Parallel Computing

N\
ININ

Master Informatics Eng.

2021/22
A.J.Proenca

At core level:
Multithreading and Data Parallelism

AJProenca, Parallel Computing, MEI, UMinho, 2021/22 1

Key issues for parallelism in a single-core

— pipelifging:
reviewed in the combi

exampy

) 4

multithreading:

arnative aperoaches

I Superscalar |

‘ Pipelining ’
| Multithreading |

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

Multithreading

Performing multiple threads of execution in parallel

Share all resources but replicate registers, PC/IP, etc.
Fast switching between threads

1. Fine-grain multithreading / time-multiplexed MT

Switch threads after each cycle

Interleave instruction execution

If one thread stalls, others are executed
2. Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)
Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

3. Simultaneous multithreading (next slide...)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

| 3. Simultaneous Multithreading

In multiple-issue dynamically scheduled
processor

Schedule instructions from multiple threads

Instructions from independent threads execute when
function units are available

Within threads, dependencies handled by scheduling
and register renaming

Example: Intel from Pentium-4 HT

Two threads: duplicated registers, shared function units
and caches

HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Multithreading Example

Time

Time

Issue slots —
Thread A

Thread B

HER
[]
[]
Issue slots —
Coarse MT Fine MT
1 il
HEN

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Thread C

n
<
3

Thread D

4-way superscalar

Key issues for parallelism in a single-core

e Currently under discussion:
— pipelini

) 4

I Superscalar |

reviewdd in the combi exampy
— supersdgalar:

idem=G=agme more NoOw
data parallelism:
VO N rs &

— multithreading:
alternative approaches

AJProencga, Parallel Computing, MiEIl, UMinho, 2020/21 6

Instruction and Data Streams

Flynn’s Taxonomy of Computers *

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors

* Mike Flynn, “Very High-Speed Computing Systems”, Proc. of IEEE, 1966

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

Introduction

SIMD architectures can exploit significant data-level
parallelism for:

matrix-oriented scientific computing

media-oriented image and sound processing

SIMD is more energy efficient than MIMD

only needs to fetch one instruction per data operation
makes SIMD attractive for personal mobile devices

SIMD allows programmers to continue to think
sequentially

Copyright © 2012, Elsevier Inc. All rights reserved.

uoIONPOJU|

| SIMD Parallelism

s Vector architectures
s SIMD & extensions
s Graphics Processor Units (GPU) (another set of slides)

uoIoNPOU|

1000

¥~ MIMD*SIMD (32b) "
= For x86 processors: I -
» Expected grow: o

-
o
o

2 more cores/chip/year

ALa SIMD width:
Q
L 2x every 4 years

= Potential speedup:
SIMD 2x that from MIMD!

Potential parallel speedup

-
o
T

1 1 1 1 1
2003 2007 2011 2015 2019 2023

| Vector Architectures

s Basic idea:

= Read sets of data elements (gather from memory)
into “vector registers”

S8.IN}08}1Y2Jy JOJ08A

s Operate on those registers

s Store/scatter the results back into memory

m Registers are controlled by the compiler

= Used to hide memory latency

= Leverage memory bandwidth

” e
. Cray-1 Supercomputer

(1976)

AJProencga, Advanced Architectures, MiEl, UMinho, 2016/17

Challenges

s Start up time

= Assume the same as Cray-1

Latency of vector functional unit

S8.IN}08}1Y2Jy JOJ08A

« Floating-point add => 6 clock cycles

= Floating-point multiply => 7 clock cycles
= Floating-point divide => 20 clock cycles
= Vector load => 12 clock cycles

= Improvements:

> 1 element per clock cycle

Non-64 wide vectors

IF statements in vector code

Memory system optimizations to support vector processors
Multiple dimensional matrices

Sparse matrices

Programming a vector computer

| Vector Programming

s Compilers are a key element to give hints on whether a
code section will vectorize or not

S8.IN}08}1Y2Jy JOJ08A

s Check if loop iterations have data dependencies,
otherwise vectorization is compromised

s Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices,
as SIMD extensions to the scalar processor; however:

= Mmost do not support non-unit stride => care must be taken in the
design of data structures

= same applies for gather-scatter...

| SIMD Extensions

= Media applications operate on data types narrower than
the native word size

= Intel SIMD extensions
started with 64-bit sstand Avx-128 types

wide vectors and 5
grew to wider vectors E E E E PR
and more facilities R m

= Current AVX — _ 1x 128-bit doublequadword
generation s (o N T N -

512-bit wide I 1 1 "~ 4xdouble
= Limitations, compared to vector architectures:

elpawijnjA 10J Ssuoisualxy 12§ uononasu|l IS

= Number of data operands encoded into op code
= No sophisticated addressing modes (strided, scatter-gather, but...)
= No mask registers

| SIMD Implementations

= |ntel iImplementations:

= MMX (1996)
= Eight 8-bit integer ops or four 16-bit integer ops

s Streaming SIMD Extensions (SSE) (1999)
= Eight 16-bit integer ops
= Four 32-bit integer/fp ops or two 64-bit integer/fp ops

= Advanced Vector eXtensions (AVX) (2010...)
= Eight 32-bit fp or four 64-bit fp ops (integers only in AVX-2)
» 512-bits wide in AVX-512 (and also in Larrabee & Phi-KNC)

= Operands must / should be in consecutive and
aligned memory locations

elpawijniA 10J Suoisualxy 12§ uonionisu|l IS

s AMD Zen/Epyc (Opteron follow-up): up to AVX-2
= Armv8 (64-bit) architecture: NEON & SVE

Registers for vector processing in Intel 64

63 3231 0o 0 127 0
RAX
RCX
RDX
fg’; Advanced Vector eXtensions, AVX 1.0
1;?? ' 8x floats
RDI 4x double
RS x doubles
- x87 (FP)
RIO 63 3231 0 16x bytes
Rl [— —
RlZ Program Counter 8x 16-bit shorts
R13
::: I Original x84 4x 32-bit integers
GPR I Added by xa5-64 SSE/SSE2 2x 64-bit integers
1x 128-bit integer
Kmask kO..k7
Q XMMO - XMM15 : =
zmmo el 1 5 8SE | dfiididididiiaiiiiiiimiaaaiai S Bedas
. G 55k Ty s2xbytes
6 onresiers | BATAATATRTATATAD 1o r6vistons
i YMM1 o 256-bit registers
o AVX, AVX2 ..\ .'f .7 .. .'[l' .T l" 8x 32-bit integers
. a ZMMO0 - ZMM31 — _— A
s & S12:bIt registers - = = B 4x 64-bitintegers
AVX_512 — — R cige s
— o B | B 2 128-bitintegers
YMM31
i AVX 2.0

AJProenga, Parallel Computing, MEI, UMinho, 2021/22

AMD only supports AVX 2 |;

N\
ININ\

Intel® AVX Technology :

256b AVX1

16 SP /8B DP
Flops/Cycle

256-bit basic FP
16 registers

NDS (and AVX128)
Improved blend
MASKMOV

Implicit unaligned

SNB

20M

Sandy Bridge

256b AVX2
32 SP /16 DP

Flops/Cycle (FMA)

MIVS
RAVAZ

Float16 (IVB 2012)

256-bit FP FMA
256-bit integer
PERMD
Gather

HSW

2013
Haswell

Intel evolution to the AVX-512

Mixed Workloads
512b AVX-512
645P / 32 DP Non-AVX_Turbo
Flops/Cycle (FMA) AVX2_Turbo
o _
g AVX512_Turbo
()
AVX-512 =
: ¥ Non-AVX_Base
512-bit FP/Integer [an AVXZ_Base
32 registers AVX512_Base
: 8 mask reqisters B
Embedded rounding Cores
Embedded broadcast
Scalar/SSE/AVX “promotions” Cores using AVX-512
HPC additions Cores using AVX2
Transcendental support @EE73 Cores not using AVX
Gather/Scatter
+utdre Processors (KNL & SKX)

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 17

Intel SIMD ISA evolution

Intel SIMD ISA Evolution 5 | 512b

SIMD
: i 256D s
SIMD extensions on top of x86/x87 _ - -
: 128b :
64b SIMD

SIMD

Each box has |=

a set of instructions
from a specific ISA =
SIMD extension |- FT'-"’W"" 7

ﬁ
Pil Pl P4 P4 Core Core Core Core Core Xeon Phi™ Core
(Xlamath, (Katmai, (Witamette, (Prescott, (Merom, (Penryn, (Nehalem, ga'dwy %a‘s;;eﬂ. (Knights (Sky Lake)
199 2000 2004 200 2008) Be. Landing)

2011)

The AVX-512 across Intel devices

Microarchitecture

Support Level

F CD ER PF | BW DQ VL IFMA | VBMI 4FMAPS VNNI | 4VNNIW VPOPCNTDQ BF16
Knights Landing v v v v X X X X b 4 b 4 b 4 b 4 b 4 b 4
Knights Mill v v v v X X X X b 4 v v v v b 4
Skylake (server) (v vV | X | X |V [V vV X b 4 b 4 b 4 b 4 b 4 b 4
Cascade Lake vV v X X v Vv Vv X b 4 b 4 v b 4 b 4 b 4
Cannon Lake vV v X X v Vv Vv V 4 b 4 b 4 b 4 b 4
Ice Lake (server) ¢ | ¢V X X vV vV V V v v v b 4 b 4 b 4
Cooper Lake v v X X v v v X b 4 b 4 v b 4 b 4 v

AVX512F - AVX-512 Foundation - : ;
AVX512CD - AVX-512 Conflict Detection I hope AVX512 dies a painful death,
AVX512BW - AVX-512 Byte and Word _ and that Intel starts
AVX512DQ - AVX-512 Doubleword and Quadword fixing real problems. ..
AVX512VL - AVX-512 Vector Length Linus Torvalds

AVX512IFMA - AVX-512 Integer Fused Multiply-Add
AVX512_VNNI - AVX-512 Vector Neural Network Instructions
AVX512 BF16 - AVX-512 BFloat16 Instructions

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 19

https://en.wikichip.org/w/index.php?title=x86/avx512f&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512cd&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512bw&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512dq&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512vl&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=x86/avx512ifma&action=edit&redlink=1
https://en.wikichip.org/wiki/x86/avx512_vnni
https://en.wikichip.org/wiki/x86/avx512_bf16

\mU_QN._
! wl
YlM-
M-} -
le_c_o_
.”—N;_OQO
-Xljew
H QIXENI
UOISU3)Xd-Xlle
EI
ngap-o paouenpe ay SM3 asny//:sdny
-98X
C\@LO.Q
1Yoy Im*
N ﬁﬂ

o
X<
SO
T o 1
— x..n“m
nd M.m
o 3 3
.ld W : |
mm o &
3 O [1
t/\ .-r.‘ M.H
53 & H
P g=|" : m.mu
Jal ok |” o _um.m
o> < m 1
© : H
> A H
=iz
o Hi
) - |
O ="
n r = L
283
S £%E oL
n e g
g HSE
< ._ncm 5| & Begt "
co LRm m (f=]l
I Ac —" h11 M1 mm m»>01_© .ll
S n H_
S
-
' i
: (/2]
o ‘= m m g
=i e : §
o1 -
: X9
ol. x rt
=l < : i
N\ £ ab
= 35
Py
co m1m a
On
w .o L w
o
Q.
)
<

ARM architecture

WiIKIPEDIA

The Free Encyclopedia

N\
ININ\

ARM architecture

ARM (stylised in lowercase as arm, previously an acronym for Advanced RISC Machines and
originally Acorn RISC Machine) is a family of reduced instruction set computing (RISC)
architectures for computer processors, configured for various environments. Arm Ltd. develops the
architecture and licenses it to other companies, who design their own products that implement one
of those architectures—including systems-on-chips (SoC) and systems-on-modules (SoM) that

History |edit]
BBC Micro [edit]

Main article: BBC Micro

Acorn Computers' first widely successful design was the BBC Micro, introduced in December 1981. This was
a relatively conventional machine based on the MOS 6502 CPU but ran at roughly double the performance
of competing designs like the Apple Il due to its use of faster DRAM. Typical DRAM of the era ran at about

2 MHz; Acorn arranged a deal with Hitachi for a supply of faster 4 MHz parts.[1€!

AJProenca, Parallel Computing, MEI, UMinho, 2021/22 21

NEON vector & FP registers in Armv8 (64-bit)

N\
ININ

DP register
SP register

HP register

Vector register

AJProencga, Par.

Unused D31
Unused : S31
Unused | | H31
: : '
Register V31 | : E
127 64 63 32 31 16 15 0
EENR
Unused DO
Unused | S0
|
Unused i : HO
| : ! |
d I
Register VO : | i
127 64 63 32 31 16 15 0
Figure 4-10 Arrangement of floating-point values
Note

16-bit floating-point is supported, but only as a format to be converted from or to. It is not
supported for data processing operations.

32x 128-bit registers

NEON vector & FP registers in Armv8 (64-bit)

N\
ININ\

Fundamentals of Armv8 Neon technology

—

128-bit vector €

64-bit vector <

D
B B B B B B B B B B
127 64 63 32 31 1615 87 0
|Ean
Unused
Unused
Unused B B B B B B
127 64 63 32 31 1615 87 0

V0.2D
V0.4S
V0.8H
V0.16B

V31.2S
V31.4H

V31.8B

https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology

AJProenga, Parallel Computing, MEI, UMinho, 2021/22

23

Armva8-A Scalable Vector Extension (SVE)

SVE architectural state Vector size: up to 2048

« Scalable vector registers
. Z0-Z31 extending NEON's VO0-V31 731f

. DP & SP floating-point zo]
. 64, 32, 16 & 8-bit integer 213

- Scalable predicate registers
« PO-P7 lane masks for |d/st/arith

- P8-P15 for predicate manipulation

« FFR first fault register

- Scalable vector control regtste 7CR L .
« ZCR_ELx vector Iengt S
- Exception / privilege leve o¥ |

O ARM 2016 ARM

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 24

The 15t implementation of SVE: Fujitsu A64FX

ARMG64

Fujitsu's A64FX Arm Chip:

A64FX Chip Overview FUJiTSU
B Architecture Featdres <AGAFX> Ioipezinestopos PCie G 161anes
. Amws-2-A-TRArshad only) -

L2% 8mB
Mem $GB 2%G0

SVE 512-bit wide SIMD
SR | 4 assistant cores”

“All the cores are identical

+ HBM2 32GiB

+ Tofu 6D Mesh/Torus
28Gbps x 2 lanes x 10 ports

+ PCle Gen3 16 lanes
AJProenga, Parallel Computing, MEI, UMinho, 2021/22

Beyond vector extensions

N\
ININ

* Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

 Evolution of vector/SIMD-extended architectures
— computing accelerators optimized for number crunching (GPU)

— add support for matrix multiply + accumulate operations; why?

» most scientific, engineering, Al & finance applications use matrix
computations, namely the dot product: multiply and accumulate the elements
in a row of a matrix by the elements in a column from another matrix

» manufacturers typically call these extension Tensor Processing Unit (TPU)

— support for half-precision FP & 8-bit integer; why?

 machine learning using neural nets is becoming very popular; to compute the
model parameter during training phase, intensive matrix products are used
and with very low precision (is adequate!)

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 26

Reading suggestions

From CAQA 5t Ed

« Concepts and challenges in ILP: section 3.1
* Pipelining: basic and intermediate concepts: App. C

« Exploiting ILP w/ multiple issue & static scheduling: 3.7
« Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8

« Multithread: exploiting TLP on uniprocessors: 3.12
» Vector architecture: 4.2
» SIMD instruction set extensions for multimedia: 4.3
« Graphic processing units: (later...) 44
* Detecting and enhancing loop-level parallelism: 4.5

Slides on Vector Computing from previous year
 in http://gec.di.uminho.pt/mei/cp/T13-ArqVect.pdf

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 27

http://gec.di.uminho.pt/mei/cp2122/T13-ArqVect.pdf

