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Beyond vector extensions

Compute accelerators
ENE

* Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

» Evolution of vector/SIMD-extended architectures

-[computing accelerators optimized for number crunching (GPU) ] o \ Best accelerator for- num be r crun Ch i ng ,

— add support for matrix multiply + accumulate operations; why?

* most s?i?ntiﬂc engineerin, ,?I &ﬁnaqce aIFpIIicatigns use mlazrbih | ; | . t . t / t . t- .
in'a row of a thatrx by the elements in a colurhn from another mairix. namely intensive veclor/matrix computing:.
[ manufacturers typically call these extension Tensor Processing Unit (TPU)]

support for half-precision FP & 8-bit integer; why? G P U

» machine learning using neural nets is becoming very popular; to compute the
model parameter during training phase, intensive matrix products are used
and with very low precision (is adequate!)
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Other common compute accelerators:

« DSP: Digital Signal Processor, mostly used in
telecommunication equipments, from cell phones to radio systems and TVs

« TPU: Tensor Processing Units, optimized for operations with
tensors (vector and n-dimensional matrices), popular in Al app’s, namely in
autonomous driving

 FPGA: Field Programmable Gate Arrays, reconfigurable h/w;
can be configured in runtime to behave according to a given specification
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Data Parallelism: SIMD CPU vs. GPU

CPU source 1/dest.
SIMD source 2

1 instruction — multiple data

SSE2/3/4 — Neon — Altivec
AVX - AVX2...

source 1/dest.

Instruction Decoder and Warp Scheduler

GPU
SIMT

1 instruction — multiple
threads

thread
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| Graphics Processing Units

| SIMD Parallelism

I
= Vector architectures

= SIMD & extensions
= Graphics Processor Units (GPUSs)

s Question to GPU architects:

« Given the hardware invested to do graphics well,
how can we supplement it to improve the
performance of a wider range of applications?

s)un Buisseoold |eolydels

s Key ideas:
» Heterogeneous execution model

= CPU is the host, GPU is the device
= Develop a C-like programming language for GPU
« Unify all forms of GPU parallelism as CUDA threads

« Programming model follows SIMT:
“Single Instruction Multiple Thread ”
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# cores/processing element
in several computing devices

Number of Physical Cores/Multiprocessors, High-End Hardware

Key question:
what is a core?

a) IU+FPU?
GPU-type...

b) ASIMD ¢
processor? g
CPU-type.. g

This updated slide %‘_’

and in this course:
- b)

Note: the web link
with these plots was
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Theoretical peak performance
in several computing devices (DP)

Theoretical Peak Performance, Double Precision
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| NVIDIA GPU Architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= Large register files

s)un Buisseoold |eolydels

= Differences:
= NoO scalar processor
= Uses multithreading to hide memory latency

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor
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| NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of
off-chip DRAM

= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and
private variables

» Each multithreaded SIMD processor (SM)
also has local memory (Shared Memory)
= Shared by SIMD lanes / threads within a block

= Memory shared by SIMD processors (SM) is

s)un Buisseoold |eolydels
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GPU Memory, off-chip DRAM (Global Memory)

= Host can read and write GPU memory




The NVidia Fermi architecture

[ instructionCache
Warp: a 32-wide [ vepsswer ] [ Wamsowier |
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Fermi Architecture:

GF110: 512 CUDA-cores
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Fermi Architecture Innovations

s Each SIMD processor has

= Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

s)un Buisseoold |eolydels

Thus, two threads of SIMD

instructions are scheduled
every two clock cycles

= Fast double precision

s Caches for GPU memory (16/64KiB_L1/SM and global 768KiB_L2)
s 64-bit addressing and unified address space

= Error correcting codes

s Faster context switching

s Faster atomic instructions




Fermi: Multithreading and Memory Hierarchy

Thread

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

Shared Memory

AAAAAAAAAAAAAAAAAAAAAAAAAAAAALL AAAAAAAAAAAAMRAAAAAAAAALAAAALAS
Warp 8 instruction 11 Warp 9 instruction 11

Vo S

Warp 14 mstruction 95
: :
|
Warp 14 instruction 96
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TOPS00 list in November 2010:
3 systems in the top4 use Fermi GPUs
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500

The List.

HIGHLIGHTS: NOVEMBER 2010

« The Chinese Tianhe-1A system is the new No. 1 on the TOP500 and clearly in the lead with 2.57 petaflop/s
performance.

» No. 3 is also a Chinese system called Nebulae, built from a Dawning TC3600 Blade system with Intel X5650
processors and NVIDIA Tesla C2050 GPUs

« There are seven petaflop/s systems in the TOP10
« The U.S. is tops in petaflop/s with three systems performing at the petaflop/s level

« The two Chinese systems and the new Japanese Tsubame 2.0 system at No. 4 are all using NVIDIA GPUs to

accelerate computation and a total of 28 systems on the list are using GPU technology.
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Families in NVidia Tesla GPUs
(up to 2018)

20141110

Tesla GPU Roadmap

O Pictures O Tesla O Fermi Kepler (single GPU) Kepler (dual GPU)

Volta
Pascal 4B22.0
Bia0

Kepler Unified Memory
B Stacked DRAM
0558 | NVLINK Interconnect
B '
- (I))ynamic Parallelism

GFLOPS per Watt

Tesla

Qo5
00.4
CUDA

2008 2010 2012 2014 2016 2018

Table overlay: Theoretical DP GFLOPS/W of NVIDIA Tesla cards. Light grey italic text represents my guesses. mw;,r,‘.,.,.,\.\.,bgb,—.)uu.w.,.,(_.,.g,uk.rp,L.SC,,l,—,l.,),\s,«J.:,,;,,,,pu,chcszmMM(
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From Fermi into Kepler:
the Memory Hierarchy

Thread Kepler Memory Hierarchy

Shared Memory [ Shared
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Memeory Controller

GF110 to the

GK110 Kepler Architecture

PCI Express 3.0 Host Interface

From the

DRAM I/F DRAM I/F DRAM I/F

Memeory Controller

li

N o

i I

| u

i i

i S|

I I

i d

I i 3

| [ 5

I i O

i - <

: i
.. ™~

i I RN

i il = N D
O © <~ >

4/1 Avyd DI 4/1 Nvdd L~ D

Memory Controller

Memory Controller

Nemory Controller

October’13

2880 CUDA-cores
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From Fermi to Kepler core:
SM and the SMX Architecture
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Warp Scheduler

Dispatch Dispatch
& 3+

4 4 4 4

Core Core Core

Dispatch
3+

4 4 & 3

Core

Core

Core

Cora

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache
Warp Scheduler

Warp Scheduler

Dispatch
s

Dispatch

S

Dispatch
R

Register File (65,536 x 32-bit)

Core LOIST

Core - LoisT
Core - LDIST
Core - LDIST
Core - LDIST
Core - LDIST
Core - LDIST
Core - LDIST
Core - LD/ST
Core - LDIST
Core - LoisT
Core - LD/ST
Core - LD/ST
Core - LDIST
Core - LDIST

i - N~

Tex

Tex

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

inect
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

4 3 4 3 I . 2

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Tex

Tex

Core Core

Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core
Core - Core

Dispatch

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Warp Scheduler

o

4 4 I

Dispatch
R



From the GK110 to the
M GM200 Maxwell Architecture

PCI Express 3.0 Host Interface

15 SMX g (|| HE EHI | MEEEHE HEFH e
2880 CUDA-cores
October13
Maxwell: [
3072 CUDA-cores [§
November’15
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From the M200 to the
GP100 Pascal Architecture

PCI Express 3.0 Host Interface

Maxwell: '==%"=."='='='="'=f e ’"I=I=='='=l'==‘=".="_=.=‘=’='=l="=="='
48 SMM H HHH - HHT HH- . —— - -
3072 CUDA-cores

November’15
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PCI Expross 3.0 Host Interface

Pascal Architecture:
6x GPCs, 60 SMs

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
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64 CUDA-cores
AN

Ratio DPunit : SRunit—> 1 : 2

Core

(2]
]
1
o

Core Core

Core Core Core

Core Core Core

Core Core
Core Core
Core Core
Core Core

Core

o
o
-4
o

Core

Texture / L1 Cache

Tex ex

/
/

S

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 21



Pascal:
60 SM
3840 CUDA-cores

Memory Controller

November’ls5 == BB —————

Memory Controller

=
=
S
]
c
S
o
2
o
£
o
=

Volta:

84 SM EEEN iR

5120 CUDA-cores

lemory Controller

HBM on-package ==

June’17

NVLink NVLink
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From the GP100 to the
GV100 Volta Architecture

PCI Express 3.0 Host Interface

NVLink NVLink NVLink NVLink
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PCI Express 3.0 Host Interface

i

Volta Architecture:
T -------6x GPCs, 84 SMs
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Memory Controller

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Memory Controller

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT |FP32 FP32 FP64 INT INT |FP32 FP32

Memory Controller

FP64 INT INT |FP32 FP32 FP64 INT INT |FP32 FP32

3% €2
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FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32
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New?:.8 Tensor-cores IEEEEA-- AT NEIEEIEIEIEE

\
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Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

\
\ Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

\

FP64 INT INT |FP32 FP32 FP64 INT INT |FP32 FP32

Volta V100 w/ 16GiB HBMZ ——— o | — o |
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\
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From GV 100 to Ampere:
up to 8 GPC, 128 SMs total

Ampere: NVidia GA100

8192 FP32 CUDA Cores

512 3" generation Tensor Cores

5> HBM2e, 10 512-bit mem controllers
May’20

Volta:

84 SM

3584 CUDA-cores
November’15
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PCI Express 4.0 Host Interface

GigaThread Engine with MIG Control

allonuo Kiows

Kiowan

-._,Ampere Architecture

L1 Instruction Cache

High-Speed Hub
-

£33 13
NVLink NVLink

* Ampere SM:
64x kP32 CUDA Cores/SM'

32x FRG4 CUDA Cores/SM
4x 3rd generation Tensor Cores

Tensor Cores support
FP64, FP32, TF32, FP16, BF16, INTS...

1024 dense FP16/FP32 FMA op’s/cycle
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Tensor cores in Ampere
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NVIDIA V100 Tensor Core FP16 NVIDIA A100 Tensor Core FP16 with Sparsity NVIDIA V100 FP32 NVIDIA A100 Tensor Core TF32 with Sparsity

NVIDIA V100 FPé4 NVIDIA A100 Tensor Core FPé4 NVIDIA V100 INT8 NVIDIA A100 Tensor Core INT8 with Sparsity
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Pascal vs. Turing tensor cores (animation)

TURING TENSOR CORES TURING TENSOR CORES TURING TENSOR CORES

FP14 NT4

AJProencga, Parallel Computing, MEI, UMinho, 2021/22




et | Teko ek L rioo | Teievio

https://devblogs.nvidia.com/parallelforall/inside-volta/

SMs
TPCs
FP32 Cores / SM
FP32 Cores / GPU
FP64 Cores / SM
FP64 Cores / GPU
Tensor Cores / SM
Tensor Cores / GPU

GPU Boost Clock

Peak FP32 TFLOP/s
Peak FP64 TFLOP/s

Peak Tensor Core
TFLOP/s

Texture Units

Memory Interface

Memory Size

L2 Cache Size

Shared Memory Size /

SM

Register File Size / SM
Register File Size / GPU

TDP
Transistors

GPU Die Size

Manufacturing Process

GK180 (Kepler)

15
15
192
2880
64
960
NA
NA
810/875 MHz
5.04
1.68
NA

240
384-bit GDDR5

Upto 12 GB
1536 KB

16 KB/32 KB/48
KB

256 KB
3840 KB
235 Watts
7.1 billion
551 mm?

28 nm

(Maxwell)
24
24
128
3072
4
96
NA
NA
1114 MHz
6.8
.21
NA

192
384-bit GDDR5

Up to 24 GB
3072 KB
96 KB

256 KB
6144 KB
250 Watts
8 billion
601 mm?

28 nm

GP100
(Pascal)

56
28
64
3584
32
1792
NA
NA
1480 MHz
10.6
5.3
NA

224

4096-bit
HBM2

16 GB
4096 KB
64 KB

256 KB
14336 KB
300 Watts

15.3 billion
610 mm?

16 nm
FinFET+

GV100 (Volta)

80
40
64
5120
32
2560
8
640
1530 MHz
15.7
7.8
125

320
4096-bit HBM2

16 GB
6144 KB

Configurable up to 96

KB
256KB
20480 KB
300 Watts
21.1 billion
815 mm?

12 nm FFN

Tesla accelerators:
evolution

Ampere

SYSTEM SPECIFICATIONS
(PEAK PERFORMANCE)

NVIDIA A100 for NVIDIA A100 for
NVIDIA HGX™ PCle
GPU Architecture NVIDIA Ampere

Double-Precision
Performance

FPé4: 9.7 TFLOPS
FP&64 Tensor Core: 19.5 TFLOPS

Single-Precision
Performance

FP32: 19.5 TFLOPS
Tensor Float 32 (TF32): 156 TFLOPS |
312 TFLOPS*

Half-Precision
Performance

312 TFLOPS | 624 TFLOPS*

Bfloat16

312 TFLOPS | 624 TFLOPS*

Integer Performance

INT8: 624 TOPS | 1,248 TOPS*
INT4: 1,248 TOPS | 2,496 TOPS*

GPU Memory

40 GB HBM2

Memory Bandwidth

1.6 TB/sec

28
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SMs
TPCs
FP32 Cores / SM
FP32 Cores / GPU
FP64 Cores / SM
FP64 Cores / GPU
Tensor Cores / SM
Tensor Cores / GPU
GPU Boost Clock
Peak FP32 TFLOP/s®
Peak FP64 TFLOP/s®

Peak Tensor Core
TFLOP/s'

Texture Units

Memory Interface

Memory Size
L2 Cache Size

Shared Memory Size /
SM

Register File Size / SM

Register File Size / GPU

GK180 (Kepler)

15
15
192
2880
64
960
NA
NA
810/875 MHz
5.04
1.68
NA

240
384-bit GDDR5

Upto 12 GB
1536 KB

16 KB/32 KB/48
KB

256 KB
3840 KB

GM2
(Maxwell)

24
24
128
3072
4
96
NA
NA
1114 MHz
6.8
.21
NA

192
384-bit GDDR5

Up to 24 GB
3072 KB
96 KB

256 KB
6144 KB

GP100
(Pascal)

56
28
64
3584
32
1792
NA
NA
1480 MHz
10.6
5.3
NA

224

4096-bit
HBM2

16 GB
4096 KB
64 KB

256 KB
14336 KB

GV100 (Volta)

80
40
64
5120
32
2560
8
640
1530 MHz
15.7
7.8
125

320
4096-bit HBM2

16 GB
6144 KB

Configurable up to 96
KB

256KB
20480 KB

Tesla evolution
(1)

N
©

https://devblogs.nvidia.com/parallelforall/inside-volta/
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Tesla evolution (2)

Nvidia Datacenter GPU Nvidia Tesla V100 Nvidia A100
GPU codename GV100 GA100
GPU architecture Volta Ampere
Launch date May 2017 May 2020
GPU process TSMC 12nm TSMC 7nm
Die size 815mm?2 826mm?2
Transistor Count 21.1 billion 54 billion
FP64 CUDA cores 2,560 3,456
FP32 CUDA cores 5,120 6,912
Tensor Cores 640 432
Streaming Multiprocessors 80 108

Peak FP64

7.8 teraflops

9.7 teraflops

Peak FP64 Tensor Core - 19.5 teraflops
Peak FP32 15.7 teraflops 19.5 teraflops
Peak FP32 Tensor Core - 156 teraflops/312 teraflops*
Peak BFLOAT16 Tensor Core - 312 teraflops/624 teraflops*
Peak FP16 Tensor Core - 312 teraflops/624 teraflops*

Peak INT8 Tensor Core

624 teraflops/1,248 TOPS*

Peak INT4 Tensor Core

1,248 TOPS/2,496 TOPS*

Mixed-precision Tensor Core

125 teraflops

312 teraflops/624 teraflops*

Max TDP

300 watts

400 watts

AJProenga, *Effective TOPS / TFLOPS using the new Sparsity feature

W
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The CUDA programming model

* Compute Unified Device Architecture

 CUDA is a recent programming model, designed for
— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory

 CUDA provides:
— a thread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads

 CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 31



CUDA Devices and Threads
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A compute device

— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

Differences between GPU and CPU threads

— GPU threads are extremely lightweight
 very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few

AJProenca, Parallel Computing, MEI, UMinho, 2021/22
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CUDA basic model:

Single-Program Multiple-Data (SPMD)
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« CUDA integrated CPU + GPU application C program

— Serial C code executes on CPU

— Parallel Kernel C code executes on GPU thread blocks

CPU Code

|

Grid O

DO

N

DO

GPU Parallel Kernel

KernelA<<< nBIk, nTid >>>(args);

DO

CPU Code

Grid 1

DO

DO

DI

GPU Parallel Kernel

KernelB<<< nBIk, nTid >>>(args);

DO

AJProenca, Parallel Computing, MEI, UMinho, 2021/22

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign
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Programming Model: SPMD + SIMT/SIMD
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* Hierarchy
— Device => Grids
— Grid => Blocks
— Block => Warps
— Warp => Threads

« Single kernel runs on multiple blocks
(SPMD)

« Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

« Single instruction are executed on
multiple threads (SIMD)

— Warp size defines SIMD granularity
(32 threads)

« Synchronization within a block uses
shared memory

Courtesy NVIDIA

AJProenga, Parallel Computing, MEI, UMinho, 2021/22

CPU ' GPU
Serial
Code
l Grid 1
Kernel | | Block  Block  Block
. | ©o || 1,0 || 20
l Block-” Block ' Block
Serial o4 a1
Code - £ S
l " Grid 2
Kernel -
2 " - ' "’
Block (1, 1)




The Computational Grid:

Block IDs and Thread IDs
* A kernel runs on a computational _
grid of thread blocks T
— Threads share global memory it
« Each thread uses IDs to decide IS |
what data to work on .
—Block ID: 1D or 2D o || o1 |
—Thread ID: 1D, 2D, or 3D TR
« A thread block is a batch of = W
threads that can cooperate by: s

— Sync their execution w/ barrier

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different
blocks cannot cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

AJProenca, Parallel Computing, MEI, UMinho, 2021/22
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Code example

C with CUDA Extensions: C with a few keywords

jﬂlvoid saxpy_serial(int n, float a, float *x, float *y)
1%
| for (int § = 0; i < n; ++i)

} y[i] = a*x[i] + y[i]; Standard C Code!

|
// Invoke serjal SAXPY kernel l

\_ saxpy_serial(n, 2.0, x, ¥);

global__ void saxpy_parallel(int n, float a, float *x, float *y)
{

int § = blockIdx.x*blockDim.x + threadIdx.x:

if (4 < n) y[i] = a*x[i] + y[i); Parallel C Code
}

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2,0, x, ¥);

AJProencga, Parallel Computing, MEI, UMinho, 2021/22 36



Terminology (and in NVidia)
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L
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* Threads of SIMD instructions (warps)
— Each has its own [P (up to 48/64 per SIMD processor, Fermi/Kepler)
— Thread scheduler uses scoreboard to dispatch
— No data dependencies between threads!

— Threads are organized into blocks & executed in groups of
32 threads (thread block)

» Blocks are organized into a grid

 The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors)

« Within each SIMD processor:
— 32 SIMD lanes (thread processors)
— Wide and shallow compared to vector processors

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProencga, Parallel Computing, MEI, UMinho, 2021/22 37
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CUDA Thread Block

* Programmer declares (Thread) Block:
— Block size 1 to 512 concurrent

threads CUDA Thread Block

— Block shape 1D, 2D, or 3D

— Block dimensions in threads threadID

 All threads in a Block execute the
same thread program

* Threads share data and synchronize
while doing their share of the work

 Threads have thread id numbers
within Block

* Thread program uses thread id to
select work and address shared data

AJProencga, Parallel Computing, MEI, UMinho, 2021/22

float x = input[threadID];
float y = func(x);

output[threadID]

38
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Parallel Memory Sharing

Thread « Local Memory: per-thread
—Private per thread
Local Memory —Auto variables, register spilll
« Shared Memory: per-block
Block —Shared by threads of the same
block
Shared —Inter-thread communication
Memory » Global Memory: per-application
—Shared by all threads
Grid 0 —Inter-Grid communication
D) (\\\ SO D)) (\}\ SO
(()( Z (()( : iw”wz”): o (()::‘ : l I
Global -
Grid 1 Memory (SBe%uentlaI
rids
> > ? @2@1}3}3 }3 in Time
S XK || R LR 0
Y
AJProencga, Parallel Computing, MEI, UMinho, 2021/22 39
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CUDA Memory Model Overview
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« Each thread can:

The host can R/W
global, constant, and
texture memories

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant

memory

Read only per-grid texture

memory

(Device) Grid

Block (0, 0)

[

Block (1, 0)

e

Thread (0, 0) || Thread (1, 0)

Thread (0, 0) || Thread (1, 0)

Host

AJProenga, Parallel Computing, MEI, UMinho, 2021/22
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Hardware Implementation:

Memory Architecture
« Device memory (DRAM) Multiprocessor N
— Slow (2~300 cycles) '

Multiprocessor 2

— Local, global, constant,
and texture memory

Multiprocessor 1

* On-chip memory

_ Fast ( 1 CyCIG) Processor 1 Processor2 | | Processor M

— Regqisters, ! ! i

shared memory,
constant/texture cache -

Instruction
Unit

Courtesy NVIDIA
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Terminology: CUDA and OpenCL
CUDA and OpenCL

CUDA

Ope nCL GPU Grid

" Block (1, 0)

|-

Thread (0,0) Thread (1, 0)

_ A _L’alock (0, 0)
Private Private Private Private
Memory Memory Memory Memory

Work-Item Work-Item Work-Item Work-Item

" LocalMemoy | | LocalMemory |

Work-Group Work-Group
[’ Global Memory & Constant Memory I i i i

Compute Device

v

Host Memory

AJProenga, Parallel Computing, MEI, UMinho, 2021/22 42



