Parallel Computing

N\
ININ

Master Informatics Eng.

2021/22
A.J.Proenca

Programming in Shared Memory
(most slides are from previous year)

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 1

Logic vs. physical parallelism

Concurrency Parallelism

Time Time

Task 1 Task 2

Intel SMT

2 - O
% 2 3
© o P @
- w =9 o
Py -
1"5a =
O —
o =
. = 8
Scheduling T 2
—
Time g
Thread1 | Thread 2 =4
(main thread)| (peer thread) g- ;
A T ‘ N 2
' TTee— } Thread context switch &
| —
| | 7 O
__________________ @©
— } Thread context switch 4 —
,,,,, ‘, & =
@
X __ @
[
N

JLSobral, | --eemmmmmedemee Yo

Specification of concurrency/parallelism

O Processes O Threads
= Used for unrelated tasks = Are part from the same job
(€.g., a program) = Share address space, code,
= Own address space data and files
Address space is proteded = Swithching at the user or
from other process kernel level
= Swithching at the kernel level
data files data files
registers stack registers | registers |l| registers
Every process stack stack stack
has at lest one code ode

thread
3 ; g g ‘__thread

JLSobral, CompPar, MIEF, 2020/21

Threads vs. Processes

JLSobral, CompPar, MIEF, 2020/21

Processes/Threads vs. Tasks

» Task: sequence of instructions In Java
» Thread/process: execution context for a task « Runnable object
* Processor/core: hardware that runs a thread/process . Thread

. Processor core
As tasks arrive,

they are placed 10

on a queue
Task Queue
i (BN Threads on the

thread pool grab
the next available
task on the queue

Thread Pool

R

IS r4 r6

Threads are scheduled on available cores
JLSobral, CompPar, MIEF, 2020/21

Desenvolvimento de Aplicacoes Paralelas

Particao do problema e dos dados a processar

= l|dentifica oportunidades de paralelismo:
Define um elevado numero de tarefas (de grao fino)
Pode obter varias decomposigcoes alternativas

= Duas vertentes complementares na identificacio das tarefas:

Decomposicao dos dados - identifica dados que podem ser processados em paralelo

= enfoque nos dados a processar e na sua divisdo em conjuntos que podem ser processados em paralelo
Decomposic¢ao funcional — identifica fases do algoritmo que podem ser efectuadas em paralelo
= enfoque no processamento a realizar, dividindo este processamento em tarefas independentes

= A particido deve obter um numero de tarefas, pelo menos, uma ordem de magnitude
superior ao numero de unidades de processamento

Introduz flexibilidade nas fases posteriores do desenvolvimento.
m Tarefas de dimensdes idénticas facilitam a distribuigdo da carga

= O numero de tarefas deve aumentar com a dimensao do problema.

JLSobral, CompPar, MIEF, 2020/21

Explicit parallel computing (1)

N\
ININ

* Current homogeneous parallel systems (1)
— parallelism on single or multiple devices (same motherboard)

e each core can be multithreaded
* single physical mem addr space

 paradigm: shared mem program

 Cilk Plus (http://www.cilkplus.org/)
extension to C & C++ to support
data & task parallelism

» OpenMP (http://openmp.org/wp/)

Multicore device

Multicore device

C/C++ and Fortran directive-based parallelism

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

Proc Proc . Proc Proc
Cachel Cache) Cache Cache
Memory Memory

NUMA shared memory
7

http://www.cilkplus.org/
http://openmp.org/wp/

Explicit parallel computing (2)

* Current homogeneous parallel systems (2)

— on multiple boards (or multiple nodes/servers)
« each node with its private memory space
 paradigm among nodes: distributed memory passing

« MPI (https://en.wikipedia.org/wiki/Message Passing_Interface)
library for message communication on scalable parallel systems

|
: Memory Memory : : Memory Memory :
.. I [e e B e e e e R e e e o e = e e e e e

: Multicore device Multicore device | | : Multicore device Multicore device :
1 ||Proc Proc|| B Proc Proc : : Proc Proc|| _ I Proc Proc|| }
: Cachel """ |Cachel Cachel """ |Cachel : 1 Cache] """ [Cachel Cache] """ [Cache] :
1 1 : 1
| 1 1 1
1

Cluster node / Server

Cluster node / Server

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 8

https://en.wikipedia.org/wiki/Message_Passing_Interface

Explicit parallel computing (3)

« Common heterogeneous systems (GPU as accelerator unit)
— application specific (GPU excellent for numerical computations)
— key suppliers: NVidia, AMD, Intel, ...
— programming: OpenCL, CUDA, ...

Multicore device Multicore device
Proc Proc Proc Proc
Cache] """ [Cache Cache] """ [Cache

Multicore device Multicore device

Proc Proc Proc Proc
Cache] """ [Cachel Cache] """ [Cache]

Cluster node / Server

Cluster node / Server

Parallel Programming Models

a0 Two general models of parallel program

o Task parallel

+ problem 1s broken down into tasks to be performed

¢ Individual tasks are created and communicate to coordinate

operations

o Data parallel

¢ problem 1s viewed as operations of parallel data

¢ data distributed across processes and computed locally

a Characteristics of scalable parall

el programs

o Data domain decomposition to im

brove data locality

o Communication and latency do not grow significantly

Introduction to Parallel Computing, University of Oregon, I[IPCC Lecture 4 — Pa

rallel Performance Theory - 2

Shared Memory Parallel Programming

0 Shared memory address space

a (Typically) easier to program
o Implicit communication via (shared) data
o Explicit synchronization to access data

0 Programming methodology
o Manual

+ multi-threading using standard thread libraries
o Automatic

¢ parallelizing compilers

¢ OpenMP parallelism directives

o Explicit threading (e.g. POSIX threads)

Introduction to Parallel Computing, University of Oregon, [PCC

Lecture 4 — Parallel Performance Theory - 2

Introduction to OpenMP

« OpenMP is a standard for Shared Memory (SM) parallel
programming (e.g., on multi-core machines)

o based on: Compiler directives, Library routines and Environment
variables

o supports C/C++ and Fortran programming languages

« Execution model is based on the fork-join model of parallel
execution

Parallel Task | Parallel Task Il Parallel Task Il
Master Thread _-_ _- R
= . e N

« Paradllelism is specified through directives, added by the
programmer to the code

o the compiler implements the parallelism

JLSobral, CompPar, MIEF, 2020/21 12

Parallel for-l1oops in OpenMP

N\
ININ\

Loop-Centric Parallelism: For-Loops in OpenMP

> Simultaneously launch
multiple threads

> Scheduler assigns loop
iterations to threads

> Each thread processes
one iteration at a time

Parallelizing a for-loop.

https.//www.coursera.org/learn/parallelism-ia

Directive for parallel loops in OpenMP

Loop-Centric Parallelism: For-Loops in OpenMP

The OpenMP library will distribute the iterations of the loop following the
(EEE;EE;—omp parallel forucross threads.

\ | #pragma omp parallel for D

 |[for (dnt 1 = 0; i < n; i++) {

s | printf("Iteration %d is processed by thread Jd\n",

‘ i, omp_get_thread_num());

- // ... iterations will be distributed across available threads...

6|}

https.//www.coursera.org/learn/parallelism-ia

OpenMP considerations:

- It is the programmer’s responsibility to ensure correctness and
efficiency of parallel programs

o OpenMP itself does not solve problems as :
-Cdafa raced starvation, deadlock or poor load balancing (among
O :

* but, off | to solve problems like:
olload balancing@)or memory consistency.

« The creation/managing of threads is delegated to the
compiler & OpenMP runtime:

o + easier to parallelize applications;

o -less control over the threads behaviour.

« By default, the number of parallel acfivities is defined at run-
time according to available resources

o €.9g.2cores->2threads
o HT capability counts as additional cores

JLSobral, CompPar, MIEF, 2020/21 15

Races conditions in multithreading

N\
ININ\

Race Conditions and Unpredictable Program Behavior

Thread 1

Directive in OpenMP

.S m 1) 4
' // Race condition
total = total + 1i;

Race Condition!

> Occurs when 2 or more threads @
access the same memory address,
and at least one of these accesses is
for writing

https.//www.coursera.org/learn/parallelism-ia

Avoiding data races with mutexes

Mutexes *

Thread 1
Thread 1

Race Condition!

> Mutual exclusion conditions (mutexes) protect data races by
serializing code.

https.//www.coursera.org/learn/parallelism-ia

N\
ININ\

Mutexes in OpenMP

Mutexes in OpenMP

n;#pragma omp parallel

{
) | // parallel code
« | #pragma omp critical
{
6 // protected code
// multiple lines
" // many variables
y }
o |)

—

-

-

10 |

|
L

#pragma omp parallel
{
// parallel code
#pragma omp atomic
// protected code
// one line
// specific operations
Y // on scalars
total += i;

}

Good parallel codes minimize the use of mutexes.

https.//www.coursera.org/learn/parallelism-ia

Load balancing loop iterations

Loop Scheduling Modes in OpenMP

Scheduling Theeads herations Scheduling Threads lterations

CEELEEEE T ¢ OIInEZEE)

-
-

L 3 Y A ese

2 6 10 14 IX 22 26 30

w N =

|
(JJe 17 I8 19 20 21 2 23) @ 2
3

O i 1410 643 o [EDEDED
Do Gnic7)), R RRTE

SN s [o2 | 3 i S > s— 5 —
' mmmmm s " mmmm

- N U . N u' :

3 r-'—giﬁ'_fj:]—lmi:rEl 3 lum._'lm' = m

- -
Time Time

https.//www.coursera.org/learn/parallelism-ia

OpenMP: Programming Model

« An OpenMP program begins with a single thread (master
thread)

« Parallel regions create a team of parallel activities

 Work-sharing constructs generate work for the fteam to
process

« Data sharing clauses specity how variables are shared within a
parallel region

OpenMP language

extensions
runtime
parallel control . data . .
work sharing . synchronization functions, env.
structures environment -
variables
governs flow of distributes work scopes coordinates thread runtime environment
control in the among threads variables execution
program
omp_set_num_threads ()
do/parallel do shared and critical and omp get thread num()
parallel directive and private atomic directives OMP NUM THREADS
section directives clauses barrier directive OMP SCHEDULE

JLSobral, CompPar, MIEF, 2020/21 20

Overview of OpenMP constructs (1)

« OpenMP directives format for C/C++ applications:
o #pragma omp directive-name [clause[[,] clause]...] new-line

 Parallel Construct

o #pragma omp parallel

« Work-sharing Constructs

o #pragma omp for

o #pragma omp sections
threads.

o #pragma omp single

JLSobral, CompPar, MIEF, 2020/21

Creates a team of threads.

Assignment of loop iterafions to threads.

Assignment of blocks of code (section) to

Restricts a code of block to be executed
by a single thread.

2]

Overview of OpenMP constructs (2)

* Tasking Constructs (standard v2.5)

o #pragma omp task Creation of a pool of tasks to be executed by threads.

* Master & Synchronization Constructs

o #pragma omp master

o #pragma omp critical

time.
o #pragma omp barrier
o #pragma omp taskwait
o #pragma omp atomic
o #pragma omp flush

o #pragma omp ordered

JLSobral, CompPar, MIEF, 2020/21

Restricts a block of code to be executed only the master thread.

Restricts the execution of a block of code to a single thread at a

Makes all threads in a team to wait for the remaining.

Wait for the completion of the current task child's.
Ensures that a specific storage location is managed atomically.
Makes a thread temporary view of mem consistent with memory

Specifies a block of code in a loop region that will be executed

in the order of the loop iterations.

22

Parallel Region

« When a thread encounters a Parallel region syntax
porollel. construct, a team of #pragma omp paraliclCllS
threads is created (FORK); {

code _block

* The thread which encounters the
parallel region becomes the master

of the new team:
Where clause can be:

« All threads in the team (including 1£ (scalar-expression)
the master) execute the region; num_threads (integer-expression)
private (/ist)
« At end of parallel region, all threads firstprivate (lis)
synchronize, and join master thread shared (list)
(JOIN) reduction (operator: list)

JLSobral, CompPar, MIEF, 2020/21 23

Nested Parallel Region

 If a thread in a team executing a parallel region
encounters another parallel directive, it creates a new
team, and becomes the master of this tfeam;

» |If nested parallelism is disabled, then no additional team
of threads will be created.

« To enable/disabled -> omp_set_nested(x);

JLSobral, CompPar, MIEF, 2020/21

24

Nested region example

l TO (Master)

Thread marked with red is
slave on team 1 but
Parallel Region level 0 master on team 2.
Team 1
(Master) lT 0 T1 l

Parallel Region level 1 Parallel Region level 1

l Team 2 l Team 3 l
T O (Master) T1 TO (Master) T1

JLSobral, CompPar, MIEF, 2020/21 25

Loop Construct

» The for loop iterations are distributed
across threads in the team;

o The distribution is based on:
« chunk_size, by default is 1;
» schedule by default is static.

 Loop schedule:

o Static - Iterations divided info chunks of size
chunk_size assigned to the threads in a team
in a round-robin fashion;

o Dynamic - the chunks are assigned to threads
in the team as the threads request them,;

o Guided - similar to dynamic but the chunk size
decreases during execution.

o Auto - the selection of the scheduling strategy
is delegated to the OpenMP implementation.

JLSobral, CompPar, MIEF, 2020/21

Parallel region syntax

#pragma omp for[clauses]

{

code_block

Where clause can be:

private (/ist)

firstprivate (lisr)
lastprivate (/lisr)
reduction (operator: list)
schedule (kindf, chunk_size])
collapse (n)

ordered

nowait

26

Loop Constructors

« schedule(static) vs schedule(dynamic)
o Static has lower overhead,;
o Dynamic has a better load balance approach;
o Increasing the chuck size in the dynamic for:
« Diminishing of the scheduling overhead,;
* Increasing the possibility of load balancing problems.

« Lets consider the following loop that we want to

parallelize using 2 threads, being void f(int i) a given
function

#pragma omp parallel for schedule (¢)
forf((l_)= 0; 1 < 100; ++)
1);

What is the most appropriated type of scheduling?

JLSobral, CompPar, MIEF, 2020/21

27

Parallel for with ordered clause

#pragma omp for schedule(static) ordered
for (i=0;i<N; ++i)
{
... // do something here (in parallel)
#pragma omp ordered
{
printf("test() iteration %d\n", i);
}
}

JLSobral, CompPar, MIEF, 2020/21

28

Parallel execution of code sections

« Supports heterogeneous tasks:

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

taskA();
}

#pragma omp section

taskB();
}

#pragma omp section

taskC();

JLSobral, CompPar, MIEF, 2020/21

>

The section blocks are divided
among threads in the tfeam;

Each section is executed only
once by threads in the tfeam.

There is an implicit barrier at the
end of the section construct
unless a nowait clause is specified

Allow the following clauses:
> private (list);
> firstprivate(list);
> lastprivate(list);
> reduction(operator:list)

29

Task constructor (OpenMP 2.5):

%"*— fib(int n) > When a thread encounters a task
r by T R ¥ construct, a task is generated;
if (n<2) return n;
els{se » Thread can immediately execute the

#pragma omp task shared(i) firstprivate(n) Tfask, orcan be execufed latter on by
i=fib(n-1); any thread on the team;

#pragma omp task shared(3j) firstprivate(n)> OpenMP creates a pool of tasks to be

j=fib(n-2);
executed by the active threads in the
#pragma omp taskwait

return i+j; team;
} » The taskwait directive ensures that the
T R tasks generated are completed before

{ the return statements.
int n = 10;
» Although, only one thread executes

t th ds(4); . . .
T e . the single directive and hence the call

fpragma GRP DRERLISL MARes(n) to fib(n), all four threads will participate
#pragma omp single , ; in executing the tasks generated.
printf ("fib(%d) = %d\n", n, fib(n)):;

}

}

JLSobral, CompPar, MIEF, 2020/21 30

Execution Tree Exemplified

fib(5) TO

l

Lfib(4)T3 l fib3) 1 1 T1

lﬁb 3) Lﬁb (2) flb) T2 l fib (1)
T2

T2
ﬁbl(Z) al by b Q) 19(1) f:t 0) T2

filzlfl)T y fllo (0) T2

TO

JLSobral, CompPar, MIEF, 2020/21 31

Data Sharing

 What happens to variables in parallel regions?

o Variables declared inside are local to each thread;
o Variables declared outside are shared

« Data sharing clauses:

o private(varlist) => each variable in varlist becomes private to each
thread, inifial values not specified.

o firstprivate(varlist) => Same as private, but variables are initalized with the
value outside the region.

o lastprivate(varlist) => same as private, but the final value is the last loop
iteration’s value.

o reduction (op:var) => same as lastprivate, but the final value is the result of
reduction of private values using the operator “op”.

« Directives for data sharing:

o #pragma omp threadlocal => each thread gets a local copy of the
value.

o copyin clause copies the values from thread master to the others threads.

32
JLSobral, CompPar, MIEF, 2020/21

Synchronization Constructs:

« Critical regions (executed in mutual exclusion):
o #pragma omp critical [name]
updateParticles();

o Restricts the execution of the associated structured blocks o a
single thread at a time;

o Works inter-teams (i.e., global lock)
o An optional name may be used to identify the critical construct.

« Atomic Operations (fine-grain synchronization):

o #pragma omp atomic
All] +=X;

o The memory in will be updated atomically. It does not make the
entire statement atomic; only the memory update is atomic.

o A compiler might use special hardware instructions for better
performance than when using critical.

JLSobral, CompPar, MIEF, 2020/21

33

Synchronization Constructs:

« Atomic Operations (fine-grain synchronization):

[& data-race.c) No Selection

#include <stdio.h>
#include <math.h>
#include <omp.h>

int main(){
double result={8};

#pragma omp parallel for shared(result)

for(int i=0; 1<1000000;i++) {
result+=sin(i);

}

printf("%f", result);

vmovsd (%112), %xmm1

L4:
vxorpd %xmm0, %xmm0, %xmm0
vevtsi2sd %ebx, %xmmO0, %oxmmO0
vmovsd %xmm1, 8(%rsp)
addl $1, %ebx
call _sin ; return value in %xmm0
vmovsd 8(%1rsp), Joxmm1 ; result in %xmm1
cmpl %ebx, %ebp
vaddsd %xmm0, %xmm1, %xmm1
jne L4

vmovsd %xmm1, (%r12)

JLSobral, CompPar, MIEF, 2020/21

L12:

L5:

L4:

#include <stdio.h>
#include <math.h>
#include <omp.h>

int main(){
double result={9};

#pragma omp parallel for shared(result)
for(int i=0; i<1000000;i++j) {
#pragma omp atomic
result+=sin(i);
¥
printf("%f", result);

addl $1, %ebx
cmpl %ebx, %rl12d
je L9

vxorpd %xmm0, %xmm0, %xmm0
vevtsi2sd %ebx, %xmm0, %oxmmO0
call _sin

movq 0(%rbp), %rcx

movq (%rcx), %rdx

vmovq %rdx, %exmm2

movq %rdx, %rax

vaddsd %xmm?2, %xmm0, %xmm1
vmovq %xmm1, %rsi

lock cmpxchgq %rsi, (%rcx)

cmpq %rax, Y%rdx

je L12

movq %rax, %rdx -
jmp L4

Repeat until successful update

34

Avoid/reduce synchronisation

o Reduction of multiple values (in parallel):

sum =0;
#pragma omp parallel for reduction(+:sum)
for(inti=0; i<100; i++) {

sum += arrayli];

}

o Thread reuse across parallel regions

pragma omp parallel {
#pragma omp for
for(inti=0; i<100; i++)

#pragma omp for
for(int j= 0; j<100; j++)

}

JLSobral, CompPar, MIEF, 2020/21

35

Environment variables

o OMP_SCHEDULE

. sets the run-sched-var ICV for the runtime schedule type and chunk size. It can be set to any of the
valid OpenMP schedule types (i.e., static, dynamic, guided, and auto).

o OMP_NUM_THREADS
« sets the nthreads-var ICV for the number of threads to use for parallel regions.
o OMP_DYNAMIC

+ setfsthe dyn-var ICV for the dynamic adjustment of threads to use for parallel regions.

o OMP_NESTED

« sets the nesf-var ICV to enable or to disable nested parallelism.

o OMP_STACKSIZE

. sets the stacksize-var ICV that specifies the size of the stack for threads created by the OpenMP
implementation.

o OMP_WAIT_POLICY

+ sets the wait-policy-var ICV that controls the desired behavior of waiting threads.

o OMP_MAX_ACTIVE_LEVELS

« sets the max-active-levels-var ICV that controls the maximum number of nested active parallel regions.
o OMP_THREAD_LIMIT

« sets the thread-limit-var ICV that controls the maximum number of threads participating in the
OpenMP program.
JLSobral, CompPar, MIEF, 2020/21

OpenMP Rotines

omp_set_num_threads / omp_get_num_threads
omp_get_max_threads
omp_get_thread_num.
omp_get_num_procs.
omp_in_parallel.
omp_set_dynamic / omp_get_dynamic.
omp_set_nested / omp_get_nested.
omp_set_schedule / omp_get_schedule
omp_get_thread_limit.
omp_set_max_active_levels / omp_get_max_active_levels
omp_get_level.
omp_get_ancestor_thread_num.
omp_get_team_size.
omp_get_active_level
o Locks
« void omp_init_lock(omp_lock_t *lock);
« void omp_destroy_lock(omp_lock_t *lock);
« void omp_set_lock(omp_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);
int omp_test_lock(omp_lock_t *lock);
o Timers
« double omp_get_wtime(void);
« double omp_get_wtick(void);
JLSobral, CompPar, MIEF, 2020/21

