
AJProença, Parallel Computing, MEI, UMinho, 2021/22 1

Parallel Computing

Master Informatics Eng.

2021/22

A.J.Proença

At core level:
Multithreading and Data Parallelism

AJProença, Parallel Computing, MEI, UMinho, 2021/22 2

Key issues for parallelism in a single-core

• Currently under discussion:
– pipelining:

reviewed in the combine example

– superscalar:
idem, but some more now

– data parallelism:
vector computers &
vector extensions to scalar processors

– multithreading:
alternative approaches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

Multithreading
Performing multiple threads of execution in parallel

n Share all resources but replicate registers, PC/IP, etc.
n Fast switching between threads

1. Fine-grain multithreading / time-multiplexed MT
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

2. Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

3. Simultaneous multithreading (next slide…)

§
7.

5
H

ar
dw

ar
e

M
ul

tit
hr

ea
di

ng

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

3. Simultaneous Multithreading

n In multiple-issue dynamically scheduled
processor
n Schedule instructions from multiple threads
n Instructions from independent threads execute when

function units are available
n Within threads, dependencies handled by scheduling

and register renaming

n Example: Intel from Pentium-4 HT
n Two threads: duplicated registers, shared function units

and caches
HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Multithreading Example

4-way superscalar

AJProença, Parallel Computing, MiEI, UMinho, 2020/21 6

Key issues for parallelism in a single-core

• Currently under discussion:
– pipelining:

reviewed in the combine example

– superscalar:
idem, but some more now

– data parallelism:
vector computers &
vector extensions to scalar processors

– multithreading:
alternative approaches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

Instruction and Data Streams
§

7.6 SISD
, M

IM
D

, SIM
D

, SPM
D

, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n SPMD: Single Program Multiple Data
n A parallel program on a MIMD computer
n Conditional code for different processors

Flynn’s Taxonomy of Computers *

* Mike Flynn, “Very High-Speed Computing Systems”, Proc. of IEEE, 1966

Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

n SIMD architectures can exploit significant data-level
parallelism for:
n matrix-oriented scientific computing
n media-oriented image and sound processing

n SIMD is more energy efficient than MIMD
n only needs to fetch one instruction per data operation
n makes SIMD attractive for personal mobile devices

n SIMD allows programmers to continue to think
sequentially

Introduction

9Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

n Vector architectures
n SIMD & extensions
n Graphics Processor Units (GPU) (another set of slides)

n For x86 processors:
n Expected grow:

2 more cores/chip/year
n SIMD width:

2x every 4 years
n Potential speedup:

SIMD 2x that from MIMD!

Introduction

2012 !

10Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

n Basic idea:
n Read sets of data elements (gather from memory)

into “vector registers”
n Operate on those registers
n Store/scatter the results back into memory

n Registers are controlled by the compiler
n Used to hide memory latency
n Leverage memory bandwidth

Vector Architectures

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 11

Cray-1 Supercomputer
(1976)

12Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges
n Start up time

n Latency of vector functional unit
n Assume the same as Cray-1

n Floating-point add => 6 clock cycles
n Floating-point multiply => 7 clock cycles
n Floating-point divide => 20 clock cycles
n Vector load => 12 clock cycles

n Improvements:
n > 1 element per clock cycle
n Non-64 wide vectors
n IF statements in vector code
n Memory system optimizations to support vector processors
n Multiple dimensional matrices
n Sparse matrices
n Programming a vector computer

Vector Architectures

13Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Programming

n Compilers are a key element to give hints on whether a
code section will vectorize or not

n Check if loop iterations have data dependencies,
otherwise vectorization is compromised

n Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices,
as SIMD extensions to the scalar processor; however:
n most do not support non-unit stride => care must be taken in the

design of data structures
n same applies for gather-scatter...

Vector Architectures

14Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions

n Media applications operate on data types narrower than
the native word size
n Intel SIMD extensions

started with 64-bit
wide vectors and
grew to wider vectors
and more facilities

n Current AVX
generation is
512-bit wide

n Limitations, compared to vector architectures:
n Number of data operands encoded into op code
n No sophisticated addressing modes (strided, scatter-gather, but…)
n No mask registers

SIM
D

 Instruction Set Extensions for M
ultim

edia

15Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations
n Intel implementations:

n MMX (1996)
n Eight 8-bit integer ops or four 16-bit integer ops

n Streaming SIMD Extensions (SSE) (1999)
n Eight 16-bit integer ops
n Four 32-bit integer/fp ops or two 64-bit integer/fp ops

n Advanced Vector eXtensions (AVX) (2010...)
n Eight 32-bit fp or four 64-bit fp ops (integers only in AVX-2)
n 512-bits wide in AVX-512 (and also in Larrabee & Phi-KNC)

n Operands must / should be in consecutive and
aligned memory locations

n AMD Zen/Epyc (Opteron follow-up): up to AVX-2

n Armv8 (64-bit) architecture: NEON & SVE

SIM
D

 Instruction Set Extensions for M
ultim

edia

AJProença, Parallel Computing, MEI, UMinho, 2021/22 16

Advanced Vector eXtensions, AVX 1.0

AVX 2.0

Registers for vector processing in Intel 64

AMD only supports AVX 2

AJProença, Parallel Computing, MEI, UMinho, 2021/22 17

Intel evolution to the AVX-512

Sandy Bridge Haswell

AJProença, Parallel Computing, MEI, UMinho, 2021/22 18

Intel SIMD ISA evolution

Each box has
a set of instructions
from a specific ISA

SIMD extension

…

AJProença, Parallel Computing, MEI, UMinho, 2021/22 19

The AVX-512 across Intel devices

AVX512F - AVX-512 Foundation
AVX512CD - AVX-512 Conflict Detection
AVX512BW - AVX-512 Byte and Word
AVX512DQ - AVX-512 Doubleword and Quadword
AVX512VL - AVX-512 Vector Length
AVX512IFMA - AVX-512 Integer Fused Multiply-Add
AVX512_VNNI - AVX-512 Vector Neural Network Instructions
AVX512_BF16 - AVX-512 BFloat16 Instructions

“I hope AVX512 dies a painful death,
and that Intel starts

fixing real problems…”
Linus Torvalds

https://en.wikichip.org/w/index.php?title=x86/avx512f&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512cd&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512bw&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512dq&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512vl&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512ifma&action=edit&redlink=1
https://en.wikichip.org/wiki/x86/avx512_vnni
https://en.wikichip.org/wiki/x86/avx512_bf16

AJProença, Parallel Computing, MEI, UMinho, 2021/22 20

Intel Advanced Matrix Extension (AMX)
(expected in 2021)

8 matrix registers

Each matrix reg
is 1024 bytes long
(=16x64B)

{

ht
tp
s:
//f
us
e.
w
ik
ic
hi
p.
or
g/
ne
w
s/
36
00
/th
e-
x8
6-
ad
va
nc
ed
-m
at
rix
-e
xt
en
si
on
-a
m
x-
br
in
gs
-m
at
rix
-o
pe
ra
tio
ns
-to
-d
eb
ut
-w
ith
-s
ap
ph
ire
-ra
pi
ds
/

FMA

AJProença, Parallel Computing, MEI, UMinho, 2021/22 21

ARM architecture

AJProença, Parallel Computing, MEI, UMinho, 2021/22 22

NEON vector & FP registers in Armv8 (64-bit)

DP register
SP register

HP register

Vector register

32
x

12
8-

bi
t r

eg
is

te
rs

AJProença, Parallel Computing, MEI, UMinho, 2021/22 23

NEON vector & FP registers in Armv8 (64-bit)

https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology

AJProença, Parallel Computing, MEI, UMinho, 2021/22 24

Armv8-A Scalable Vector Extension (SVE)

Vector size: up to 2048

AJProença, Parallel Computing, MEI, UMinho, 2021/22 25

ARM64
Fujitsu's A64FX Arm Chip:
SVE 4x128

The 1st implementation of SVE: Fujitsu A64FX

AJProença, Parallel Computing, MEI, UMinho, 2021/22 26

Beyond vector extensions

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of vector/SIMD-extended architectures
– computing accelerators optimized for number crunching (GPU)
– add support for matrix multiply + accumulate operations; why?

• most scientific, engineering, AI & finance applications use matrix
computations, namely the dot product: multiply and accumulate the elements
in a row of a matrix by the elements in a column from another matrix

• manufacturers typically call these extension Tensor Processing Unit (TPU)
– support for half-precision FP & 8-bit integer; why?

• machine learning using neural nets is becoming very popular; to compute the
model parameter during training phase, intensive matrix products are used
and with very low precision (is adequate!)

AJProença, Parallel Computing, MEI, UMinho, 2021/22 27

Reading suggestions

From CAQA 5th Ed
• Concepts and challenges in ILP: section 3.1
• Pipelining: basic and intermediate concepts: App. C
• Exploiting ILP w/ multiple issue & static scheduling: 3.7
• Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8
• Multithread: exploiting TLP on uniprocessors: 3.12
• Vector architecture: 4.2
• SIMD instruction set extensions for multimedia: 4.3
• Graphic processing units: (later…) 4.4
• Detecting and enhancing loop-level parallelism: 4.5

Slides on Vector Computing from previous year
• in http://gec.di.uminho.pt/mei/cp/T13-ArqVect.pdf

http://gec.di.uminho.pt/mei/cp2122/T13-ArqVect.pdf

