
Sistemas Digitais I
LESI - 2º ano

Lesson 6 - Combinational Design Practices

UNIVERSIDADE DO MINHO

ESCOLA DE ENGENHARIA

Prof. João Miguel Fernandes
(miguel@di.uminho.pt)

Dept. Informática



6. Combinational Practices
- PLDs (1) -

§ The first PLDs were Programmable Logic Arrays (PLAs).
§ A PLA is a combinational, 2-level AND-OR device that can be 

programmed to realise any sum-of-products logic expression.
§ A PLA is limited by:

– the number of inputs (n)
– the number of outputs (m)
– the number of product terms (p)

§ We refer to an “n x m PLA with p product terms”. Usually, p << 2 n.
§ An n x m PLA with p product terms contains p 2n-input AND gates 

and m p-input OR gates.



6. Combinational Practices
- PLDs (2) -

A 4x3 PLA with 6 product terms.

§ Each input is connected to a 
buffer that produces a true 
and a complemented 
version of the signal.

§ Potential connections are 
indicated by Xs.

§ The device is programmed 
by establishing the needed 
connections.

§ The connections are made 
by fuses. 



6. Combinational Practices
- PLDs (3) -

§ Compact representation of 
the 4x3 PLA with 6 product 
terms.

§ O1 = I1·I2 + I1’·I2’·I3’·I4’
O2 = I1·I3’ + I1’·I3·I4 + I2
O3 = I1·I2 + I1·I3’ + I1’·I2’·I4’



6. Combinational Practices
- PLDs (4) -

§ Another PLD is PAL 
(Programmable Array 
Logic).

§ A PAL device has a fixed 
OR array.

§ In a PAL, product terms are 
not shared by the outputs.

§ A PAL is usually faster than 
a similar PLA. 



6. Combinational Practices
- PLDs (4) -

§ Part of the logic diagram of the PAL 16L8. 



6. Combinational Practices
- Decoders (1) -

§ A decoder is a circuit that converts coded inputs into coded outputs.
§ Usually, the input code has fewer bits than the output code.
§ The most common decoder is an n-to-2n or binary decoder.
§ A binary decoder is used when one of 2n outputs needs to be 

activated based on an n-bit input value.



6. Combinational Practices
- Decoders (2) -

§ A 74x139 IC has two independent 2-to-4 decoders.



6. Combinational Practices
- Decoders (3) -

§ A 74x138 IC has one 3-to-8 decoder.



6. Combinational Practices
- Decoders (4) -

§ Multiple decoders can be 
used to decode larger code 
words. 

§ The top decoder (U1) is 
enabled when N3 is 0, and 
the bottom decoder (U2) is 
enabled when N3 is 1.

§ To handle larger code 
words, decoders can be 
cascaded hierarchically.



6. Combinational Practices
- Decoders (5) -

§ To handle larger code 
words, decoders can be 
cascaded hierarchically.

§ A 5-to-32 decoder can be 
built with one 2-to-4 and 
four 3-to-8 decoders.

§ The 2-to-4 decoder treats 
the high order bits.

§ The 3-to-8 decoders 
treat the low-order bits.



6. Combinational Practices
- Decoders (6) -

§ There are several ways to write decoders in VHDL.
§ The most primitive would be to write a structural description 

equivalent to the logic circuit on slide 7.



6. Combinational Practices
- Decoders (7) -

§ The second alternative is using the dataflow style.



6. Combinational Practices
- Decoders (8) -

§ Another alternative is using the behavioral style.



6. Combinational Practices
- 7-Segment Decoders (1) -

§ A 7-segment display is used in watches, calculators, and devices to 
show decimal data.

§ A digit is displayed by illuminating a subset of the 7 line segments.

§ A 7-segment decoder has a 4-bit BCD as its input and the 7-segment 
code as its output.



6. Combinational Practices
- 7-Segment Decoders (2) -

§ Exercise 1:
Obtain minimised 
expressions for 
outputs of the 7-
segment decoder.

§ Exercise 2:
Write a VHDL 
description of a 7-
segment decoder.



6. Combinational Practices
- Encoders (1) -

§ An encoder is a circuit whose output code has normally fewer bits 
than its input code.

§ The simplest encoder to build is a 2n-to-n or binary encoder. It has 
the opposite function as a binary encoder.

§ Equations for an 8-to-3 encoder :
Y0 = I1 + I3 + I5 + I7
Y1 = I2 + I3 + I6 + I7
Y2 = I4 + I5 + I6 + I7

§ Only 1 input is active at a time. 
What happens if 2 inputs are 
asserted (ex: I2 and I4)?



6. Combinational Practices
- Encoders (2) -

§ To implement a request 
encoder, the binary 
encoder does not work!

§ It assumes that only 1 
input is asserted.

§ If multiple requests can be made simultaneously, a priority must 
be assigned to the input lines. 

§ When multiple requests are made, the device (priority encoder) 
produces the number of the highest-priority requestor.



6. Combinational Practices
- Encoders (3) -

§ Input I7 has the highest priority.
§ Outputs A2-A0 contain the number of the 

highest-priority asserted input, if any.
§ The IDLE output is asserted if no inputs 

are asserted.
§ Intermediate variable Hi is 1, if Ii 

is the highest priority 1-input:
H7 = I7 H6 = I6·I7’
H5 = I5·I6’·I7’ H4 = I4·I5’·I6’·I7’
... (similar equations for H3-H0)

§ A0 = H1 + H3 + H5 + H7
A1 = H2 + H3 + H6 + H7
A2 = H4 + H5 + H6 + H7

§ IDLE= I0’·I1’·I2’·I3’·I4’·I5’·I6’·I7’



6. Combinational Practices
- Multiplexers (1) -

§ A multiplexer (mux) is a digital switch.
§ It connects data from one of n sources 

to its output. 
§ The SEL input selects among the n 

sources, so s = log2 n.
§ When EN=0, Y=0;

When EN=1, the mux is working.

§ Multiplexers are used in computers between the processor’s 
registers and its ALU, to select among a set of registers which one 
is connected to the ALU. 



6. Combinational Practices
- Multiplexers (2) -

§ A 74x151 IC has one 8-
input, 1-bit multiplexer. 

§ The select inputs are 
named A,B,C, where C 
is the MSB.

§ The enable input EN_L 
is active low.

§ Both active-low and high 
versions of the output 
are provided



6. Combinational Practices
- Multiplexers (3) -

§ A 74x157 IC has one 2-input, 
4-bit multiplexer. 

§ The select input is S.
§ The enable input G_L is active 

low.
§ The truth table was extended 

and inputs appear at the 
outputs columns.



6. Combinational Practices
- Multiplexers (4) -

§ A multiplexer can be used to 
select one of n sources of data 
to transmit on a bus. 

§ At the other end, a demultiplexer 
can be used to route the bus to 
one of m destinations.

§ The function of a multiplexer is the 
inverse of a demultiplexer’s. 

§ A 1-bit, n-output demultiplexer has one 
data input and s inputs to select one of 
the n=2s data outputs.



6. Combinational Practices
- Multiplexers (5) -

§ It is easy to describe multiplexers in VHDL.
§ In the dataflow style, a SELECT statement is required.



6. Combinational Practices
- Multiplexers (6) -

§ In a behavioural architecture, a CASE statement is used.

§ It is easy to customise the selection criteria in a VHDL multiplexer
program.



6. Combinational Practices
- XOR and Parity Circuits (1) -

§ An Exclusive-OR (XOR) gate is a 2-input 
gate whose output is 1, if exactly one of its 
inputs is 1.

§ An XOR gate produces a 1 output if its 
input are different.

§ An Exclusive-NOR (XNOR) is just the opposite: it produces a 1 output 
if its inputs are the same.

§ The XOR operation is denoted by the symbol ⊕.
§ X ⊕ Y = X’·Y + X·Y’



6. Combinational Practices
- XOR and Parity Circuits (2) -

§ These alternatives are a consequence of the following rule:
– Any two signals (inputs or output) of an XOR or XNOR gate may be

complemented without changing the resulting logic function.

§ In bubble-to-bubble design we choose the symbol that is most 
expressive of the logic function being performed.

§ There are 4 symbols for each XOR and XNOR function.



6. Combinational Practices
- XOR and Parity Circuits (3) -

§ n XOR gates may be cascaded 
to form a circuit with n+1 inputs 
and a single output. This is a 
odd-parity circuit, because its 
output is 1 if an odd number of 
its inputs are 1.

§ If the output of either circuit is 
inverted, we get an even-parity 
circuit, whose output is 1 if an 
even number of its inputs are 1.



6. Combinational Practices
- XOR and Parity Circuits (4) -

§ VHDL provides the primitive operators xor and xnor.

§ A 3-input XOR device can be specified in VHDL dataflow style 
program.



6. Combinational Practices
- XOR and Parity Circuits (5) -

§ A 9-input parity function 
can be specified 
behaviourally.



6. Combinational Practices
- Comparators (1) -

§ Comparing two binary words is a common operation in computers.
§ A circuit that compares 2 binary words and indicates whether they 

are equal is a comparator.
§ Some comparators interpret their input as signed or unsigned 

numbers and also indicate an arithmetic relationship (greater or less 
than) between the words.

§ These circuits are often called magnitude comparators.
§ XOR and XNOR gates can be viewed as 1-bit comparators.

§ The DIFF output is asserted 
if the inputs are different.



6. Combinational Practices
- Comparators (2) -

§ The outputs of 4 XOR gates can be ORed to create a 4-bit comparator.

§ The DIFF output is asserted if any of the input-bit pairs are different.
§ This circuit can be easily adapted to any number of bits per word.



6. Combinational Practices
- Comparators (3) -

§ An iterative circuit is a combinational circuit with the following structure.

§ The circuit contains n identical modules, each of which has both primary 
inputs and outputs and cascading inputs and outputs.

§ The left-most cascading inputs are usually connected to fixed values.



6. Combinational Practices
- Comparators (4) -

§ Two n-bit values X and Y can be compared one bit at a time using a 
single bit EQi at each step to keep track of whether all of the bit-pairs 
have been equal so far:

§ 1. Set EQ0 to 1 and set i to 0.
2. If EQi is 1 and Xi=Yi, set EQi+1 to 1. 

Else set EQi+1 to 0. 
3. Increment i.
4. If i < n, go to step 2.



6. Combinational Practices
- Comparators (5) -

§ Several MSI comparators have been developed commercially.
§ The 74x85 is a 4-bit comparator.

§ It provides a greater-than output, a less-than 
output and an equal output.

§ The 74x85 also has cascading inputs for 
combining multiple chips to create comparators 
for more than 4 bits.

§ AGTBOUT = (A>B) + (A=B) · AGTBIN
AEQBOUT = (A=B) · AEQBIN
ALTBOUT = (A<B) + (A=B) · ALTBIN



6. Combinational Practices
- Comparators (6) -

§ With three 74x85 circuits, a 12-bit comparator can be built.



6. Combinational Practices
- Comparators (7) -

§ VHDL has comparison operators for all of its built-in types.
§ Equality (=) and inequality (/=) operators apply to all types.

§ For array and record types, the operands must have equal size 
and structure, and the operands are compared component by 
component.

§ VHDL’s other comparison operators (>, <, >=, <=) apply only to 
integers, enumerated types and one-dimensional arrays of 
enumeration or integer types. 



6. Combinational Practices
- Adders, Subtractors and ALUs (1) -

§ Addition is the most commonly performed arithmetic operation in 
digital systems.

§ An adder combines two arithmetic operands using the addition rules.
§ The same addition rules, and hence the same adders, are used for

both unsigned and 2’s complement numbers. 
§ An adder can perform subtraction as the addition of the minuend and 

the complemented subtrahend.
§ A subtractor can also be built to perform subtraction directly.
§ An ALU (Arithmetic and Logic Unit) performs addition, subtraction, 

and other logical operations.



6. Combinational Practices
- Adders, Subtractors and ALUs (2) -

§ The simplest adder, called a half adder, adds two 1-bit operands X 
and Y, producing a 2-bit sum.

§ The sum can range from 0 to 2, which requires two bits to express.
§ The low-order bit of the sum may be named HS (half sum).
§ The high-order bit of the sum may be named CO (carry out).
§ The following equations can be written:

HS = X ⊕ Y = X·Y’ + X’·Y
CO = X·Y

§ To add operands with more than one bit, carries between bit 
positions must be provided.



6. Combinational Practices
- Adders, Subtractors and ALUs (3) -

§ The building block for this operation is 
called a full adder.

§ Besides the addend-bit inputs X and Y, 
a full adder has a carry-bit input, CIN.

§ The sum of the 3 bits can range from 0 
to 3, which can still be expressed with 
just two output bits, S and COUT.

§ The following equations can be written:
S = X ⊕ Y ⊕ CIN 
COUT = X·Y + X·CIN + Y·CIN



6. Combinational Practices
- Adders, Subtractors and ALUs (4) -

§ Two binary words, each with n bits, can be added using a ripple adder.
§ A ripple adder is a cascade of n full-adders stages, each of which 

handles one bit.

§ The carry input to the least significant bit (c0) is usually set to 0.
§ The carry output of each full adder is connected to the carry input of 

the next most significant full adder.



6. Combinational Practices
- Adders, Subtractors and ALUs (5) -

§ The binary subtraction operation is analogous to binary addition.
§ A full subtractor has inputs X (minuend), Y (subtrahend) and BIN 

(borrow in) and outputs D (difference) and BOUT (borrow out).
§ The following equations can be written:

D = X ⊕ Y ⊕ BIN 
BOUT= X’·Y + X’·BIN + Y·BIN

§ These equations are similar to the equations for a full adder.
D = X ⊕ Y’ ⊕ BIN’ 
BOUT= X·Y’ + X·BIN’ + Y’·BIN’

§ A full subtractor can be built from a full adder. X-Y = X+Y’+1



6. Combinational Practices
- Adders, Subtractors and ALUs (6) -



6. Combinational Practices
- Adders, Subtractors and ALUs (7) -

§ An ALU is a combinational circuit that can perform 
several arithmetic and logical operations on a pair 
of b-bit operands.

§ The operation to be performed is specified by a set 
of function-select inputs.

§ Typical MSI ALUs have 4-bit operands and three to 
five function-select inputs, allowing up to 32 
different functions to be performed.

§ A 74x181 IC has one 4-bit ALU.
§ The operation performed by the 74x181 is selected 

by the M and S3-S0 inputs.



6. Combinational Practices
- Adders, Subtractors and ALUs (8) -



6. Combinational Practices
- Adders, Subtractors and ALUs (9) -



6. Combinational Practices
- Multipliers (1) -

§ The traditional algorithm to multiply binary numbers uses shifts and 
adds to obtain the result.

§ However, it is not the only solution to implement a multiplier. 
§ Given 2 n-bit inputs (X, Y), we can write a truth table that expresses 

the 2n-bit product P=X×Y as a combinational function of X and Y.
§ Most approaches to combinational multipliers are based on the 

traditional shift-and-add algorithm.



6. Combinational Practices
- Multipliers (2) -



6. Combinational Practices
- Multipliers (3) -


