
AJProença, Parallel Computing, MEI, UMinho, 2021/22 1

Parallel Computing

Master Informatics Eng.

2021/22

A.J.Proença

Programming in Shared Memory
(most slides are from previous year)

JLSobral, CompPar, MIEF, 2020/21JLSobral, CompPar, MIEF, 2020/21

Logic vs. physical parallelism

Scheduling

Lecture 9: Processes and Threads

What�s a thread?"
l  Thread = concurrent

execution unit within a
process!

–  Threads share memory
(entire virtual address
space)!

Lecture 9: Processes and Threads

Simultaneous Multithreading"
l  Simultaneous multithreading!

–  Run multiple threads on each core
each cycle!

l  Hyperthreading: SMT for Intel!
–  Processor and OS advertise two

threads per core!
–  Simple programming interface !
–  Don’t get full performance out of

both threads: 15-30% speedup!

Intel SMT

JLSobral, CompPar, MIEF, 2020/21

Specification of concurrency/parallelism

p Processes
n Used for unrelated tasks

p (e.g., a program)

n Own address space
p Address space is proteded

from other process
n Swithching at the kernel level

p Threads
n Are part from the same job
n Share address space, code,

data and files
n Swithching at the user or

kernel level

Lecture 9: Processes and Threads

Threads and Processes"
l  Every process has a at least one thread!

http://www.cs.miami.edu/home/visser/Courses/CSC322-09S/Content/UNIXProgramming/UNIXThreads.shtml

Every process
has at lest one
thread

JLSobral, CompPar, MIEF, 2020/21JLSobral, CompPar, MIEF, 2020/21

Threads vs. Processes

Code, data, filesCode, data, files

JLSobral, CompPar, MIEF, 2020/21JLSobral, CompPar, MIEF, 2020/21

Processes/Threads vs. Tasks
• Task: sequence of instructions
• Thread/process: execution context for a task
• Processor/core: hardware that runs a thread/process

Threads are scheduled on available cores

In Java
• Runnable object
• Thread
• Processor core

JLSobral, CompPar, MIEF, 2020/21 6

Desenvolvimento de Aplicações Paralelas

Partição do problema e dos dados a processar

n Identifica oportunidades de paralelismo:
p Define um elevado número de tarefas (de grão fino)
p Pode obter várias decomposições alternativas

n Duas vertentes complementares na identificação das tarefas:
p Decomposição dos dados - identifica dados que podem ser processados em paralelo

§ enfoque nos dados a processar e na sua divisão em conjuntos que podem ser processados em paralelo
p Decomposição funcional – identifica fases do algoritmo que podem ser efectuadas em paralelo

§ enfoque no processamento a realizar, dividindo este processamento em tarefas independentes

n A partição deve obter um número de tarefas, pelo menos, uma ordem de magnitude
superior ao número de unidades de processamento

p Introduz flexibilidade nas fases posteriores do desenvolvimento.

n Tarefas de dimensões idênticas facilitam a distribuição da carga

n O número de tarefas deve aumentar com a dimensão do problema.

AJProença, Parallel Computing, MEI, UMinho, 2021/22 7

Explicit parallel computing (1)

• Current homogeneous parallel systems (1)

– parallelism on single or multiple devices (same motherboard)

• each core can be multithreaded

• single physical mem addr space

• paradigm: shared mem program
• Cilk Plus (http://www.cilkplus.org/)

extension to C & C++ to support
data & task parallelism

• OpenMP (http://openmp.org/wp/)
C/C++ and Fortran directive-based parallelism

Proc

Cache
… Proc

Cache

…

Memory

Multicore device

Proc

Cache
… Proc

Cache

Memory

Multicore device

NUMA shared memory

http://www.cilkplus.org/
http://openmp.org/wp/

AJProença, Parallel Computing, MEI, UMinho, 2021/22 8

Explicit parallel computing (2)

• Current homogeneous parallel systems (2)

– on multiple boards (or multiple nodes/servers)
• each node with its private memory space
• paradigm among nodes: distributed memory passing

• MPI (https://en.wikipedia.org/wiki/Message_Passing_Interface)
library for message communication on scalable parallel systems

Proc
Cache

…
Proc
Cache

…
Multicore device

Proc
Cache

…
Proc
Cache

Memory Memory

Multicore device

Cluster node / Server

Proc
Cache

… Proc
Cache

…
Multicore device

Proc
Cache

… Proc
Cache

Memory Memory

Multicore device

Cluster node / Server

…

Interconnection network

https://en.wikipedia.org/wiki/Message_Passing_Interface

AJProença, Parallel Computing, MEI, UMinho, 2021/22 9

Explicit parallel computing (3)

• Common heterogeneous systems (GPU as accelerator unit)

– application specific (GPU excellent for numerical computations)
– key suppliers: NVidia, AMD, Intel, …
– programming: OpenCL, CUDA, …

Proc
Cache

…
Proc
Cache

…
Multicore device

Proc
Cache

…
Proc
Cache

Memory Memory

Multicore device

Cluster node / Server

Proc
Cache

…
Proc
Cache

…
Multicore device

Proc
Cache

…
Proc
Cache

Memory Memory

Multicore device

Cluster node / Server

…

Interconnection network

GPU
GPU

…

Accelerator(s)
GPU

GPU

…

Accelerator(s)

PCI PCI

Lecture 4 – Parallel Performance Theory - 2

Parallel Programming Models
q Two general models of parallel program

❍ Task parallel
◆problem is broken down into tasks to be performed
◆ individual tasks are created and communicate to coordinate

operations
❍ Data parallel

◆problem is viewed as operations of parallel data
◆data distributed across processes and computed locally

q Characteristics of scalable parallel programs
❍ Data domain decomposition to improve data locality
❍ Communication and latency do not grow significantly

10Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Shared Memory Parallel Programming
q Shared memory address space
q (Typically) easier to program

❍ Implicit communication via (shared) data
❍ Explicit synchronization to access data

q Programming methodology
❍ Manual

◆multi-threading using standard thread libraries
❍ Automatic

◆parallelizing compilers
◆OpenMP parallelism directives

❍ Explicit threading (e.g. POSIX threads)

11Introduction to Parallel Computing, University of Oregon, IPCC

Introduction to OpenMP
• OpenMP is a standard for Shared Memory (SM) parallel

programming (e.g., on multi-core machines)
o based on: Compiler directives, Library routines and Environment

variables

o supports C/C++ and Fortran programming languages

• Execution model is based on the fork-join model of parallel
execution

• Parallelism is specified through directives, added by the
programmer to the code
o the compiler implements the parallelism

12JLSobral, CompPar, MIEF, 2020/21

AJProença, Parallel Computing, MEI, UMinho, 2021/22 13

Parallel for-loops in OpenMP

ht
tp
s:
//w
w
w.
co
ur
se
ra
.o
rg
/le
ar
n/
pa
ra
lle
lis
m
-ia

AJProença, Parallel Computing, MEI, UMinho, 2021/22 14

Directive for parallel loops in OpenMP

https://www.coursera.org/learn/parallelism-ia

OpenMP considerations:
• It is the programmer’s responsibility to ensure correctness and

efficiency of parallel programs
o OpenMP itself does not solve problems as :

• data races, starvation, deadlock or poor load balancing (among
others).

• but, offers routines to solve problems like:
o Load balancing or memory consistency.

• The creation/managing of threads is delegated to the
compiler & OpenMP runtime:
o + easier to parallelize applications;

o - less control over the threads behaviour.

• By default, the number of parallel activities is defined at run-
time according to available resources
o e.g. 2 cores -> 2 threads
o HT capability counts as additional cores

15JLSobral, CompPar, MIEF, 2020/21

AJProença, Parallel Computing, MEI, UMinho, 2021/22 16

Races conditions in multithreading

Directive in OpenMP

https://www.coursera.org/learn/parallelism-ia

AJProença, Parallel Computing, MEI, UMinho, 2021/22 17

Avoiding data races with mutexes

https://www.coursera.org/learn/parallelism-ia

AJProença, Parallel Computing, MEI, UMinho, 2021/22 18

Mutexes in OpenMP

https://www.coursera.org/learn/parallelism-ia

AJProença, Parallel Computing, MEI, UMinho, 2021/22 19

Load balancing loop iterations

https://www.coursera.org/learn/parallelism-ia

OpenMP: Programming Model
• An OpenMP program begins with a single thread (master

thread)
• Parallel regions create a team of parallel activities
• Work-sharing constructs generate work for the team to

process
• Data sharing clauses specify how variables are shared within a

parallel region

20JLSobral, CompPar, MIEF, 2020/21

Overview of OpenMP constructs (1)

• OpenMP directives format for C/C++ applications:
o #pragma omp directive-name [clause[[,] clause]...] new-line

• Parallel Construct
o #pragma omp parallel Creates a team of threads.

• Work-sharing Constructs

o #pragma omp for Assignment of loop iterations to threads.

o #pragma omp sections Assignment of blocks of code (section) to
threads.

o #pragma omp single Restricts a code of block to be executed
by a single thread.

21JLSobral, CompPar, MIEF, 2020/21

Overview of OpenMP constructs (2)

• Tasking Constructs (standard v2.5)
o #pragma omp task Creation of a pool of tasks to be executed by threads.

• Master & Synchronization Constructs
o #pragma omp master Restricts a block of code to be executed only the master thread.

o #pragma omp critical Restricts the execution of a block of code to a single thread at a

time.

o #pragma omp barrier Makes all threads in a team to wait for the remaining.

o #pragma omp taskwait Wait for the completion of the current task child's.

o #pragma omp atomic Ensures that a specific storage location is managed atomically.

o #pragma omp flush Makes a thread temporary view of mem consistent with memory

o #pragma omp ordered Specifies a block of code in a loop region that will be executed

in the order of the loop iterations.

22JLSobral, CompPar, MIEF, 2020/21

Parallel Region
• When a thread encounters a

parallel construct, a team of
threads is created (FORK);

• The thread which encounters the
parallel region becomes the master
of the new team;

• All threads in the team (including
the master) execute the region;

• At end of parallel region, all threads
synchronize, and join master thread
(JOIN).

Parallel region syntax
#pragma omp parallel [clauses]

{
code_block

}

Where clause can be:

23JLSobral, CompPar, MIEF, 2020/21

Nested Parallel Region

• If a thread in a team executing a parallel region
encounters another parallel directive, it creates a new
team, and becomes the master of this team;

• If nested parallelism is disabled, then no additional team
of threads will be created.

• To enable/disabled -> omp_set_nested(x);

24JLSobral, CompPar, MIEF, 2020/21

Nested region example

25

Parallel Region level 0

Parallel Region level 1 Parallel Region level 1

T 0

T 0 T 1

T 0 T 1 T 0 T 1

Team 1

Team 2 Team 3

(Master)

(Master)

(Master) (Master)

Thread marked with red is
slave on team 1 but
master on team 2.

JLSobral, CompPar, MIEF, 2020/21

Loop Construct
• The for loop iterations are distributed

across threads in the team;
o The distribution is based on:

• chunk_size, by default is 1;
• schedule by default is static.

• Loop schedule:
o Static – Iterations divided into chunks of size
chunk_size assigned to the threads in a team
in a round-robin fashion;

o Dynamic – the chunks are assigned to threads
in the team as the threads request them;

o Guided - similar to dynamic but the chunk size
decreases during execution.

o Auto – the selection of the scheduling strategy
is delegated to the OpenMP implementation.

26

Parallel region syntax
#pragma omp for[clauses]

{
code_block

}

Where clause can be:

JLSobral, CompPar, MIEF, 2020/21

Loop Constructors

27

• schedule(static) vs schedule(dynamic)
o Static has lower overhead;
o Dynamic has a better load balance approach;
o Increasing the chuck size in the dynamic for:

• Diminishing of the scheduling overhead;
• Increasing the possibility of load balancing problems.

• Lets consider the following loop that we want to
parallelize using 2 threads, being void f(int i) a given
function

#pragma omp parallel for schedule (?)
for(I = 0; I < 100; I++)

f(i);

What is the most appropriated type of scheduling?

JLSobral, CompPar, MIEF, 2020/21

Parallel for with ordered clause

28

• #pragma omp for schedule(static) ordered
for (i = 0; i < N; ++i)
{

… // do something here (in parallel)
#pragma omp ordered
{
printf("test() iteration %d\n", i);
}

}

JLSobral, CompPar, MIEF, 2020/21

Parallel execution of code sections

• Supports heterogeneous tasks:
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

taskA();
}
#pragma omp section
{

taskB();
}
#pragma omp section
{

taskC();
}

}
}

Ø The section blocks are divided
among threads in the team;

Ø Each section is executed only
once by threads in the team.

Ø There is an implicit barrier at the
end of the section construct
unless a nowait clause is specified

Ø Allow the following clauses:
Ø private (list);
Ø firstprivate(list);
Ø lastprivate(list);
Ø reduction(operator:list)

29JLSobral, CompPar, MIEF, 2020/21

Task constructor (OpenMP 2.5):

Ø When a thread encounters a task
construct, a task is generated;

Ø Thread can immediately execute the
task, or can be executed latter on by
any thread on the team;

Ø OpenMP creates a pool of tasks to be
executed by the active threads in the
team;

Ø The taskwait directive ensures that the
tasks generated are completed before
the return statements.

Ø Although, only one thread executes
the single directive and hence the call
to fib(n), all four threads will participate
in executing the tasks generated.

30JLSobral, CompPar, MIEF, 2020/21

Execution Tree Exemplified

31

fib (5)

fib (4) fib (3)

fib (3) fib (2) fib (2) fib (1)

fib (2) fib (1) fib (1) fib (0) fib (1) fib (0)

fib (1) fib (0)

T 0

T 3 T 1
T 0 T 3

T 2

T 1

T 2

T 0T 2 T 3T 0T 2

T 2T 2

JLSobral, CompPar, MIEF, 2020/21

Data Sharing

• What happens to variables in parallel regions?
o Variables declared inside are local to each thread;
o Variables declared outside are shared

• Data sharing clauses:
o private(varlist) => each variable in varlist becomes private to each

thread, initial values not specified.
o firstprivate(varlist) => Same as private, but variables are initalized with the

value outside the region.
o lastprivate(varlist) => same as private, but the final value is the last loop

iteration’s value.
o reduction (op:var) => same as lastprivate, but the final value is the result of

reduction of private values using the operator “op”.

• Directives for data sharing:
o #pragma omp threadlocal => each thread gets a local copy of the

value.
o copyin clause copies the values from thread master to the others threads.

32
JLSobral, CompPar, MIEF, 2020/21

Synchronization Constructs:

• Critical regions (executed in mutual exclusion):
o #pragma omp critical [name]

updateParticles();

o Restricts the execution of the associated structured blocks to a
single thread at a time;

o Works inter-teams (i.e., global lock)
o An optional name may be used to identify the critical construct.

• Atomic Operations (fine-grain synchronization):
o #pragma omp atomic

A[i] += x;

o The memory in will be updated atomically. It does not make the
entire statement atomic; only the memory update is atomic.

o A compiler might use special hardware instructions for better
performance than when using critical.

33JLSobral, CompPar, MIEF, 2020/21

Synchronization Constructs:
• Atomic Operations (fine-grain synchronization):

34

vmovsd (%r12), %xmm1

L4:
vxorpd %xmm0, %xmm0, %xmm0
vcvtsi2sd %ebx, %xmm0, %xmm0
vmovsd %xmm1, 8(%rsp)
addl $1, %ebx
call _sin ; return value in %xmm0
vmovsd 8(%rsp), %xmm1 ; result in %xmm1
cmpl %ebx, %ebp
vaddsd %xmm0, %xmm1, %xmm1
jne L4

vmovsd %xmm1, (%r12)

L12:
addl $1, %ebx
cmpl %ebx, %r12d
je L9

L5:
vxorpd %xmm0, %xmm0, %xmm0
vcvtsi2sd %ebx, %xmm0, %xmm0
call _sin
movq 0(%rbp), %rcx
movq (%rcx), %rdx

L4:
vmovq %rdx, %xmm2
movq %rdx, %rax
vaddsd %xmm2, %xmm0, %xmm1
vmovq %xmm1, %rsi
lock cmpxchgq %rsi, (%rcx)
cmpq %rax, %rdx
je L12
movq %rax, %rdx
jmp L4

Repeat until successful update

JLSobral, CompPar, MIEF, 2020/21

35

Avoid/reduce synchronisation

o Reduction of multiple values (in parallel):

sum = 0;
#pragma omp parallel for reduction(+:sum)
for(int i = 0; i<100; i++) {

sum += array[i];
}

o Thread reuse across parallel regions

pragma omp parallel {
#pragma omp for
for(int i = 0; i<100; i++)

…
#pragma omp for

for(int j= 0; j<100; j++)
…

}

JLSobral, CompPar, MIEF, 2020/21

Environment variables
o OMP_SCHEDULE

• sets the run-sched-var ICV for the runtime schedule type and chunk size. It can be set to any of the
valid OpenMP schedule types (i.e., static, dynamic, guided, and auto).

o OMP_NUM_THREADS
• sets the nthreads-var ICV for the number of threads to use for parallel regions.

o OMP_DYNAMIC
• sets the dyn-var ICV for the dynamic adjustment of threads to use for parallel regions.

o OMP_NESTED
• sets the nest-var ICV to enable or to disable nested parallelism.

o OMP_STACKSIZE
• sets the stacksize-var ICV that specifies the size of the stack for threads created by the OpenMP

implementation.

o OMP_WAIT_POLICY
• sets the wait-policy-var ICV that controls the desired behavior of waiting threads.

o OMP_MAX_ACTIVE_LEVELS
• sets the max-active-levels-var ICV that controls the maximum number of nested active parallel regions.

o OMP_THREAD_LIMIT
• sets the thread-limit-var ICV that controls the maximum number of threads participating in the

OpenMP program.
JLSobral, CompPar, MIEF, 2020/21

OpenMP Rotines
• omp_set_num_threads / omp_get_num_threads
• omp_get_max_threads
• omp_get_thread_num.
• omp_get_num_procs.
• omp_in_parallel.
• omp_set_dynamic / omp_get_dynamic.
• omp_set_nested / omp_get_nested.
• omp_set_schedule / omp_get_schedule
• omp_get_thread_limit.
• omp_set_max_active_levels / omp_get_max_active_levels
• omp_get_level.
• omp_get_ancestor_thread_num.
• omp_get_team_size.
• omp_get_active_level

o Locks
• void omp_init_lock(omp_lock_t *lock);
• void omp_destroy_lock(omp_lock_t *lock);
• void omp_set_lock(omp_lock_t *lock);
• void omp_unset_lock(omp_lock_t *lock);
• int omp_test_lock(omp_lock_t *lock);

o Timers
• double omp_get_wtime(void);
• double omp_get_wtick(void);

JLSobral, CompPar, MIEF, 2020/21

