
Parallel Sorting
Parallel computing - Parallel Algorithms
João Luís Sobral (jls@di …)
25/Nov/2021

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 1

Parallel Algorithms
� Traditional algorithm analysis: Big O notation

◦ Analysis of the number of operations per datum (n)

� Matriz multiplication: O(n3) O(!
"
#) (n=number of elements of C)

� Sorting (n keys)
� Bad sorting (burte force): O(n2)
� Better algorithm: n log2(n)
� Best: ([k]n)

� Insertion on a data structure (n insertions):
� Sorted linked list O(n2)
� Binary tree: O(n log2(n))
� Hash table O(n)

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 2

� Arithmetic Intensity (operations per byte loaded)

� Data storage
◦ Regular : vector, matrix

◦ Irregular (pointer based): tree, graphs

3

Data accesses
- Regular / irregular

data moves

Parallel Algorithms

JLSobral, Parallel Computing, MEI, UMinho, 2021/22

Parallel Sorting
� [Sequential] sorting algorithms

Method Complexity
(average)

Description

Insertion sort n2 Insert elements into a sorted list

Bubble sort n2 Compare (and swap) successive elements

Quicksort n log n Recursively sort elements less/greater than
a given pivot

Merge sort n log n Successively merge sorted sub-lists starting
from lists with one element

Heap sort n log n Insert elements into a binary heap

Radix sort n d Sort elements digit by digit (d)
(two variants: MSD and LSD)

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 4

Parallel Sorting

Data reuse
Complexity d n n log n n2

Method Radix sort Quicksort
Heap sort

Insertion sort
Bubble sort

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 5

Parallel Sorting
� Locality: Radix MSD vs Radix LSD
◦ Both are based on key-indexed sorting

� Example for 3-digit Strings (figure: 1st digit step on MSD)

copy back

6

Key-indexed counting

Task: sort an array a[] of N integers between 0 and R-1

Plan: produce sorted result in array temp[]

1. Count frequencies of each letter using key as index

2. Compute frequency cumulates

3. Access cumulates using key as index to find record positions.

4. Copy back into original array a[]

int N = a.length;
int[] count = new int[R];

for (int i = 0; i < N; i++)
 count[a[i]+1]++;

for (int k = 1; k < 256; k++)
 count[k] += count[k-1];

for (int i = 0; i < N; i++)
 temp[count[a[i]++]] = a[i]

for (int i = 0; i < N; i++)
 a[i] = temp[i];

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

temp[]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

count[]

a 2

b 5

c 6

d 8

e 9

f 12

count
frequencies

compute
cumulates

move
records

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 6

Parallel Sorting
� Locality: Radix LSD (e.g. string with 3 digits)
◦ D steps through the full data: DxN data moves

Least-significant-digit-first radix sort

LSD radix sort.

• Consider characters d from right to left

• Stably sort using dth character as the key via key-indexed counting.

9

0 d a b
1 a d d
2 c a b
3 f a d
4 f e e
5 b a d
6 d a d
7 b e e
8 f e d
9 b e d
10 e b b
11 a c e

0 d a b
1 c a b
2 e b b
3 a d d
4 f a d
5 b a d
6 d a d
7 f e d
8 b e d
9 f e e
10 b e e
11 a c e

sort must be stable
arrows do not cross

sort key

0 d a b
1 c a b
2 f a d
3 b a d
4 d a d
5 e b b
6 a c e
7 a d d
8 f e d
9 b e d
10 f e e
11 b e e

0 a c e
1 a d d
2 b a d
3 b e d
4 b e e
5 c a b
6 d a b
7 d a d
8 e b b
9 f a d
10 f e d
11 f e e

sort key sort key

11
Assumes fixed-length keys (length = W)

LSD radix sort implementation

public static void lsd(String[] a)
{
 int N = a.length;
 int W = a[0].length;
 for (int d = W-1; d >= 0; d--)
 {
 int[] count = new int[R];
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;
 for (int k = 1; k < 256; k++)
 count[k] += count[k-1];
 for (int i = 0; i < N; i++)
 temp[count[a[i].charAt(d)]++] = a[i];
 for (int i = 0; i < N; i++)
 a[i] = temp[i];
 }
}

key-indexed
counting

copy back

count
frequencies

compute
cumulates

move
records

Use k-indexed counting on characters, moving right to left

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 7

Parallel Sorting
� Locality: Radix MSD(e.g. string with 3 digits)
◦ Partition data in K-sets- 1 step through the full data:

1xN (global) + local data moves

Sort these
recursively

17

Most-significant-digit-first radix sort.

• Partition file into R pieces according to first character

(use key-indexed counting)

• Recursively sort all strings that start with each character

(key-indexed counts delineate files to sort)

MSD Radix Sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort these
independently

(recursive)

sort key

count[]

a 0

b 2

c 5

d 6

e 8

f 9

18

MSD radix sort implementation

public static void msd(String[] a)
{ msd(a, 0, a.length, 0); }

private static void msd(String[] a, int lo, int hi, int d)
{
 if (hi <= lo + 1) return;
 int[] count = new int[256+1];
 for (int i = 0; i < N; i++)
 count[a[i].charAt(d) + 1]++;
 for (int k = 1; k < 256; k++)
 count[k] += count[k-1];
 for (int i = 0; i < N; i++)
 temp[count[a[i].charAt(d)]++] = a[i];
 for (int i = 0; i < N; i++)
 a[i] = temp[i];
 for (int i = 0; i < 255; i++)
 msd(a, l + count[i], l + count[i+1], d+1);
}

key-indexed
counting

copy back

count
frequencies

compute
cumulates

move
records

Use key-indexed counting on first character, recursively sort subfiles

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 8

Parallel Sorting
� Locality: quick-sort vs heap-sort
◦ Regular VS irregular data references

Heap sort uses a regular data structure

Both perform n x log n steps
through the data but heapsort
shows more irregular accesses
to data indexes

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 9

Parallel Sorting

� Locality of reference in sorting algorithms

Method Locality of reference Improvements

Quicksort Good spatial locality + bad temporal
locality on initial stages

Initial set partioning using
k keys

Mergesort Good spatial locality + bad temporal
locality on final merge stages

Single merge when data
exceeds cache size

Heap sort Bad Cache aware trees + d-
fan-out

Insertion
sort

Bad

Radix sort Good when MSD first (only when
processing LSDs)

Reduce the number
passes through data

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 10

Parallel Sorting

� Parallelism in sorting algorithms

Method

Quicksort Sort sub-lists in parallel / start with p lists

Merge-sort Merge p lists in parallel

Heap sort ???

Insertion sort ???

Radix sort Sort set of digits in parallel

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 11

Parallel Sorting (on distributed memory)

� Design issues:
◦ Keys are initially distributed over processors
� Intermediate stage for other parallel algorithms
◦ Data properties
� Partially-sorted data? (not in the scope of this lecture)

◦ Exploitable parallelism
� Merger-based
� Splitter-based
◦ Efficiency considerations for parallelism
� Data movements [across processors]
� Load balancing
� Avoid idle time (e.g. sequential phases)

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 12

Parallel Sorting
� Parallel Merge-Sort
◦ Locally sort each set
◦ Exchange sets among processors

◦ Only effective when n/p ~1
◦ Extensive data movements: when n/p>>1
Figure 1. (a) merge-based parallel sorting with 3 processes, (b) batchers-merge-
exchange network for 8 processes, (c) one single merge-exchange operation

1. An arbitrary sequential sorting method executed by all processes in parallel
creates locally sorted sequences.

2. The sorted sequences are merged in parallel to form the globally sorted order.

For the in-place sequential sorting method a recursive most-significant-digit-
first radix sort based on American Flag sort [11] is used in this paper. In every
recursion step, a set of contiguous keys (starting with all keys) is sorted into bins
according to a specific part of the bits of the key values. This is repeated with the
keys in the single bins using the radix width r as the number of bits processed
in one step. The recursion stops if the number of keys in a bin is below a certain
threshold value t. The sorting is finished with an algorithm that is faster for small
numbers of keys. The time complexity of this sequential sorting method results
from the number of exchange operations for every key. Sorting b-bit integers
results in a maximum depth of recursion of d b

r e. Each key is exchanged in every
recursion step and at most t times according to the fast algorithm finishing the
sorting. This results in d

b
r e+ t exchange operations per key and time complexity

O(ns(d b
r e + t)) for sorting a set of ns keys. The constants r and t have a strong

e↵ect on the performance of the sorting method and their optimal values strongly
depend on the hardware system.

The parallel merge step is comprised of several single merge-exchange opera-
tions with two participating processes at a time. These pairs of processes are de-
termined using classical sorting networks like batchers-merge-exchange network
shown in Figure 1(b) for 8 processes. The arrows represent single merge-exchange
operations executed from left to right. The network consists of 6 consecutive
stages denoting the maximum number of merge-exchange operations for every
process. For a number of p processes, batchers-merge-exchange network consists
of 1

2dlog2 pe(dlog2 pe + 1) consecutive stages [1].
The merge-exchange operation between two processes is shown in Figure 1(c).

The exact number of keys to exchange is determined using a bisection method,
followed by the exchange of the keys with point-to-point communication (e.g., in-
place with MPI_Sendrecv_replace). This reduces the merge-exchange operation

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 13

Parallel Sorting
� Parallel quicksort (simplified)

◦ Master selects and broadcasts pivot key
◦ Each process locally splits using the pivot

� Each processes holds smaller and greater partitions
◦ Divide processors into
smaller and greater sets
� Send data to one processor

on the other set
◦ Repeat the processes

until #sets = #p
◦ Locally sort on each

process p
◦ Complexity:

� Requires log p
communication steps

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 14

Parallel Sorting
� Parallel radix sort
◦ Each processor is responsible by a subset of digit

values
◦ Sort and count the number of digit values
◦ All-reduce the total number of digits
◦ Send keys to the processor responsible for each

digit range
◦ Repeat for the next digit
◦ Complexity:
� LSD – D communication steps
� MSD - 1 communication step

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 15

Parallel Sorting

� Parallelism in sorting algorithms
◦ Sampling based
� Split data into P sets using p-1 splitters
� Each processor acts upon a local set
� Minimizes data movements

◦ Sampling alternatives
� Regular sampling (p*(p-1) keys)

� Not effective for large p

� Random sampling
� Histogram sampling

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 16

Parallel Sorting by Regular Sampling

1. Divide the set into p
disjoint sets and locally
order each set
◦ Applies a local QuickSort
◦ Selects p-1 local samples

that uniformly divide each
set into p subsets

2. Order p*(p-1) samples and
select best p-1 pivot keys

3. Partition each set using the
p-1 pivot keys

4. Merge p*p sets
◦ Processor i merges the i

partition

JLSobral, Parallel Computing, MEI, UMinho, 2021/22 17

