Sistemas Digitais I

LESI - 2° ano

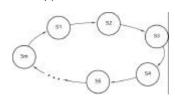
Lesson 8 - Sequential Design Practices

Prof. João Miguel Fernandes (miguel@di.uminho.pt)

Dept. Informática

8. Sequential Practices - Introduction (1) -

- Just about every real digital system is a sequential system.
- All it takes is one feedback loop, latch or flip-flop to make a circuit's present behaviour to depend on its past inputs.
- We typically deal with digital systems by partitioning them into data paths, registers and control units.
- A typical system has multiple functional units with well-defined interfaces and connections between them.
- Each functional unit may contain a hierarchy with several layers of abstraction.

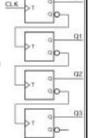

8. Sequential Practices - Introduction (2) -

- The heart of any system is usually a state machine.
- During the 80s, designers wrote out state tables by hand and built corresponding circuits using the traditional synthesis methods.
- Today, most state tables are specified with an HDL.
- The HDL compiler then performs the equivalent of the synthesis methods and realizes the machine in a given target technology.

8. Sequential Practices

- Counters (1) -

The name counter is used for any clocked sequential circuit whose state diagram contains a single cycle.

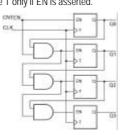


- The modulus of a counter is the number of states in the cycle.
- A counter with m states is called a modulo-m counter.
- A counter with a non-power-of-2 modulus has extra states that are not used in normal operation.

8. Sequential Practices

- Counters (2) -

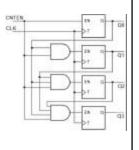
- The most common counter is the n-bit binary counter.
- This counter has n flip-flops and has 2ⁿ states, which are visited in the sequence 0, 1, 2,..., 2^n -1, 0, 1, .
- Each state is encoded as the corresponding n-bit binary integer.
- An n-bit binary counter can be constructed with just n flip-flops and no other components.
- Each bit of the counter toggles when the preceding bit changes from 1 to 0.
- The counter is called a ripple counter because the carry information ripples from the LSB to the MSB.


8. Sequential Practices

- Counters (3) -

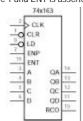
- Although a ripple counter requires fewer components than any other type of counter, it is also slower.
- In the worst case, when the MSB must change, the output is not valid until time n.t_{TO} after the rising edge of clock. (t_{TO} is the propagation delay from input to output of a T flip-flop).
- A synchronous counter connects all of its flip-flop clock inputs to the same common CLK signal.
- Thus, all of the flip-flops outputs change at the same time, after only $t_{\text{TQ}}\,\text{delay}.$

8. Sequential Practices


- This requires the use of T flip-flops with enable input.
- The output toggles on the rising edge of the T only if EN is asserted.
- Each T flip-flop toggles if CNTEN is asserted and all the lower-order bits are 1.
- A synchronous n-bit binary counter can be built with a fixed amount of logic per bit.
- In this case, a T flip-flop with enable and a 2-input AND gate.
- The counter is a <u>synchronous serial</u> <u>counter</u> because the enable signals propagate serially from the LSB to the MSB.

8. Sequential Practices

- Counters (5) -


- If the clock period is too short, there may be no time for a change in the LSB to propagate to the MSB.
- This problem is eliminated if each EN input is driven by a dedicated AND gate (1-level of logic).
- This is a synchronous parallel counter.
- It is the fastest binary counter structure.

8. Sequential Practices

- Counters (6) -

- 74x163 is a synchronous 4bit binary counter.
- RCO=1 when all count bits are 1 and ENT is asserted.

				_		_			_		
	Ppots			Current State				Best State			
GIR.	69.1	EAT	EMP	00	00	G#	64	001	00-	-00	ge
4		*						- 0	. 0	.0.	.0.
1	. 1	2.						0		В-	8
1	1	0.7	1		1	+	. 10	.00	90	98	Qh
1.	- 1			-			- 10	on	100	CHE	QA.
1	- 3	10	1	0			0		. 0	0	0
1	1.0	1		0	0		1		. 0		
1	1.5	1		0		1.	.0.	3	9	1	. 1
1		1.	1	0	0	A.	1		1.	0	0.
1		1	1	0	1		à		1.	. 0	30
1	3	1	1	.0	1	1	1			1	0.
1		1	1	0	1	1	0		1	.1	1
1.		1	18	0	1	1	1		. 4	0	0.
1	. 1	1	.1	. 1	6	1	0			.0	1
1	. 1	1		. 1			1.	. 3	. 0	1	.0
1	- 3	30		- 13			.0	1.5	- 0	1	1
10	1.8	1	1	- 1		1	4	1.0	1.	.00	b.
1		1		- 1	1		0	. 1	1	.0	1
1.	. 1	1		. 1	1		1	- 1	1	1	0
	- 3	1	1	. 11	1	1	18	1.1	1	1	1
1	11	1	1	- 1	1	1	1		. 0	.0.	-0.

8. Sequential Practices

- Counters (7) -

```
Inhrary 1922,

Tabrary 1922,

The FIRE and longin_tiss_all;

THE STATE OF LONGIN_TISS_all;

Sentity VARISS is

Peet Coll. Coll_1, 12_L, ESP, HET in OTD_LOGIC;

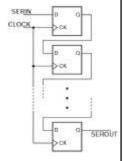
Peet Coll. Coll_2, 12_L, 6_C, ESP, HET in OTD_LOGIC;

Peet Coll. Coll_3, 12_L, 6_C, ESP, HET in OTD_LOGIC;

Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll.

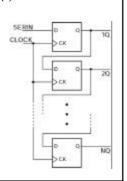
Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. Coll. C
```

8. Sequential Practices


- Counters (7) -

```
architecture V74x83_arch of V74x163 18
signal IQ: UMSIGNED (1 downto 0);
begin
process (CLK, ENT, IQ)
begin
if CLK, ENT, IQ
begin
if CLK_L='0' then IQ <= (others => '0');
elsif LD_L='0' then IQ <= P;
elsif LD_L='0' then IQ <= P;
elsif (ENT and ENP)='1' and (IQ=12) then IQ <= ('0','0','1','1);
elsif (ENT and ENP)='1' then IQ <= IQ + 1;
end if;
end if;
if (IQ=12) and (ENT='1') then ECO <= '1';
else ECO <= '0';
and if;
Q <= IQ;
end Process;
end V74x83_arch;</pre>
```

8. Sequential Practices


- Shift Registers (1) -

- A <u>shift register</u> is an n-bit register with a provision for shifting the stored data by one position at each clock pulse.
- A <u>serial-in serial-out shift register</u> has one input (SERIN) and one output (SEROUT).
- The SERIN input specifies a new bit to be shifted into one end, at each clock tick.
- That bit appears at the SEROUT output after n clock tick and is lost one tick later.
- An n-bit serial-in serial-out shift register can be used to delay a signal by n clock ticks.

8. Sequential Practices

- Shift Registers (2) -
- A <u>serial-in parallel-out shift register</u> has outputs for all of its stored bits, making
- Such a shift register can be used to perform serial-to-parallel conversions.
- · Conversely, it is possible to build a parallel-in serial-out shift register.

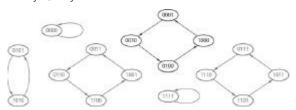
8. Sequential Practices - Shift Registers (3) -

- These 8-bit shift registers are unidirectional because they shift in only one direction.
- The '164 is a serial-in, parallel-out device with an asynchronous clear input.
- The '166 is a parallel-in, parallelout device, also with an asynchronous clear input.

8. Sequential Practices - Shift Registers (4) -

- The 74x194 is an MSI 4-bit bidirectional, parallel-in, parallel-out shift register.
- This shift register is bidirectional because its contents may be shifted in either of two directions, depending on a control input.
- The '194 is sometimes called an universal shift register, because it can be made to function like the less general previous ones.

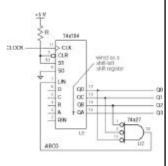
	AND	685	Wort state					
Function	51	50	QA-	Q9-	ac-	gg+		
Hold	0.	0.	QA	08	QC.	QD		
Shiftinger	0	1	FRIN	OA.	CB.	QC		
Shirkled	10	0.	OB.	QC.	QD.	LIN		
Load	1	1	A	15	C	p		

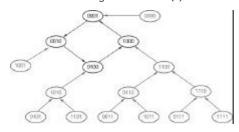

8. Sequential Practices

- Shift Register Counters (1) -
- A shift register can be combined with combinatorial logic to form a state machine whose diagram is cyclic.
- Such a circuit is called a shift-register
- Unlike a binary counter, a shift-register counter does not count in order, but it is useful in many control applications.
- The simplest shift-register counter uses an n-bit shift register to obtain a counter with n states, and is called a ring counter.
- A 4-bit ring counter can be obtained with a 74x149.

8. Sequential Practices

- Shift Register Counters (2) -


- When RESET is asserted, it loads 0001 (initial state).
- The circuit performs normally a shift left.
- This circuit is not robust. If the counter somehow gets off the normal cycle, it stays off it.


8. Sequential Practices

- Shift Register Counters (3) -

- A self-correcting counter is designed so that all abnormal states have transitions leading to normal states
- A 4-bit ring counter can be obtained with a 74x149 and a NOR gate.
- The NOR gate is used to feed a 1 into LIN, only when the 3 LSBs are 0.

8. Sequential Practices - Shift Register Counters (4) -

- All abnormal states lead back into the normal cycle.
- Regardless of the reached state, state 0001 is reached within 4 clock cycles, so a RESET signal is not necessarily required.