Parallel Computing

N\
ININ

Master Informatics Eng.

2021/22
A.J.Proenca

Optimizing sequential code

(revision: most slides from an undergrad course)

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 1

Improving code performance to explore ILP:
an example from the Computer Systems course

N\
ININ\

The following slides are a selection from CS.

The originals (in Portuguese) are in:
 http://gec.di.uminho.pt/mei/cp/slides sc.zip

Last year lectures were recorded and the videos were
placed on the e-platform; they are available here:

* http://gec.di.uminho.pt/mei/cp/videos_sc.zip

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 2

http://gec.di.uminho.pt/mei/cp/slides_sc.zip
http://gec.di.uminho.pt/mei/cp/videos_sc.zip

N\
ININ\

Internal architecture of
Intel P6 processors

Note: "Intel P6" is the common uarch name for PentiumPro, Pentium I & Pentium Ill, which
inspired Core, Nehalem and later generations

L1 L1
Instruction Data
Cache Cache

[Instruction Fetch|

==

[Decode |

Ex.
Ex. BE=®

Fetch

Retirement Control

Tenaas Unit Instruction
- Register Instruction Instrs. Cache
File Decode

Operations

Integer/ | General FP FP

Branch Integer ~ Add Muppiy o2 St

| Retire |J

Operation Results

Execution Unit

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 3

Some capabilities of Intel P6

N\
ININ\

 Parallel execution of
several instructions

— 2 integer (1 can be branch)
—1FP Add

—1FP Multiply or Divide
— 1 load

— 1 store

Integer/ General FP FP

Branch Integer Add Mult/Div

Operation Results

Execution Unit

« Some instructions require > 1 cycle, but can be pipelined:

Instruction
Load / Store
Integer Multiply
Integer Divide
Double/Single FP Multiply
Double/Single FP Add
Double/Single FP Divide

AJProenga, Parallel Computing, MEI, UMinho, 2021/22

Latency Cycles/Issue
3 1
4 1
36 36
5
3 1
38 38

A detailed example:
generic & abstract form of combine

N\
ININ

{
int i;
int length = vec_length(v);
data t *data = get vec start(v);
data t t = IDENT;
for (1 = 0; i < length; i++)
t =t OP datal[i];
*dest = t;
}

void abstract combine4 (vec ptr v, data t *dest)

* Procedure to perform addition (w/ some improvements)

— compute the sum of all vector elements
— store the result in a given memory location

— structure and operations on the vector defined by ADT

* Metrics
— Clock-cycles Per Element, CPE

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

Converting instructions with registers
into operations with tags

 Assembly version for combine4
— data type: integer ; operation: multiplication

.L24: # Loop:
imull (%eax,%edx,4) ,%ecx # t *= data[i]
incl %edx # i++
cmpl %esi,%edx # i:length
jl .L24 # if < goto Loop

« Translating 1st iteration

.L24:
imull (%eax,%edx,4) ,b%ecx load (%eax,%edx.0,4) = t.1
imull t.1, %ecx.0 =2 %ecx.1
incl %edx incl %edx.0 =2 %edx.1
cmpl %esi,%edx cmpl %esi, %edx.l1 = cc.l
jl .L24 jl -taken cc.1

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 6

Visualizing instruction execution in P6:
1 iteration of the multiplication cycle on combine

S . load (%eax,%edx.0,4) 2 t.1
1 N (@nel) seax.1 imull t.1, %ecx.0 = %ecx.l1
>
v incl %edx.0 = %edx.1
load @@1 cmpl %esi, %edx.1 = cc.l1
coer o JC3L) jl -taken cc.1
yt.1]
A * Operations
Time — vertical axis shows the time the
1rma11 instruction is executed
« an operation cannot start with its
operands
~——r— %ecx.1 — time length measures latency
 Operands

— arcs are only showed for operands
that are used in the context of the
execution unit

AJProenca, Parallel Computing, MEI, UMinho, 2021/22 7

Visualizing instruction execution in P6:
3 iterations of the same cycle on combine

1

2

- , =4 .* With unlimited

s _ . -Cmpl resources

. oo (I —para”el and pipelined

6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA exeCu‘tllon Of

- @ = Operat|ons at the EU

. oratont . 1 _Out_of_order and .
................ speculative execution

9

r I . Performance

L e - B L —limitative factor:

12 iteration 2 latency of integer

13 multlpllcatlon

T . —CPE: 4.0

15

Iteration 3

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 8

Visualizing instruction execution in P6:
4 iterations of the addition cycle on combine

AN
sedx.0
E——

1 @,Q) Sedx. 1

............................ * * *
2
3 .

........... -

5 lteration 1 (addl) 4=l
%ecx.?2
6 Cycle lteration 2
7 lteration 3 (addl) 153

Iteration 4

 With unlimited resources

e Performance

— It can start a new iteration at each clock cycle
— theoretical CPE: 1.0

— it requires parallel execution of 4 integer operations

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 9

Iterations of the addition cycles:

,,,,,,,,,,,,,,,,,,,,,,,, analysis with limited resources
6
i . ir;,Cl =
........................ * * *
8] (Cnlpl) (incl)Ioas
o (addl)c jlcc)4 Lona
o — — Cc_r%l =
s e L
12 . 1=4 1(addl) (cmpl)| load
i3 Iteration 5 j&lcc.6 _ (Trzchl) —
14 Secx.6 . i=5 (t;lddl) Ccm*pl) - | |
1R fteration & -j 100-7 load iI;'cl /edxg
— only 2 integer units - % """"""
. . A ¢t~8 ¢c08
— some options must be delayed, even if BT— Cocar)(31)
O T T eraton 7/ ..., | |
the operands are available 7 |
— priority: execution order in the code " vorafion 8

 Performance
— expected CPE: 2.0

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 10

Machine dependent optimization techniques:

N\
ININ

void combine5 (vec ptr v, int *dest)
{
int length = vec length(v) ;
int limit = length-2;
int *data get vec start(v);
int sum = 0;
int i;

ol |l

/* junta 3 elem's no mesmo ciclo */

for (1 = 0; 1 < limit; 1i+=3) {
sum += data[i] + data[i+1]
+ data[i+2];
}

/* completa os restantes elem's */
for (; 1 < length; i++) {

sum += datal[i];
}

*dest = sum;

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

loop unroll (1)

Optimization 4:

—merges several (3)
iterations in a
single loop cycle

—reduces cycle
overhead in loop
iterations

—runs the extra work
at the end

—CPE: 1.33

11

Machine dependent optimization techniques:

loop unroll (2)
%edx.0
—loads can be pipelined, — Cbaddl fedx 1
there are no S |
dependencies load (Ccmpl)
A y cc.1
—only a set of loop control _ J| lead | (31 Time
. . %ecx.0c
Instruction gl—ﬂt‘a
uctions addl) ()| load

%ecx.la yt.1lb
addl) _ Y,

t.la %ecx.1lb yt.lc

load (%eax,%edx.0,4)

iaddl t.la, %ecx.0Oc . addl) .) 1c
load 4 (%eax,%edx.0,4) : .
jaddl t.1b, %ecx.la secx.1b \\\\\\\\\ﬁ_—/////

load 8 (%eax,%edx.0,4) .

iaddl t.1lc, %ecx.1lb
iaddl $3,%edx.0
cmpl %esi, %edx.1
jl-taken cc.1

A A4 A4 A
ct
a

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 12

Machine dependent optimization techniques:
loop unroll (3)

Iteration 3

« Estimated performance | Se=sTee
— each iteration completein 3 cycles [= e=eeie,
— should lead to CPE: 1.0 fteration 4

* Measured performance

— CPE: 1.33
— 1 iteration for each 4 cycles

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 13

Machine dependent optimization techniques:

loop unroll (4)
CPE value for several cases of loop unroll:
Degree of Unroll 1 2 3 4 8 16
Integer | Addition | 2.00 | 1.50 1.33 1.50 1.25 1.06
Integer | Product 4.00
fp Addition 3.00
fp Product 5.00

— only improves the integer addition
* remaining cases are limited to the unit latency

— result does not linearly improve with the degree of unroll
 subtle effects determine the exact allocation of operations

AJProenca, Parallel Computing, MEI, UMinho, 2021/22 14

What else can be done?

Iteration 1

10 Cycle

11

12 Iteration 2

13

14

15

Iteration 3

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 15

Machine dependent optimization techniques:
loop unroll with parallelism (1)

N\
ININ

Sequential ... versus parallel!

void combine6 (vec ptr v, int *dest)

{
int length = vec length(v);

int limit = length-1;

int *data = get vec start(v);
int x0 = 1;

int x1 = 1;

int 1i;

/* junta 2 elem's de cada vez */
for (i = 0; i < limit; i+=2) {
x0 *= datal[i];
x1l *= data[i+l];
}
/* completa os restantes elem's */
for (; 1 < length; i++) ({
x0 *= data[i];
}
*dest = x0 * x1;

}

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

Optimization 5:

—accumulate in 2
different products

 can be in parallel, if
OP is associative!

—merge at the end

—Performance
—CPE: 2.0

—improvement 2x

16

Machine dependent optimization techniques:
loop unroll with parallelism (2)

7\
ININ

— each product at the inner
cycle does not depend from
the other one...

— S0, they can be pipelined
— known as iteration splitting

%$ecx.0

%$ebx.0

load (%eax,%edx.0,4) = t.la
imull t.la, %ecx.0 = %ecx.
load 4 (%eax,%edx.0,4) = t.1lb
imull t.1lb, %ebx.0 = %ebx.
iaddl $2,%edx.0 = Sedx.
cmpl %esi, %edx.1l = cc.l

jl-taken cc.1

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

vce.l

Time

$ecx.1

$ebx.1

17

Machine dependent optimization techniques:
loop unroll with parallelism (3)

Iteration 1

11

Estimated performance |i2 \ Jewo [

— the mUItlply unit is kept lteration 2
busy with 2 simultaneous
operations

— CPE: 2.0
Iteration 3

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 18

Code optimization techniques:
comparative analyses of combine

Method Integer Real (single precision)
+ * + *
Abstract -g 42.06 41.86 41.44 160.00
Abstract -02 31.25 33.25 31.25 143.00
Move vec length 20.66 21.25 21.15 135.00
Access to data 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
Unroll 4x 1.50 4.00 3.00 5.00
Unroll 16x 1.06 4.00 3.00 5.00
Unroll 2x, paral. 2x 1.50 2.00 2.00 2.50
Unroll 4x, paral. 4x 1.50 2.00 1.50 2.50
Unroll 8x, paral. 4x 1.25 1.25 1.50 2.00
Theoretical Optimiz 1.00 1.00 1.00 2.00
Worst : Best 39.7 33.5 27.6 80.0

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

19

Otimizacao de Desempenho

Resumo

— Fases de desenvolvimento

1. Selecionar o melhor algoritmo
— Utilizar a analise de complexidade para comparar algoritmos
2. Escrever codigo legivel e facil de gerir
3. Eliminar bloqueadores de otimizagdes
4. Medir o perfil de execugao

— Otimizar as partes criticas para o desempenho
» Operagoes repetidas muitas vezes (e.g., ciclos interiores)

— Codigo com otimizagdes € mais complexo de ler, manter €
de garantir a correcao

JLSobral, CompPar, MIEF, 2020/21

Common compiler optimizations

 Loops

Identify induction variables that are increased or decreased by a fixed amount on
every iteration of a loop (e.g., j =1*4 +1 =>j+=5)

Fission - break a loop into multiple loops, each taking only a part of the loop's body
Fusion — combine loops to reduce loop overhead

Inversion - changes a standard while loop into a do/while

Interchange - exchange inner loops with outer loops

Loop-invariant code motion

Loop unrolling - duplicates the body of the loop multiple times

Loop splitting - breaks into multiple loops which have the same bodies but iterate
over different contiguous portions of the index range

 Data flow

Common sub-expression elimination/sharing
Reduction in strength - expensive op’s replaced with less expensive op’s
Constant folding - replaces expressions of constants (e.g., 3 + 5) with their final

value (8)
Dead store elimination - removal of assignments to variables that are not read

JLSobral, CompPar, MIEF, 2020/21

Common compiler optimizations

* Code generation

— Register allocation - most frequently used variables are kept in processor registers
— Instruction selection — selects 1 of several different ways to perform an operation
— Instruction scheduling — avoid pipeline stalls

— Re-materialization - recalculates a value instead of loading it from memory

e Other optimizations

— Bounds-checking elimination

— Code-block reordering — alters the order of basic blocks

— Dead code elimination

— Inline expansion - insert the body of a procedure inside the calling code

 Limitations

— Memory aliasing & side effects of functions

— Compilers do not typically improve the algorithmic complexity
— A compiler typically only deals with a part of a program at a time
— Time overhead of compiler optimizations

.
W
&
Consider the following case study:

* ... code in the SeARCH node with the Xeon Skylake ...

* ... same 2 instructions ... in all cores of a single chip...
* ... cores 6-way superscalar ... 2 load units/core ... cold data cache.

Homework: ex 1 on mem hierarchy

Compute:
a) The max required bandwidth to access the external RAM ...
b) The aggregate peak bandwidth ... DRAM-4 (w/ all memory channels).

 each clock cycle needs 2 mem accesses to fetch 2 doubles

* max required bandwidth to fetch a cache line
for each double (cache is cold & doubles are far away):
?2??? GB/s
note: the following 7 pairs of doubles are already in cache
* RAM in each Skylake Gold 6130: 6x DDR4-2666 (6x8 GiB)

* peak bandwidth of 6x DDR4-2666 in 6 memory channels:
?2??? GB/s

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 23

Partial view of a Skylake core (server)

xecution Engin .
Store Buffer & Forwarding

(56 entries)

Skylake vs. PG:
* 6-way superscalar

vector capabilities |]
much more execution units Line Fill Buffers (LFB)

2x int & load-data units (10 entries)
L2 and L3 on-chip emory Subsysten

Data TLB

64B/cycle

1 Data Cache)
32KIB 8-Way

64B/cycle

. . 2 MOP pOP pHOP pOP pOP HpOP Branch Order Buffer
Register Alias Table (RAT) *g (BOB) (48-entry)
"Op N
()
o = R / Allocate / Reti - S
° — ename ocate / Retiremen : : :
5 =) |Move Elimination | Shhala e el | Ones Idioms I | Zeroing Idioms | :8-’
=]
=]
gz HOP HOP HoP poP HOP HoP HOP HOP q_)l
o < x
S
& Scheduler =
= Integer Physical Register File A= - : Vector Physical Register File X
§ Cint| (180 Registers) Unified Reservatlop Station (RS) (168 Registers) %)
2| Uk (97 entries) E
[Port0 | | Portl | [_Port5 | Porté | | Port2 | | Port3 | | Port4 | | Port7 | g
HOP HOP HOP HOP poP poP HOP HOoP "G
D
INT ALU INT ALU INT ALU INT ALU AGU AGU | [Store Data|[AGU | <
INT DIV INT MUL LEA Branch Load Data | | Load Data (= Q
o YR 5 3., 64B/cycle) =
_ INT Vect ALU[|INT Vect ALU [:*|INT Vect ALU[[INT Vect ALU | : gﬁ g
i [INT Vect MUL|[INT Vect MUL::|INT Vect MUL|[INT Vect MUL] : 512bit/cycle o <
:|_FPFMA FPFMA _[i[_FPFMA FPFMA _|: i g RS
512b fused 512b (zmm only) o~} ~
AES [Bitscan | (optional) EUs S
Vect String c
FP DIV S
Branch x
=
S
<
O
Q
Sy
Q
=
=
&
X
(7))
=
<

Architecture of a 28-core Skylake (server)

1888

PCle x16

§ 0

2x UPI x20

888

PCle x16

1008 4048

PCle x16

LLC SF

Core Core

ADPLL / FIVR ADPLL / FIVR

LLC SF

Core Core

3 mem-channels

ADPLL / FIVR ADPLL / FIVR

13]j013u0)
Kiowap

ADPLL / FIVR

Core Core

ADPLL / FIVR ADPLL / FIVR

LLC SF

Core Core

ADPLL / FIVR ADPLL / FIVR

ADPLL / FIVR

ADPLL / FIVR

Core

ADPLL / FIVR

ADPLL / FIVR

Core

ADPLL / FIVR

OnPKG
PCle x16

i 0

UPI x20

Core

ADPLL / FIVR

ADPLL / FIVR

Core

ADPLL / FIVR

ADPLL / FIVR

Core

ADPLL / FIVR

Core

ADPLL / FIVR

ADPLL / FIVR

Core

ADPLL / FIVR

ADPLL / FIVR

Core

ADPLL / FIVR

SF LLC

Core

ADPLL / FIVR

g SF LLC

Core

ADPLL / FIVR

Memory
Controller

b SF LLC

Core

ADPLL / FIVR

B SF LLC

Core

ADPLL / FIVR

3 mem-channels

https://en.wikichip.org/wiki/intel/microarchitectures/skylake (server)

&\ |]
Qgeo\" Homework: ex 1 on mem hierarchy

 each clock cycle needs 2 mem accesses to fetch 2 doubles

* max required bandwidth to fetch a cache line
for each double (cache is cold & doubles are far away):
(16 cores x 2 lines x 64 B/line) x clock frequency =

2048 B x 2 GHz = 4096 GB/s
Note: the following 7 pairs of doubles are already in cache

* RAM in each Skylake Gold 6130: 6x DDR4-2666 (6x8 GiB)

* peak bandwidth of 6x DDR4-2666 in 6 memory channels:
6 mem_chan x 2.666 GT/s x 64 b/chan = 128 GB/s

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 26

Homework: ex 2 on mem hierarchy

Similar to problem 1 (same node/chip in the cluster), but consider now:
 execution of code taking advantage of the AVX-512 facilities;

 execution of the same 2 vector instructions (that are already in the
instruction cache) in all cores: load in register a vector of doubles
followed by a multiplication by another vector of doubles in memory;

* the Skylake cores are 6-way superscalar and 2-way MT, and each core
supports 2 simultaneous vector loads;

 the Skylake 6130 base clock rate with AVX-512 code is 1.3 GHz;
e these instructions are executed with a cold data cache.

Compute/estimate:

 The max required bandwidth to access the external RAM when
executing these 2 vector instructions.
Compare with the peak bandwidth computed before.

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 27

* https://en.wikichip.org/wiki/intel/xeon_gold/6130

o Exercise 2 on memory hierarchy

 each clock cycle needs 2 mem accesses to fetch 2 vectors
with 8 doubles each (512 bits)

* max required bandwidth to fetch a cache line
for each vector with 8 doubles (cache is cold):

??7?7? GBIs

* note: same max required bandwidth as exercise 1,
but this mem access is required at each clock cycle

* RAM in each Skylake Gold 6130: 6x DDR4-2666 (6x8 GiB)

* peak bandwidth of 6x DDR4-2666 in 6 memory channels:
??? GB/s

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 28

o Exercise 2 on memory hierarchy

 each clock cycle needs 2 mem accesses to fetch 2 vectors
with 8 doubles each (512 bits)

* max required bandwidth to fetch a cache line for each
vector with 8 doubles (cache cold, AVX-512 clock rate lower*):

(16 cores x 2 lines x 64 B/line) x clock_rate =
2048 B x 1.3 GHz = 2662.4 GB/s

* note: same max required bandwidth as exercise 1,
but this mem access is required at each clock cycle

* RAM in each Skylake Gold 6130: 6x DDR4-2666 (6x8 GiB)

* peak bandwidth of 6x DDR4-2666 in 6 memory channels:
6 mem_chan x 2.666 GT/s x 64 b/chan = 128 GB/s

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 29

* https://en.wikichip.org/wiki/intel/xeon_gold/6130

Homework: ex 3 on cache performance

Given
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
|-cache: ?7 x ?7 =77
D-cache: 7?7 x 7?7 x ?7? = 7?7

Actual CPl =2+ 7?7 + 77 =77

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

o Exercise 3 on cache performance

 Given
— |-cache miss rate = 2%
— D-cache miss rate = 4%
— Miss penalty = 100 cycles
— Base CPI (ideal cache) = 2
— Load & stores are 36% of instructions

* Miss cycles per instruction
— |-cache: 0.02 x 100 = 2
— D-cache: 0.36 x 0.04 x 100 = 1.44

* Actual CPI=2+2+1.44 =5.44

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 31

| Homework: ex 4 on multilevel cache

Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache

Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI=9 (=1 + 0.02 X 400)

Now add L-2 cache ...

Access time = 5ns
Global miss rate to main memory = 0.5%

CPI=1+77 X ?27+77 X ?77=727

Performance ratio =9/ 7?7 = ??

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

o
0\0

<eg’go\" Exercise 4 on multilevel cache
e CPU: base CPI = 1, clock rate = 4GHz

e L1 cache: L1 miss rate/instruction = 2%

e L2 cache: accesstime =5ns, L2 miss rate/instruction = 25%,
global miss rate = 2% x 25% = 0.5%

 Main memory: access time = 100ns
« With just primary cache

— Miss penalty = 100ns / 0.25ns = 400 cycles
— Effective CPI=1+0.02 X 400=9

« With L1 & L2 cache
— L1 miss penalty, L2 hit = ?? cycles
— L2 miss penalty = ?? cycles
« CPI=1+2% X ??cycles +0.5% X ??7? cycles = ???

 Performance ratio =9/7??? =227
AJProenca, Parallel Computing, MEI, UMinho, 2021/22 33

@9&" Exercise 4 on multilevel cache
e CPU: base CPI = 1, clock rate = 4GHz

e L1 cache: L1 miss rate/instruction = 2%

e L2 cache: accesstime =5ns, L2 miss rate/instruction = 25%,
global miss rate = 2% x 25% = 0.5%

 Main memory: access time = 100ns
« With just primary cache

— Miss penalty = 100ns / 0.25ns = 400 cycles
— Effective CPI=1+0.02 X 400=9

« With L1 & L2 cache
— L1 miss penalty, L2 hit = 99.5% X 5ns/0.25ns = 20 cycles
— L2 miss penalty = 100ns / 0.25ns = 400 cycles

« CPI=1+2% X 20 cycles + 0.5% X 400 cycles = 3.4

 Performance ratio=9/3.4=2.6
AJProenca, Parallel Computing, MEI, UMinho, 2021/22 34

Homework: ex 5 on multilevel performance

Characterize the memory system of Xeon Skylake Gold 6130:

1.L1 I-cache

* size ? KiB/core, ?-way set associative, ? sets, line size ? B, hit time ? cycles,
? Blcycle on transfer bandwidth L1 to the instruction fetch unit

L1 D-cache

* size ? KiB/core, ?-way set associative, ? sets, line size ? B, hit time ? cycles,
? Bl/cycle on load bandwidth L1 to load buffer unit

2.L2 cache
* size ? KiB/core, ?-way set associative, ? sets, line size ? B, hit time ? cycles,
? Bl/cycle on load bandwidth L2 to L1

3.L3 cache
* size ? KiB/core, ?-way set associative, ? sets, line size ? B, hit time ? cycles,
? Bl/cycle on load bandwidth L3 to L2

4. DRAM, DDR4-2666

* up to ? GT/s, bandwidth ? GB/s per channel, ? mem channels, aggregate
bandwidth ? GB/s, ? B/cycle on peak load bandwidth DRAM to L3, NUMA-
local latency ? ns, NUMA-remote latency ? ns

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 35

& Exercise 5 on multilevel performance
Characterize the memory system of Xeon Skylake Gold 6130:

1.L1 I-cache

* size 32 KiB/core, 8-way set associative, 64 sets, line size 64 B, hit time ?
cycles, 16 B/cycle on transfer bandwidth L1 to the instruction fetch unit

L1 D-cache

* size 32 KiB/core, 8-way set associative, 64 sets, line size 64 B, hit time 4
cycles, 2x64 B/cycle on load bandwidth L1 to load buffer unit

2.L.2 cache

* size 1 MiB/core, 16-way set associative, 1024 sets, line size 64 B, hit time 14
cycles, 64 B/cycle on load bandwidth L2 to L1

3.L3 cache

* size 1.375 MiB/core, 11-way set associative, 2048 sets, line size 64 B, hit time
50-70 cycles, 64 B/cycle on load bandwidth L3 to L2

4. DRAM, DDR4-2666

* up to 2.666 GT/s, bandwidth 21.33 GB/s per channel, 6 mem channels,
aggregate on peak load bandwidth DRAM to L3 128 GB/s, NUMA-local
latency 80 ns, NUMA-remote latency 120-140 ns

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 36

Homework: ex 6 on multilevel performance

Similar to problem 1 (same node/chip in the cluster, code), but consider now:
 execution of scalar code in a 2 GHz single-core (already in L1 I-cache);

 code already takes advantage of all data cache levels (L1, L2 & L3),
where 50% of data is placed on the RAM modules in the memory
channels of the other PU chip (NUMA architecture);

« remember: the Skylake cores are 6-way superscalar and 2-way MT,
and each core supports 2 simultaneous loads;

« cache latency time on hit: take the average of the specified values;
 memory latency: 80 nsec (NUMA local), 120 nsec (NUMA remote);
* miss rate per instruction (load or store):

—at L1: 2%; at L2: 50%; at L3: 80% (these are not global values!).

Compute/estimate:

1. The miss penalty per instruction at each cache level.
2. The average memory stall cycles per instruction that degrades CPI.

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 37

Exercise 6 on memory hierarchy

base CPI =1, clock rate =2 GHz
L1 cache: L1 miss rate/instruction = 2%;

L2 cache: access time = 14 cycles, global miss rate = 2% x 50% = 1%
L3 cache: access time = 60 cycles, L3 miss rate = 80%,

global miss rate = 1% x 80% = 0.8%

Main memory: NUMA local access time = 80ns, NUMA remote = 120ns

average memory access = ((80ns+120ns)/2) / 0.5ns = 200 cycles
Memory Performance

Core to Memory Latency

* CPI?

AJProenca, Par:

Lower is better
LATENCY (NS)

220

200
180

[
SO
o o

-
N
o

100

[o2]
o

(2]
o

ENUMA - Local ® NUMA - Min Remote ®NUMA - Max Remote

UMA -

Min ® UMA - Max

S

Intel® Xeon® E5-2699 v4, Intel® Xeon® E5-2699 v4, Intel® Xeon® E5-2699 v4,
DDR4-2400, Dir+OSB DDR4-2400, Home Snp DDR4-2400, COD

Similar to

Skylake Gold 6130

|

|

Intel® Xeon® Platinum Intel® Xeon® Platinum

8180, DDR4-2666

8180, DDR4-2666, SNC2

