
AJProença, Parallel Computing, MEI, UMinho, 2021/22 1

Parallel Computing

Master Informatics Eng.

2021/22

A.J.Proença

Computing accelerators: GPU & CUDA
(most slides are borrowed)

AJProença, Parallel Computing, MEI, UMinho, 2021/22 2

Compute accelerators

Best accelerator for number crunching,
namely intensive vector/matrix computing:
GPU

Other common compute accelerators:
• DSP: Digital Signal Processor, mostly used in

telecommunication equipments, from cell phones to radio systems and TVs

• TPU: Tensor Processing Units, optimized for operations with
tensors (vector and n-dimensional matrices), popular in AI app’s, namely in
autonomous driving

• FPGA: Field Programmable Gate Arrays, reconfigurable h/w;
can be configured in runtime to behave according to a given specification

AJProença, Parallel Computing, MEI, UMinho, 2021/22 3

Data Parallelism: SIMD CPU vs. GPU

4Copyright © 2012, Elsevier Inc. All rights reserved.

Graphics Processing Units

n Question to GPU architects:
n Given the hardware invested to do graphics well,

how can we supplement it to improve the
performance of a wider range of applications?

n Key ideas:
n Heterogeneous execution model

n CPU is the host, GPU is the device
n Develop a C-like programming language for GPU
n Unify all forms of GPU parallelism as CUDA_threads
n Programming model follows SIMT:
“Single Instruction Multiple Thread ”

G
raphical Processing U

nits

AJProença, Parallel Computing, MEI, UMinho, 2021/22 5

cores/processing element
in several computing devices

ht
tp

://
w

w
w

.k
ar

lru
pp

.n
et

/2
01

3/
06

/c
pu

-g
pu

-a
nd

-m
ic

-h
ar

dw
ar

e-
ch

ar
ac

te
ris

tic
s-

ov
er

-ti
m

e/

Key question:
what is a core?

a) IU+FPU?
GPU-type...

b) A SIMD
processor?
CPU-type..

This updated slide
and in this course:
- b)

Note: the web link
with these plots was
updated in Aug’16

AJProença, Parallel Computing, MEI, UMinho, 2021/22 6

Theoretical peak performance
in several computing devices (DP)

ht
tp

://
w

w
w

.k
ar

lru
pp

.n
et

/2
01

3/
06

/c
pu

-g
pu

-a
nd

-m
ic

-h
ar

dw
ar

e-
ch

ar
ac

te
ris

tic
s-

ov
er

-ti
m

e/

7Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Architecture

n Similarities to vector machines:
n Works well with data-level parallel problems
n Scatter-gather transfers
n Mask registers
n Large register files

n Differences:
n No scalar processor
n Uses multithreading to hide memory latency
n Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

G
raphical Processing U

nits

AJProença, Parallel Computing, MEI, UMinho, 2021/22 8

Early NVidia GPU Computing Modules

GT200:

Tesla C870, May’07

Tesla C1060, April’09

9Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Memory Structures

n Each SIMD Lane has private section of
off-chip DRAM
n “Private memory” (Local Memory)
n Contains stack frame, spilling registers, and

private variables

n Each multithreaded SIMD processor (SM)
also has local memory (Shared Memory)
n Shared by SIMD lanes / threads within a block

n Memory shared by SIMD processors (SM) is
GPU Memory, off-chip DRAM (Global Memory)
n Host can read and write GPU memory

G
raphical Processing U

nits

AJProença, Parallel Computing, MEI, UMinho, 2021/22 10

The NVidia Fermi architecture

Fermi
Multithreaded

SIMD Processor
(SM, Streaming
Multiprocessor)

Fermi Architecture:
GF110: 512 CUDA-cores

July’11

Warp: a 32-wide
SIMT instruction

11Copyright © 2012, Elsevier Inc. All rights reserved.

Fermi Architecture Innovations

n Each SIMD processor has
n Two SIMD thread schedulers, two instruction dispatch units
n 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units
n Thus, two threads of SIMD

instructions are scheduled
every two clock cycles

n Fast double precision
n Caches for GPU memory (16/64KiB_L1/SM and global 768KiB_L2)

n 64-bit addressing and unified address space
n Error correcting codes
n Faster context switching
n Faster atomic instructions

G
raphical Processing U

nits

AJProença, Parallel Computing, MEI, UMinho, 2021/22 12

Fermi: Multithreading and Memory Hierarchy

AJProença, Parallel Computing, MEI, UMinho, 2021/22 13

TOP500 list in November 2010:
3 systems in the top4 use Fermi GPUs

AJProença, Parallel Computing, MEI, UMinho, 2021/22 14

Families in NVidia Tesla GPUs
(up to 2018)

AJProença, Parallel Computing, MEI, UMinho, 2021/22 15

From Fermi into Kepler:
the Memory Hierarchy

AJProença, Parallel Computing, MEI, UMinho, 2021/22 16

From the GF110 to the
GK110 Kepler Architecture

Kepler:
15 SMX

2880 CUDA-cores
October’13

Fermi:
16 SM
512 CUDA-cores
July’11

AJProença, Parallel Computing, MEI, UMinho, 2021/22 17

From Fermi to Kepler core:
SM and the SMX Architecture

SM

SMX:
192 CUDA-cores

Ratio DPunit : SPunit —> 1 : 3

Fermi SM

AJProença, Parallel Computing, MEI, UMinho, 2021/22 18

From the GK110 to the
GM200 Maxwell Architecture

Maxwell:
3072 CUDA-cores

November’15

Kepler:
15 SMX
2880 CUDA-cores
October’13

AJProença, Parallel Computing, MEI, UMinho, 2021/22 19

The move from Kepler to Maxwell :
from 15 SMXs to 48 SMMs in 6 GPCs

SMM: 128 CUDA-cores
Ratio DPunit : SPunit —> 1 : 32

Kepler SMX

AJProença, Parallel Computing, MEI, UMinho, 2021/22 20

From the M200 to the
GP100 Pascal Architecture

Pascal:
60 SM

3840 CUDA-cores
4 HBM on-package

September’16

Maxwell:
48 SMM
3072 CUDA-cores
November’15

AJProença, Parallel Computing, MEI, UMinho, 2021/22 21

Pascal Architecture:
6x GPCs, 60 SMs

Pascal SM:
64 CUDA-cores

Ratio DPunit : SPunit—> 1 : 2

Pascal P100 w/ 16GB HBM2

AJProença, Parallel Computing, MEI, UMinho, 2021/22 22

From the GP100 to the
GV100 Volta Architecture

Volta:
84 SM

5120 CUDA-cores
HBM on-package

June’17

Pascal:
60 SM
3840 CUDA-cores
November’15

AJProença, Parallel Computing, MEI, UMinho, 2021/22 23

Volta Architecture:
6x GPCs, 84 SMs

Volta SM:
64 CUDA-cores

New: 8 Tensor-cores
Ratio DPunit : SPunit—> 1 : 2

Volta V100 w/ 16GiB HBM2

AJProença, Parallel Computing, MEI, UMinho, 2021/22 24

From GV 100 to Ampere:
up to 8 GPC, 128 SMs total

Ampere: NVidia GA100
8192 FP32 CUDA Cores

512 3rd generation Tensor Cores
5 HBM2e, 10 512-bit mem controllers

May’20

Ampere:
GA100

for graphics
w/ 8 GPC

A100
for HPC & AI

w/ 7 GPC

Volta:
84 SM
3584 CUDA-cores
November’15

AJProença, Parallel Computing, MEI, UMinho, 2021/22 25

Ampere Architecture

Ampere SM:
64x FP32 CUDA Cores/SM
32x FP64 CUDA Cores/SM

4x 3rd generation Tensor Cores
Tensor Cores support

FP64, FP32, TF32, FP16, BF16, INT8…
1024 dense FP16/FP32 FMA op’s/cycle

AJProença, Parallel Computing, MEI, UMinho, 2021/22 26

Tensor cores in Ampere

AJProença, Parallel Computing, MEI, UMinho, 2021/22 27

Pascal vs. Turing tensor cores (animation)

AJProença, Parallel Computing, MEI, UMinho, 2021/22 28

Tesla accelerators:
evolution

ht
tp
s:
//d
ev
bl
og
s.
nv
id
ia
.c
om
/p
ar
al
le
lfo
ra
ll/
in
si
de
-v
ol
ta
/

Ampere

AJProença, Parallel Computing, MEI, UMinho, 2021/22 29

ht
tp

s:
//d

ev
bl

og
s.

nv
id

ia
.c

om
/p

ar
al

le
lfo

ra
ll/

in
si

de
-v

ol
ta

/

Tesla evolution
(1)

AJProença, Parallel Computing, MEI, UMinho, 2021/22 30

Tesla evolution (2)

ht
tp

s:
//w

w
w

.h
pc

w
ire

.c
om

/2
02

0/
05

/1
4/

nv
id

ia
s-

am
pe

re
-a

10
0-

gp
u-

2-
5x

-th
e-

hp
c-

20
x-

th
e-

tra
in

in
g/

AJProença, Parallel Computing, MEI, UMinho, 2021/22 31

The CUDA programming model

• Compute Unified Device Architecture
• CUDA is a recent programming model, designed for

– a multicore CPU host coupled to a many-core device, where

– devices have wide SIMD/SIMT parallelism, and
– the host and the device do not share memory

• CUDA provides:
– a thread abstraction to deal with SIMD
– synchr. & data sharing between small groups of threads

• CUDA programs are written in C with extensions
• OpenCL inspired by CUDA, but hw & sw vendor neutral

– programming model essentially identical

AJProença, Parallel Computing, MEI, UMinho, 2021/22 32

CUDA Devices and Threads

• A compute device
– is a coprocessor to the CPU or host
– has its own DRAM (device memory)
– runs many threads in parallel
– is typically a GPU but can also be another type of parallel

processing device

• Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• very little creation overhead, requires LARGE register bank
– GPU needs 1000s of threads for full efficiency

• multi-core CPU needs only a few

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Parallel Computing, MEI, UMinho, 2021/22 33

CUDA basic model:
Single-Program Multiple-Data (SPMD)

• CUDA integrated CPU + GPU application C program
– Serial C code executes on CPU
– Parallel Kernel C code executes on GPU thread blocks

CPU Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Parallel Computing, MEI, UMinho, 2021/22 34

Programming Model: SPMD + SIMT/SIMD

• Hierarchy
– Device => Grids
– Grid => Blocks
– Block => Warps
– Warp => Threads

• Single kernel runs on multiple blocks
(SPMD)

• Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

• Single instruction are executed on
multiple threads (SIMD)
– Warp size defines SIMD granularity

(32 threads)
• Synchronization within a block uses

shared memory
Courtesy NVIDIA

AJProença, Parallel Computing, MEI, UMinho, 2021/22 35

The Computational Grid:
Block IDs and Thread IDs

• A kernel runs on a computational
grid of thread blocks

– Threads share global memory
• Each thread uses IDs to decide

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• A thread block is a batch of
threads that can cooperate by:

– Sync their execution w/ barrier
– Efficiently sharing data through a

low latency shared memory
– Two threads from two different

blocks cannot cooperate

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Parallel Computing, MEI, UMinho, 2021/22 36

Code example

AJProença, Parallel Computing, MEI, UMinho, 2021/22 37

Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology (and in NVidia)

• Threads of SIMD instructions (warps)
– Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
– Thread scheduler uses scoreboard to dispatch
– No data dependencies between threads!
– Threads are organized into blocks & executed in groups of

32 threads (thread block)
• Blocks are organized into a grid

• The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors)

• Within each SIMD processor:
– 32 SIMD lanes (thread processors)
– Wide and shallow compared to vector processors

G
raphical Processing U

nits

AJProença, Parallel Computing, MEI, UMinho, 2021/22 38

CUDA Thread Block

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent

threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the
same thread program

• Threads share data and synchronize
while doing their share of the work

• Threads have thread id numbers
within Block

• Thread program uses thread id to
select work and address shared data

CUDA Thread Block

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Parallel Computing, MEI, UMinho, 2021/22 39

Parallel Memory Sharing

• Local Memory: per-thread
–Private per thread
–Auto variables, register spill

• Shared Memory: per-block
–Shared by threads of the same

block
– Inter-thread communication

• Global Memory: per-application
–Shared by all threads
–Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
Global

Memory

. . .

Grid 1 Sequential
Grids
in Time

Block

Shared
Memory

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Parallel Computing, MEI, UMinho, 2021/22 40

CUDA Memory Model Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host• The host can R/W
global, constant, and
texture memories

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Parallel Computing, MEI, UMinho, 2021/22 41

Hardware Implementation:
Memory Architecture

• Device memory (DRAM)
– Slow (2~300 cycles)
– Local, global, constant,

and texture memory

• On-chip memory
– Fast (1 cycle)
– Registers,

shared memory,
constant/texture cache

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Courtesy NVIDIA

AJProença, Parallel Computing, MEI, UMinho, 2021/22 42

Terminology: CUDA and OpenCL

