives access to any
previously analysed entities and architectures,
but does not give access to types and the like.

§ A package is a file with definitions of objects
(signals, types, constants, functions, procedures, component

declarations) to be used by other programs.
§ A design can use a package:

use ieee.std_logic_1164.all;

§ Within the ieee library, the definitions are on
file std_logic_1164.

5. VHDL
- Structural Design (1) -

§ The body of an architecture is a series of concurrent statements.
§ Each concurrent statement executes simultaneously with the other

concurrent statements in the same architecture body.
§ Concurrent statements are necessary to simulate the behaviour of

hardware.

§ The most basic concurrent statement is the component statement.

§ component-name is the name of a previously defined entity.

§ One instance of the entity is created for each component statement.

5. VHDL
- Structural Design (2) -

§ Before being instantiated, a component must be declared in the
component declaration in the architecture’s definition.

§ A component declaration is essentially the same as the port
declaration part of an entity declaration.

§ The components used in an architecture may be those previously
defined as part of a design, or they may be part of a library.

5. VHDL
- Structural Design (3) -

5. VHDL
- Structural Design (4) -

§ An architecture that uses components is a structural description, since
it describes the structure of signals and entities that realise the entity.

§ The generate statement allows repetitive structures to be created.

5. VHDL
- Structural Design (5) -

§ Generic constants can be defined in an entity declaration.

§ Each constant can be used within the respective architecture and the
value is deferred until the entity is instantiated in another architecture,
using a component statement.

§ Within the component statement, values are assigned to the generic
constants using a generic map clause.

5. VHDL
- Structural Design (6) -

5. VHDL
- Structural Design (7) -

5. VHDL
- Dataflow Design (1) -

§ Other concurrent statements allow circuits to be described in
terms of the flow of data and operations on it within the circuit.

§ This gives origin to the dataflow description style.
§ Syntax of concurrent signal assignments statements.

5. VHDL
- Dataflow Design (2) -

5. VHDL
- Dataflow Design (3) -

§ Another concurrent statement is the selected signal assignment,
which is similar to a typical CASE constructor.

§ Syntax of selected signal assignments.

5. VHDL
- Behavioural Design (1) -

§ The main behavioural construct is the process which is a
collection of sequential statements that executes in parallel with
other concurrent statements and processes.

§ A process simulates in zero time.
§ A VHDL process is a concurrent statement, with the syntax:

5. VHDL
- Behavioural Design (2) -

§ A process can not declare signals, only variables, which are used to
keep track of the process state.

§ The syntax for defining a variable is:
variable variable-names : variable-type;

§ A VHDL process is either running or suspended.
§ The list of signals in the process definition (sensitivity list) determines

when the process runs.
§ A process is initially suspended. When a sensitivity list’s signal changes

value, the process resumes, starting at the 1st statement until the end.
§ If any signal in the sensitivity list change value as a result of running the

process, it runs again.

5. VHDL
- Behavioural Design (3) -

§ This continues until the process runs without any of these signals
changing value.

§ In simulation, this happens in zero simulation time.
§ Upon resumption, a properly written process will suspend after a couple

of runs.
§ It is possible to write an incorrect process that never suspends.
§ Consider a process with just one sequential statement “X <= not X;”

and a sensitivity list of “(X)”.
§ Since X changes on every pass, the process will run forever in zero

simulated time.
§ In practice, simulators can detect such behaviour, to end the simulation.

5. VHDL
- Behavioural Design (4) -

§ The sequential signal assignment statement has the same syntax as
the concurrent version (but it occurs within the body of a process):
signal-name <= expression;

§ The variable assignment statement has the following syntax:
variable-name := expression;

5. VHDL
- Behavioural Design (5) -

§ Other sequential statements include popular constructs, such as if,
case, loop, for, and while.

5. VHDL
- Behavioural Design (6) -

5. VHDL
- Behavioural Design (7) -

5. VHDL
- Time Dimension (1) -

§ None of the previous examples deal with the time dimension of
circuit operation: everything happens in zero simulated time.

§ VHDL has excellent facilities for modelling the time.
§ VHDL allows a time delay to be specified by using the keyword

after in any signal-assignment statement.
§ Z <= ‘1’ after 4ns when X=‘1’ else

‘0’ after 3ns;

§ This models a gate that has 4ns of delay on a 0-to-1 output
transition and only 3ns on a 1-to-0 transition.

§ With these values, a VHDL simulator can predict the approximate
timing behaviour of a circuit.

5. VHDL
- Time Dimension (2) -

§ Another way to invoke the time dimension is with wait.
§ This sequential statement can be used to suspend a process for a

specified time period.
§ A wait statement can be used to create simulated input waveforms

to test the operation of a circuit.

5. VHDL
- Simulation (1) -

§ Once we have a VHDL program whose syntax and semantics are
correct, a simulator can be used to observe its operation.

§ Simulator operation begin at simulation time of zero.
§ At this time, the simulator initialises all signals to a default value.
§ It also initialises any signals and variables for which initial values

have been explicitly declared.
§ Next, the simulator begins the execution of all processes (and

concurrent statements) in the design.
§ The simulator uses a time-based event list and a signal-sensitivity

matrix to simulate the execution of all the processes.

5. VHDL
- Simulation (2) -

§ At simulation time zero, all processes are scheduled for execution.
§ One of them is selected and all of its sequential statements are

executed, including any looping behaviour that is specified.
§ When the execution of this process is completed, another one is

selected, and so on, until all processes have been executed.
§ This completes one simulation cycle.
§ During its execution, a process may assign new values to signals.
§ The new values are not assigned immediately. They are placed on

the event list and scheduled to become effective at a certain time.

5. VHDL
- Simulation (3) -

§ If the assignment has an explicit simulation time (after clause),
then it is scheduled on the event list to occur at that time.

§ Otherwise, it is supposed to occur “immediately”.
§ It is actually scheduled to occur at the current simulation time plus

one delta delay.
§ The delta delay is an infinitesimally short time, such that the current

simulation time plus any number of delta delays still equals the
current simulation time.

§ The delta delay concept allows processes to execute multiple times
(if necessary) in zero simulated time.

§ After a simulation cycle completes, the event list is scanned for the
signals that change at the next earliest time on the list.

5. VHDL
- Simulation (4) -

§ This may be as little as one delta delay, or it may be a real delay, in
which case the simulation time is advanced.

§ In any case, the scheduled signal changes are made.
§ Some processes may be sensitive to the changing signals.
§ All the processes that are sensitive to a signal that just changed are

scheduled for execution in the next simulation cycle (begins now).
§ The simulator’s operation goes on indefinitely until the list is empty.
§ The event list mechanism makes it possible to simulate the

operation of concurrent processes in a uni-processor system.
§ The delta delay mechanism ensures correct operation even though

a set of processes may require multiple executions.

