Parallel Computing

Master Informatics Eng.

2021/22 *A.J.Proença*

Top HPC systems in TOP500 lists (most slides & images are borrowed)

What is TOP500?

シン

TOP500

From Wikipedia, the free encyclopedia

The **TOP500** project ranks and details the 500 most powerful non-distributed computer systems in the world. The project was started in 1993 and publishes an updated list of the supercomputers twice a year. The first of these updates always coincides with the International Supercomputing Conference in June, and the second is presented at the ACM/IEEE Supercomputing Conference in November. The project aims to provide a reliable basis for tracking and detecting trends in high-performance computing and bases rankings on HPL,^[1] a portable implementation of the high-performance LINPACK benchmark written in Fortran for distributed-memory computers. Currently the latest TOP500 list is the 57th; published in June 2021. Since June 2020, the Japanese Fugaku is the world's most powerful supercomputer, reaching initially 415.53 petaFLOPS and 442.01 petaFlops after an update in November 2020 on the LINPACK benchmarks. China currently dominates the list with 1998 supercomputers, leading the second place (United States).

The TOP500 list is compiled by Jack Dongarra of the University of Tennessee, Knoxville, Erich Strohmaier and Horst Simon of the National Energy Research Scientific Computing Center (NERSC) and Lawrence Berkeley National Laboratory (LBNL), and, until his death in 2014, Hans Meuer of the University of Mannheim, Germany.

The TOP500 project lists also Green500 and HPCG benchmark list.

Outline

\sim

1. TOP500 (LINPACK)

- a) TOP10 lists from Nov'17 to Nov'21
- b) Country distribution over the past 25 years
- c) PU chip technology evolution in the past 25 years and since last year
- d) Evolution of the accelerators since they were available
- e) Analysis of some relevant systems and architectures

2. GREEN500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Analysis of some relevant systems and architectures

3. HPCG500

- a) HPCG vs. HPL: an overview
- b) TOP10 lists from Nov'17 to Nov'20
- c) Analysis of some relevant systems

4. HPL-AI

a) High-performance Linpack (HPL) and Artificial Intelligence (AI) workloads

LINPACK benchmarks (HPL)

公

LINPACK benchmarks

From Wikipedia, the free encyclopedia

HPL measures the sustained floating-point rate (GFLOPs/s) to solve a dense system of linear equations using double-precision floating-point arithmetic

For the software library, see LINPACK.

The **LINPACK Benchmarks** are a measure of a system's floating point computing power. Introduced by Jack Dongarra, they measure how fast a computer solves a dense *n* by *n* system of linear

equations Ax = b, which is a common task in engineering.

The latest version of these benchmarks is used to build the TOP500 list, ranking the world's most powerful supercomputers.^[1]

The aim is to approximate how fast a computer will perform when solving real problems. It is a simplification, since no single

LINPACK benchmarks

Original author(s)	Jack Dongarra, Jim Bunch, Cleve Moler, and Gilbert
	Stewart
Initial release	1979
Website	www.netlib.org /benchmark/hpl/ <i>&</i> 7

computational task can reflect the overall performance of a computer system. Nevertheless, the LINPACK benchmark performance can provide a good correction over the peak performance provided by the manufacturer. The peak performance is the maximal theoretical performance a computer can achieve, calculated as the machine's frequency, in cycles per second, times the number of operations per cycle it can perform. The actual performance will always be lower than the peak performance.^[2] The performance of a computer is a complex

Top 10 HPC systems Nov'17 TOP500

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)				
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	6 125,435.9	15,371		system Keon P		•
2	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT National Super Computer Center in Guangzhou China	C		eGene/Q, <mark>Pow</mark>	-	1.60 G/1z,	1,572,864	17,173.2	20,132.7 7,890
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	A D		XC40, <mark>Intel Xeo</mark> nect , Cray Inc NL/SNL		68C 1 /GHz,	979,968	14,137.3	43,902.6 3,844
4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	8 C in D	ori - Cray XC aterconnect , OE/SC/LBNL aited States	Cray Inc.	Phi 7250 68	3C 1.4GHz, Aries	622,336	14,014.7	27,880.7 3,939
5	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	9 0 7: Ja	akforest-PAG 250 68C 1.4G	Hz, Intel Omni	-Path , Fuji	11, Intel Xeon Phi tsu nance Computing	556,104	13,554.6	24,913.5 2,719
		F R (4	ujitsu			tional Science	705,024	10,510.0	11,280.4 12,660

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	_			
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783	Тор			vstems TOP500
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438				
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371				
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482				
5	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	SuperMU Platinum Lenovo	I C-NG - Think 8174 24C 3.1	System GHz, Inte	SD530, <mark>Xeon</mark> el Omni-Path ,	305,856	19,476.6	26,873.9
6	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States	979, 9	Germany Titan - Cr Cray Gem DOE/SC/	ray XK7, <mark>Opte</mark> nini interconn Dak Ridge Na	ron 6274 ect, NVII	16C 2.200GHz, DIA K20x , Cray In Iboratory	560,640 c.	17,590.0	27,112.5 8,209
7	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science	391, 10	United St Sequoia - Custom , DOE/NNS United St	- BlueGene/G IBM SA/LLNL	, Power	BQC 16C 1.60 GH:	z, 1,572,864	17,173.2	20,132.7 7,890
	and Technology (AIST) Japan								6

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)				
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096		HPC systems Nov'19 TOP500		
2	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438				
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371				
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482	Frontera successo	•		ede2
5	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR , Dell EMC	448,448	23,516.4	38,745.9					
	Texas Advanced Computing Center/Univ. of Texas United States		Xeon G EDR , I	Gold 6148 20C 2 Fujitsu	2.4GHz, <mark>NV</mark>	e (ABCI) - PRIMERGY CX2570 M4, DIA Tesla V100 SXM2, Infiniband ndustrial Science and Technology	391,680	19,880.0	32,576.6 1,649
6	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100,	387,872	(AIST) Japan						
	Cray/HPE Swiss National Supercomputing Centre (CSCS) Switzerland		3.1GH	z, Intel Omni-P z Rechenzentru	ath , Lenov	D650, Xeon Platinum 8174 24C o	305,856	19,476.6	26,873.9
7	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray/HPE DOE/NNSA/LANL/SNL United States	979,072	10 Lasser Dual-r NVIDIA	n - IBM Power	-	922, <mark>IBM POWER9</mark> 22C 3.1GHz, nd, NVIDIA Tesla V100 , IBM /	288,288	18,200.0	23,047.2

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	-	40				
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	Тор	10	HPC Nov'	syst 20 TO		
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096						
3	Sierra - IBM Power System AC922, <mark>IBM POWER9 22C</mark> 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438						
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371						
5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520 8				ld 6252 24C 2.1G nfiniband, Dell E		669,760	35,450.0	51,720.8	2,252
6	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,' 9	Mellanox	InfiniBand HDI anced Comput	R, Dell EMC	um 8280 28C 2.70 ; /Univ. of Texas	GHz,	448,448	23,516.4	38,745.9	
7	JUWELS Booster Module - Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,: 10		VIDIA Tesla V1 mco		n Gold 6248 20C nfiniBand HDR 1(00,	672,520	22,400.0	55,423.6	

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	T 40.000 (
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	Top 10 HPC systems Nov'21 TOP500
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096	New in the TOP10 list
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438	since June'21, with Zen3
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014	125,435.9	15,371	Microsoft Azure, pushed Frontera to 13 th
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856 8	JUWELS I EPYC 740 InfiniBand	93,750.0 Booster Modul 2 24C 2.8GHz, M J/ParTec ParaS gszentrum Juel	VIDIA A10	0, Mellanov HDR
6	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	9	HPC5 - Po	sla V100, Mella		ld / 52 24C 2.1GHz, 669,760 35,450.0 51,720.8 2,252 of fiband, DELL EMC
7	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,98 ₁₀	48C 2.45G	Hz <mark>, NVIDIA A10</mark> I, Microsoft Azu st US 2	0 80GB, M	v4, AMD EPYC 7V12 253,440 30,050.0 39,531.2 ellanox HDR

Analysis of the key systems in 2021

1. #1 in Nov'21 (#1 in Jun'20): Fugaku (Fujitsu A64FX, 48 cores), follow-up of

#1 in Jun'11, **K-Computer** (SPARC64 VIIIfx, 8 cores)

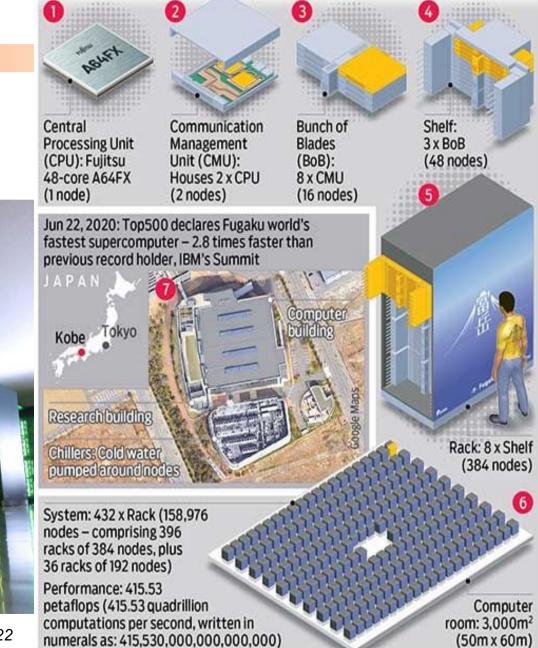
2. #2 in Nov'21 (#1 in Nov'18): Summit (IBM POWER9, 22 cores + NVidia Volta GV100) +Sierra, follow-up of #1 in Jun'12, Sequoia (IBM POWER BGQ, 16 cores)

- **3. #4** in Nov'21 (#1 in Nov'17): **TaihuLight** (Sunway SW26010, 260 c)
- 4. #6 in Nov'21: Selene (AMD Epyc Rome 64 c + NVidia A100)
- **5. #7** in Nov'21: **Tianhe-2A** (MilkyWay-2A) (*Xeon, 12c* + *Matrix-2000*), follow-up of

#1 in Jun'13, Tianhe-2 (MilkyWay-2) (Xeon, 6 c + Xeon Phi 31S1P)
#1 in Nov'10, Tianhe-1A (MilkyWay-1A) (Xeon, 6 c + NVidia Fermi)

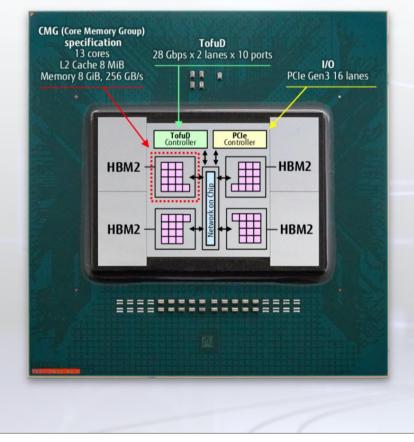
AJProença, Parallel Computing, MEI, UMinho, 2021/22

公

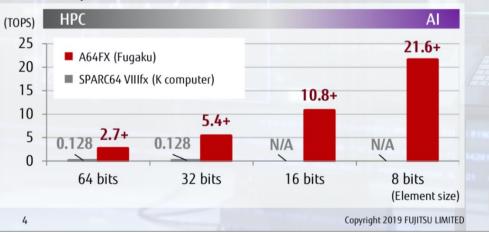

Supercomputer Fugaku - Supercomputer Fugaku,A64FX 48C2.2GHz, Tofu interconnect D, FujitsuRIKEN Center for Computational ScienceJapansince Jun'20

AJProença, Parallel Computing, MEI, UMinho, 2021/22

Supercomputer to seek Covid-19 cure


The world's fastest supercomputer, Japan's \$1.2 billion Fugaku, is to use its enormous power to try to identify treatments for Covid-19

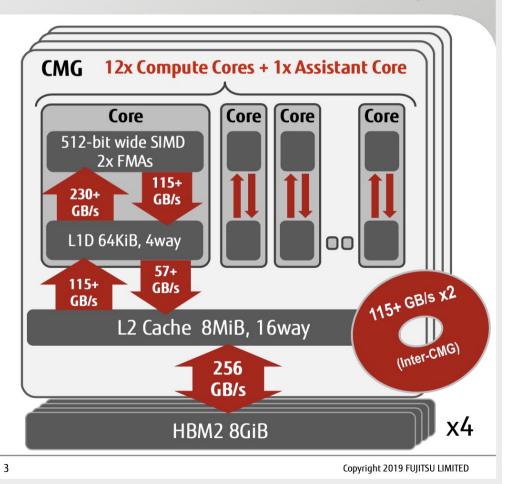
Fujitsu A64FX in Fugaku


1. High-Performance Arm CPU A64FX in HPC and AI Areas FUITSU

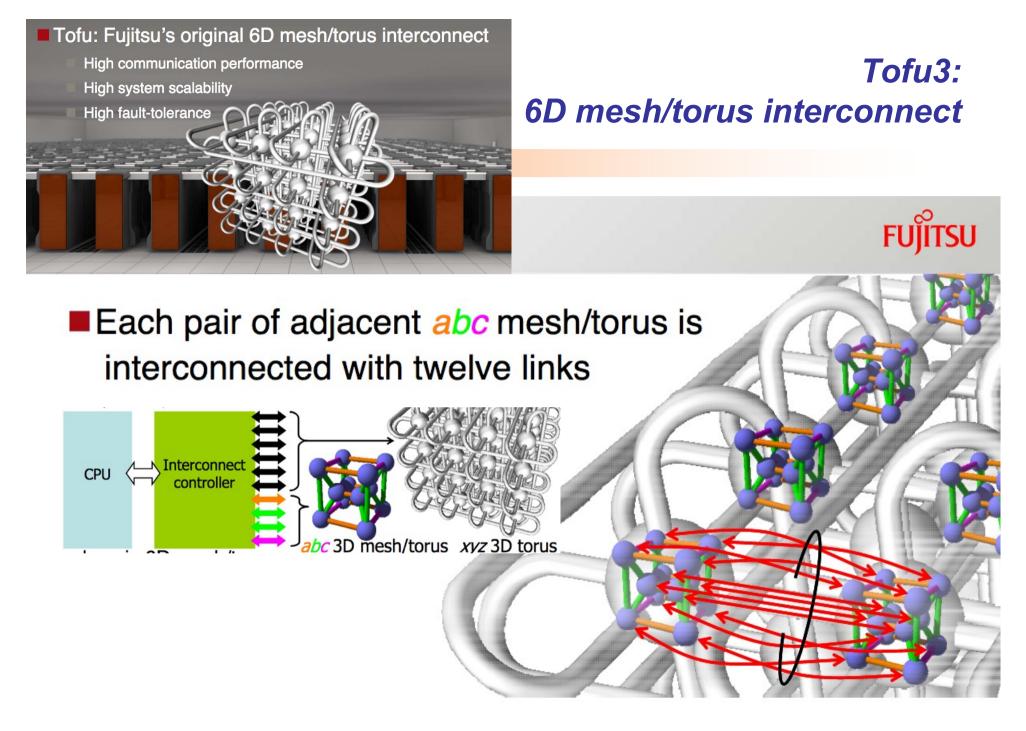
Architecture features

ISA	Armv8.2-A (AArch64 only) SVE (Scalable Vector Extension)
SIMD width	512-bit
Precision	FP64/32/16, INT64/32/16/8
Cores	48 computing cores + 4 assistant cores (4 CMGs)
Memory	HBM2: Peak B/W 1,024 GB/s
Interconnect	TofuD: 28 Gbps x 2 lanes x 10 ports

Peak performance (Chip level)



Fujitsu A64FX in Fugaku


Fujitsu-designed CPU Core w/ High Memory Bandwidth

A64FX out-of-order controls in cores, caches, and memories achieve superior throughput

BW and calc. perf.	A64FX	B/F
DP floating perf. (TFlops)	2.7+	-
L1 data cache (TB/s)	11+	4
L2 cache (TB/s)	3.6+	1.3
Memory BW (GB/s)	1024	0.37

FUÏITSU

Fujitsu K computer

(the Japanese word "kei" (京) means 10 quadrillion, 10¹⁶)

K computer				K computer	500
			Name	SPARC64 [™] VIIIfx	The List.
			Performance	128GFlops@2GHz	Jun'11: #1 Nov'11: #1
			Architecture	SPARC V9 + HPC-ACE extension	Jun'12: #2
		CPU	Cache configuration	L1(I) Cache:32KB/core, L1(D) Cache:32KB/core	Nov'12: #3 Jun'13: #4
SPARC64™ VIIIf	x Chip Overvie			L2 Cache: 6MB(shared)	Nov'13: #4
	estatoria da seconda estatoria de la construcción estatoria. No la construcción de la construcción de las		No. of cores/socket	8	Jun'14: #4 Nov'14: #4
	Architecture Featur		Memory band width	64 GB/s.	Jun'15: #4
	 8 cores Shared 5 MB L2\$	Mada	Configuration	1 CPU / Node	Nov'15: #4
Core5 - L2\$ Data Core7	Embedded Memory (Node	Memory capacity	16 GB	Jun'16: #5
Core4	• 2 GHz	System board	Node/system board	4 Nodes	Nov'16: #7
	 Fujitsu 45nm CMOS 22.7mm x 22.6mm 		System board/rack	24 System boards	Jun'17: #8 Nov'17: #10
L2S Control	 760M transistors 	Rack	Performance/rack	12.3 TFlops	Jun'18: #16
Core1	1271 signal pins				Nov'18: #18
Core0 - L2\$ Data Core2	Performance (peak)			Jun'19: #20
	 128GFlops 64GB/s memory thro 	uabout			
	• Power				
	• 58W (TYP, 30°C)				
	Water Cooling – Low		nine Plane infor	Adv Adv Adv Adv	Roma nátra Roma nátra
SPARC64™ VIIIfx	power and High relia			\$ \$	

NVLink

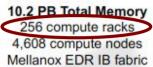
IBM POWER9 Summit

Compute Rack

components)

Warm water (/0°F direct-cooled

RDHX for air-cooled components

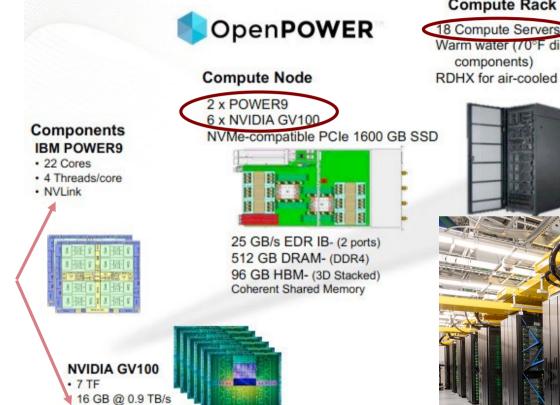

(Nov'19 #1 TOP500)

500

2

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR 🧃 Infiniband, IBM DOE/SC/Oak Ridge National Laboratory since Jun'20 United States

Compute System



200 PFLOPS ~13 MW

Summit Overview

22-core IBM POWER9

POWER9 Processor – Common Features

IBM

New Core Microarchitecture

- Stronger thread performance
- · Efficient agile pipeline
- POWER ISA v3.0

Enhanced Cache Hierarchy

- 120MB NUCA L3 architecture
- 12 x 20-way associative regions
- Advanced replacement policies
- · Fed by 7 TB/s on-chip bandwidth

Cloud + Virtualization Innovation

- Quality of service assists
- New interrupt architecture
- Workload optimized frequency
- Hardware enforced trusted execution

+SN	/IP/Accelerat	or Signaling	М	emory Signa	ling	
	Core Core	Core Core		Core Core	Core Core	
	L2 L3 Region	L2 L3 Region		L2 L3 Region	L2 L3 Region	
guing	L3 Region	L3 Region	nect & Enabl	L3 Region	L3 Region	guile
Cle Signi	Core Core	Core Core	tiercon Mercon elerator	Core Core	Core Core	MP Signa
Ĕ.	PCle	10.700 (A.1) 10.720 (A.1)	A See		on-Chip Accel	S
	L3 Region	L3 Region		L3 Region	L3 Region	
	Core Core	Gore Core	airia	Core Core	Core Core	A TANK TANK
#SI	MP/Accelerat	or Signaling	Ŋ	Memory Sign	aling	

14nm finFET Semiconductor Process

- Improved device performance and reduced energy
- 17 layer metal stack and eDRAM
- 8.0 billion transistors

Leadership Hardware Acceleration Platform

- Enhanced on-chip acceleration
- Nvidia NVLink 2.0: High bandwidth and advanced new features (25G)
- CAPI 2.0: Coherent accelerator and storage attach (PCIe G4)
- New CAPI: Improved latency and bandwidth, open interface (25G)

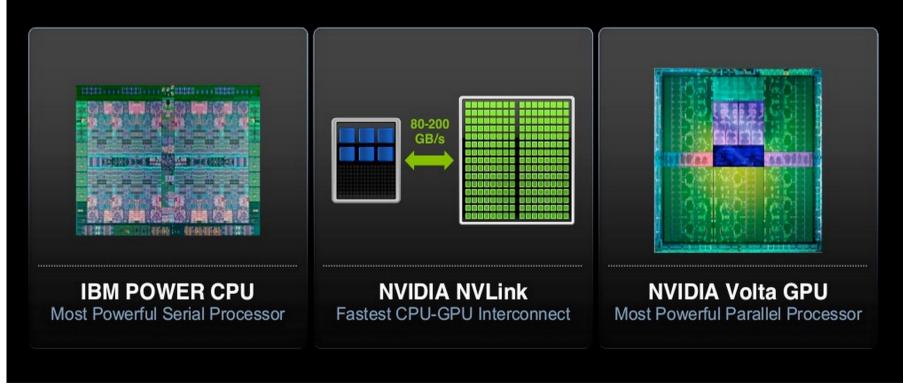
State of the Art I/O Subsystem

PCIe Gen4 – 48 lanes

High Bandwidth Signaling Technology

16 Gb/s interface

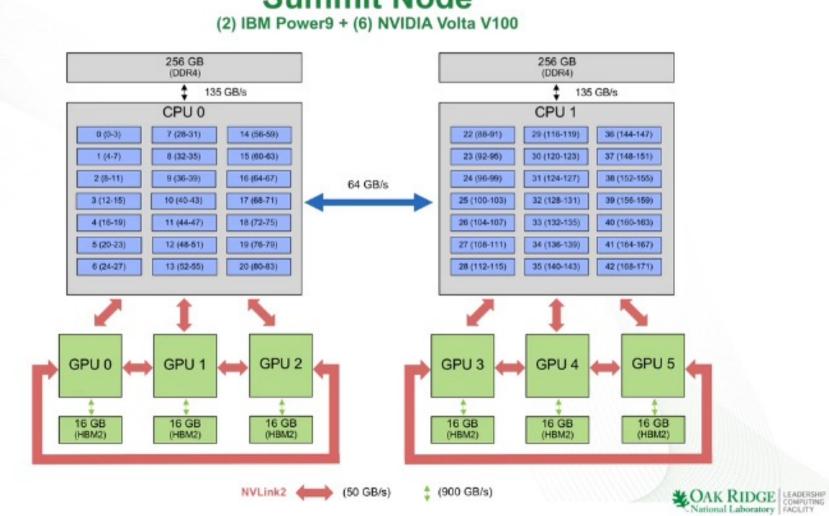
- Local SMP


25 Gb/s Common Link interface
 Accelerator, remote SMP

入入

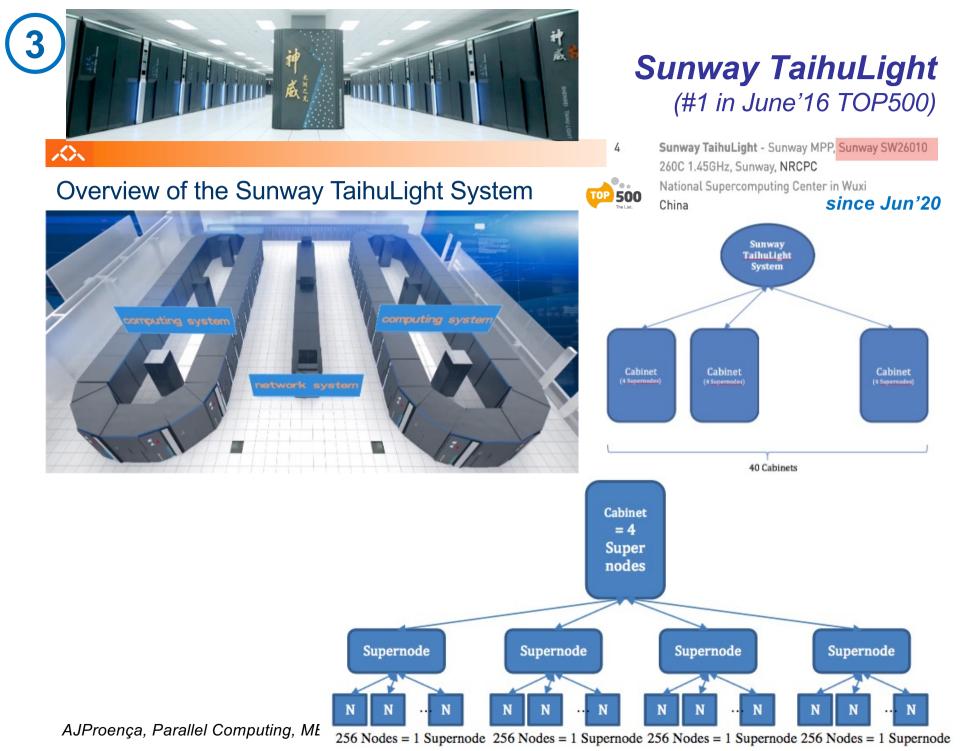
IBM POWER9 + NVidia V100

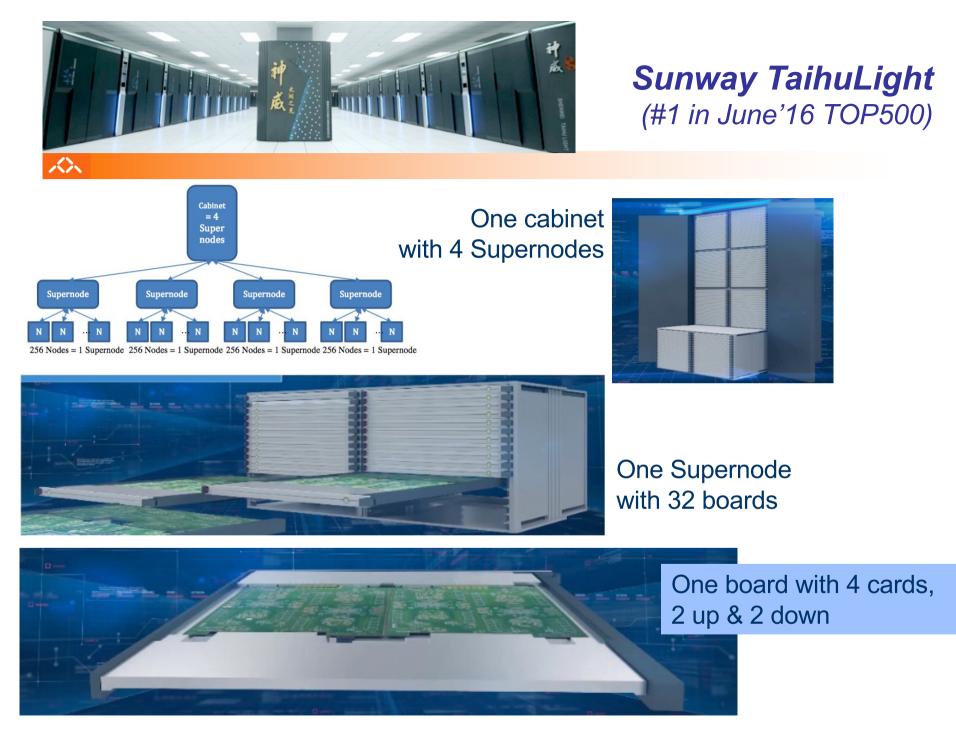
Accelerated Computing 5x Higher Energy Efficiency



Summit/Sierra node architecture

公



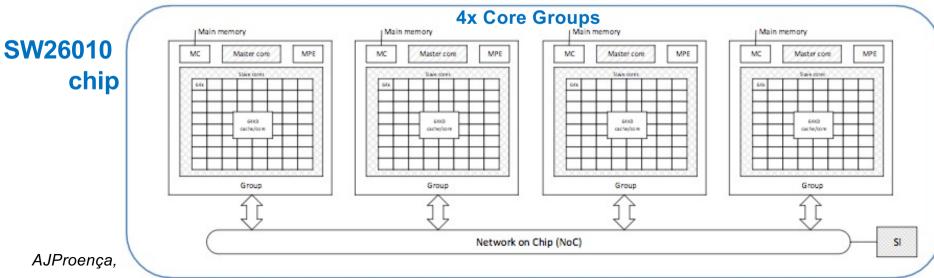

Summit Node

IBM Power BlueGene/Q Compute (Sequoia)

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

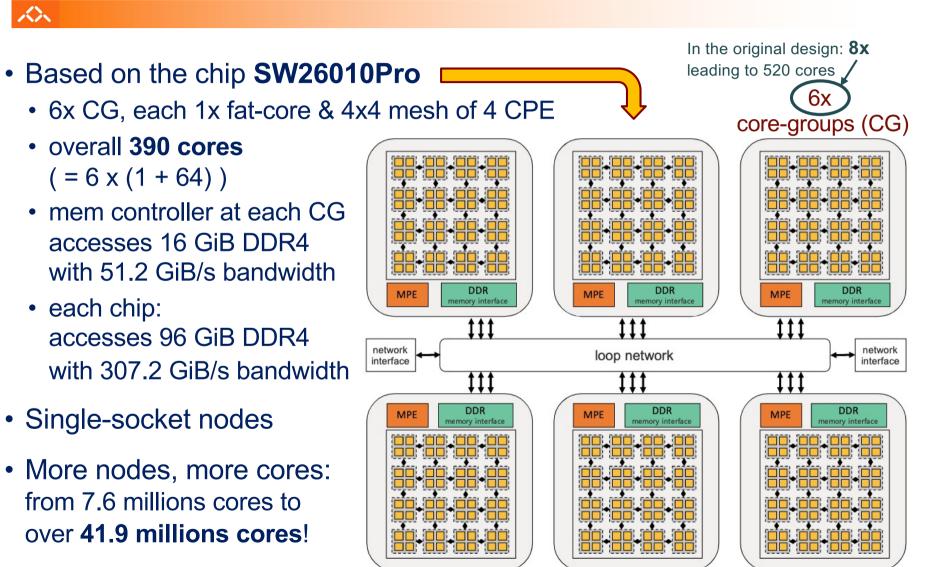
Sunway TaihuLight (#1 in June'16 TOP500)

nttp://www.nettip.org/uttk/peopie/JackDongarra/PAPERS/sunway-report-2016.pdf


SW26010 chip with 4x NUMA Core Groups (CG).

Each CG follows a hybrid approach:

- 1 fat-core (MPE) for serial work, OoO execution, superscalar, L1 & L2
- 8x8 grid of skinny-cores (CPE), L1 private & L2 shared by the grid
- all cores are 64-bit RISC PU and all support 256-bit vector instructions


One card w/ two PU devices (two SW26010 chips)

The new Sunway OceanLight supercomputer

(April'21, not submitted to TOP500)

https://dl.acm.org/doi/pdf/10.1145/3458817.3487399

Overview of Tianhe-2A (#1 in June'13 TOP500)

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou

China Nov'21

7

500

Overview of Tianhe-2A

O Comparison

Items	Milkyway-2	Milkyway-2A
Nodes	16000 nodes with Intel CPU + KNC	17792 nodes with Intel CPU + Matrix-2000
& Performance	54.9Pflops	94.97Pflops
Interconnection	10Gbps, 1.57us	14Gbps, 1us
Memory	1.4PB	3.4PB
Storage	12.4PB, 512GB/s	20PB, 1TB/s
Energy Efficiency	17.8MW, 1.9Gflops/W	About 18MW, >5Gflops/W
Heterogeneous software	MPSS for Intel KNC	OpenMP/OpenCL for Matrix-2000

25

Overview of Tianhe-2A

Compute nodes \mathbf{G} **O** Heterogeneous Compute Blades – Compute blade = Xeon part + Matrix-2000 part 4 Intel Xeon CPUs 4 FT Matrix-2000 2 Compute Nodes

- Use the Matrix-2000 part to replace the KNC part

?6

Replacing the KNC in Tianhe-2A: the Matrix-2000 accelerator

Matrix-2000 accelerator

SNO

PCIE

сссс

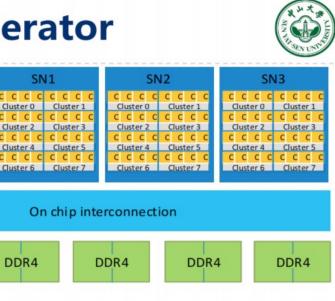
Cluster 7

ссс

Cluster 2

DDR4

• Chip specification

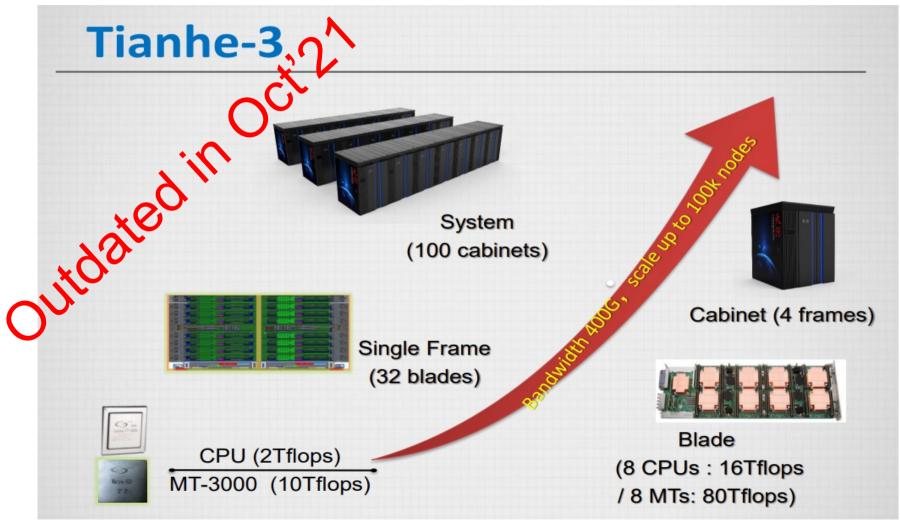

- 128cores
 - 4 super-nodes (SN)
 - 8 clusters per SN
 - 4 cores per cluster
 - Core
 - Self-defined 256-bit vector ISA
 - 16 DP flops/cycle per core
- Peak performance: <u>2.4576Tflops@1.2GHz</u>

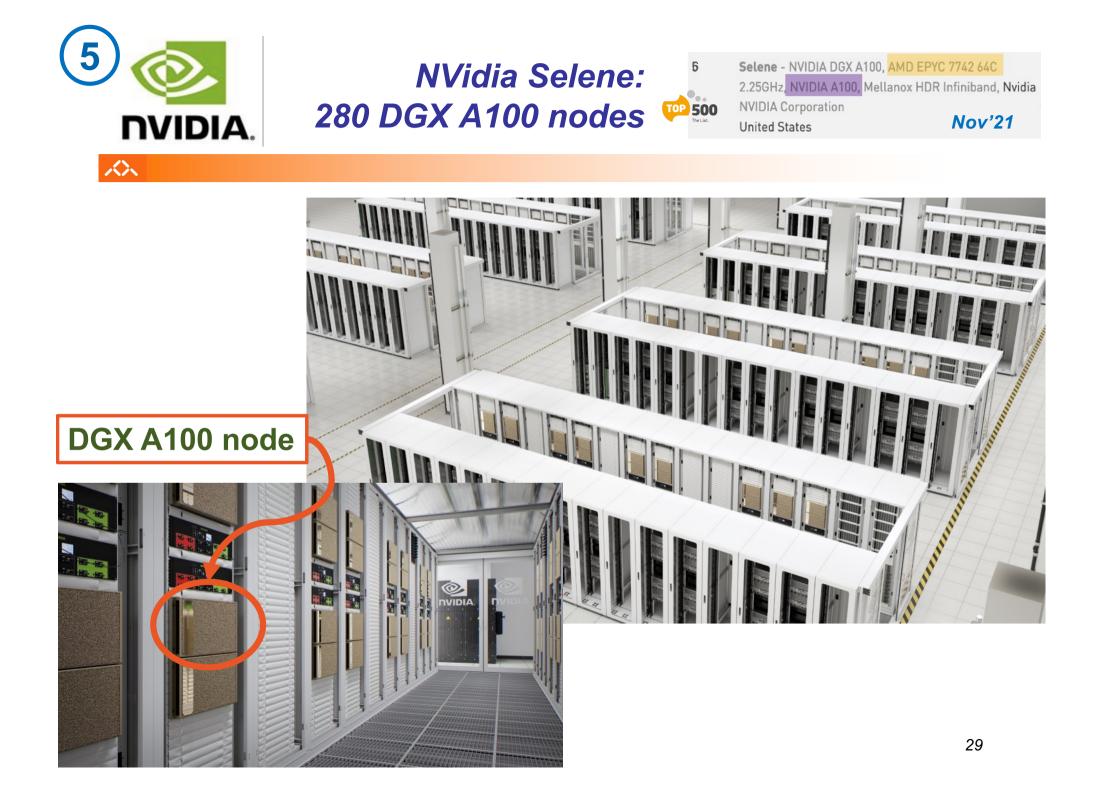
4 SNs x 8 clusters x 4cores x 16 flops x 1.2 GHz = 2.4576 Tflops

- Peak power dissipation: ~240w
- Interface

AJP

- 8 DDR4-2400 channels
- X16 PCIE 3.0 EP Port




15

Phytium-2000+ Next: Tianhe-3 with Fujitsu A64FX ARM-SVE + Matrix-3000 accelerators 2000+

公

https://www.hpcwire.com/2021/11/24/three-chinese-exascale-systems-detailed-at-sc21-two-operational-and-one-delayed/

INTRODUCING AMPERE NVIDIA® DGX A100 THE UNIVERSAL SYSTEM FOR AVINFRASTRUCTURE

公

NVidia DGX A100 node

Suggestion of homework for discussion in next session

1. Go to the TOP500 website and analyse & comment:

- i. The country distribution over the past 25 years, in #systems and aggregate performance in the TOP500 list
- ii. The evolution of the key PU chip technologies and the accelerator families in the past 25 years
- iii. The overall impact of each processor technology and accelerator family in the past 3 years
- 2. EuroHPC is funding 8 supercomputing centres selected in June 2019: 3 pre-exascale & 5 petascale (peak HPL performance)
 - i. Find & identify these 8 supercomputing centres
 - ii. Characterize the architecture of Deucalion in MACC

AJProença, Parallel Computing, MEI, UMinho, 2021/22

公

Outline

\sim

1. TOP500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Country distribution over the past 25 years
- c) PU chip technology evolution in the past 25 years and since last year
- d) Evolution of the accelerators since they were available
- e) Analysis of some relevant systems and architectures

2. GREEN500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Analysis of some relevant systems and architectures

3. HPCG500

- a) HPCG vs. HPL: an overview
- b) TOP10 lists from Nov'17 to Nov'20
- c) Analysis of some relevant systems

4. HPL-AI

a) High-performance Linpack (HPL) and Artificial Intelligence (AI) workloads

The Green500 list

About the Green500 List

The list ranks computers in terms of energy efficiency, typically measured as LINPACK FLOPS per watt.

The Green500 list ranks the top 500 supercomputers in the world by energy efficiency. The focus of performance-at-any-cost computer operations has led to the emergence of supercomputers that consume vast amounts of electrical power and produce so much heat that large cooling facilities must be constructed to ensure proper performance. To address this trend, the Green500 list puts a premium on energy-efficient performance for sustainable supercomputing.

The inaugural Green500 list was announced on November 15, 2007 at SC|07. As a complement to the TOP500, the unveiling of the Green500 ushered in a new era where supercomputers can be compared by performance-per-watt.

While the selection of any power-performance metric will be controversial, we currently opt for "FLOPS-per-Watt" given that it has already become a widely used metric in the community and for

ne REEN	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)					
500	1	159	A64FX prototype - Fujitsu A64FX, <mark>Fujitsu A64FX 48C</mark> 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118 7	16.876 Op Gr	reen50	-			
	2	420	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	1,271,040 ~G	1,303.2 hyouko	80 DU	16.256			No	v'1	9
	3	24	AiMOS - IBM Power System AC922, IBM POWER9 20C 3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100, IBM Rensselaer Polytechnic Institute Center for Computational Innovations (CCI) United States	130,000	8,045.0	510	15.771					
	4	373	Satori - IBM Power System AC922, IBM POWER9 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100 SXM2 , IBM MIT/MGHPCC Holyoke, MA United States	23,040	1,464.0	94	15.574					
	5	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	10,096	14.719					
	6	8	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0 8 23	E5-2 Tesl	14.423 BAME3.0 - SGI ICE XA, 2680v4 14C 2.4GHz, Into a P100 SXM2 , HPE C Center, Tokyo Institut	el Omni-Path, NVIDIA	135,828 8,125.0 792	792	13.704	
	7	494	MareNostrum P9 CTE - IBM Power System AC922, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100, IBM Barcelona Supercomputing Center Spain	18,360	9 11	POW Infin	niband <mark>, NVIDIA Volta GV</mark> Il Exploration Productio	ual-rail Mellanox EDR <mark>3V100</mark> , IBM		17,860.0	1,367	13.065
					- 10 2	22C EDR DOE		n AC922, IBM POWER9 <mark>3V100</mark> , Dual-rail Mellanox DIA / Mellanox	1,572,480	94,640.0	7,438	12.723
JProença,	Par	allel Co	omputing, MEI, UMinho, 2021/22		11 48	TC8	cessor, 200Gb 6D-Torus on	C 2GHz, Deep Computing	163,840	4,325.0	380	11.382

Top Green500 systems Nov'20

 \sim

XX III							
	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
	1	170	NVIDIA DGX SuperPOD - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	19,840	2,356.0	⁹⁰ Selene	26.195
	2	330	MN-3 - MN-Core Server, Xeon Platinum 8260M 24C 2.4GHz, Preferred Networks	1,664	1,652.9	65	26.039
			MN-Core, MN-Core DirectConnect, Preferred Networks Preferred Networks Japan		#1 in	Jun'20)
	3	7	JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	1,764	25.008
	4	146	Spartan2 - Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, <mark>NVIDIA A100,</mark> Mellanox HDR Infiniband, Atos Atos France	23,040	2,566.0	106	24.262
	5	5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	2,646	23.983
AJProença,	6	239	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu	36,864	1,999.5	118	16.876
, lor roonga,			interconnect D, Fujitsu		~	Fugak	U

Top Green500 systems Nov'21

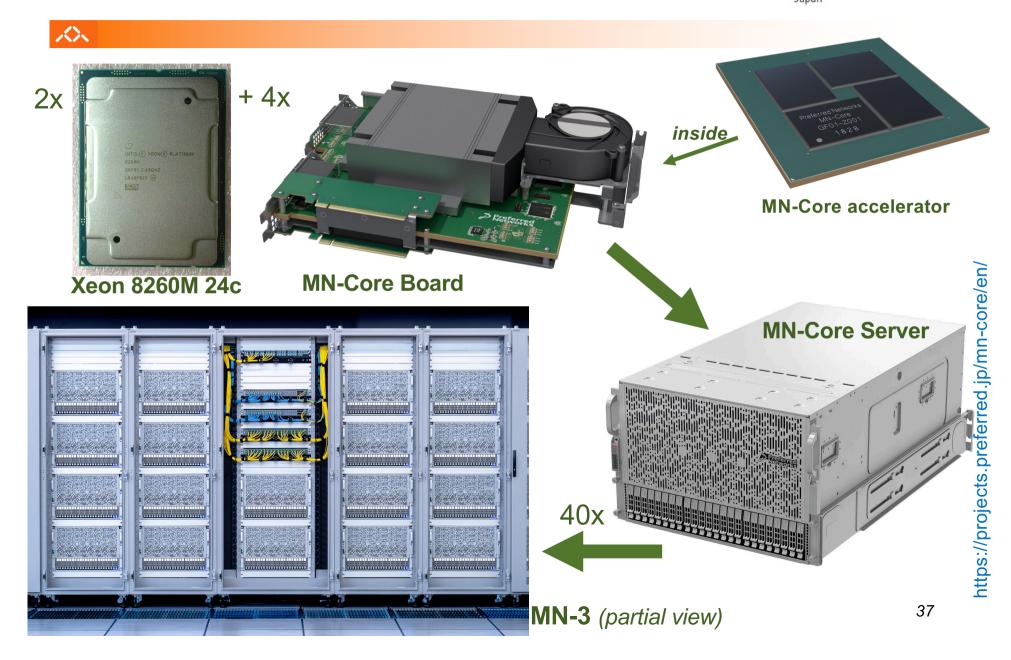
$\langle \rangle$

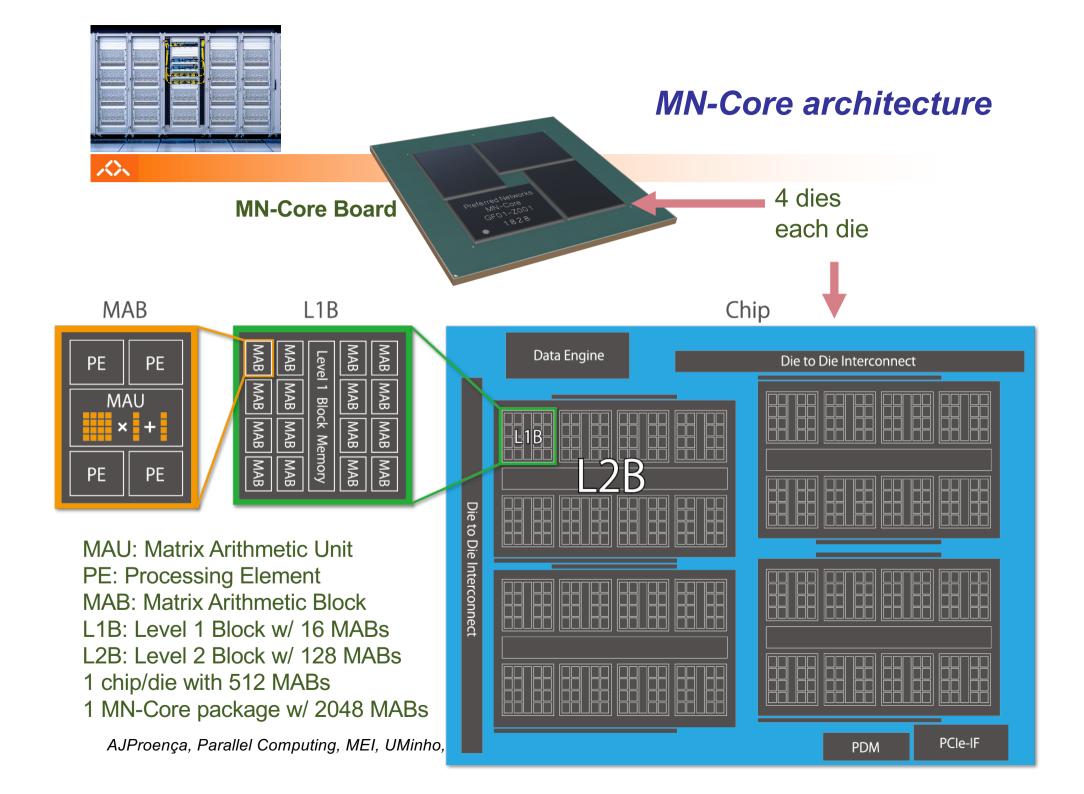
Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)	
1	301	MN-3 - MN-Core Server, Xeon Platinum	1,664	2,181.2	55	39.379	
		8260M 24C 2.4GHz, Preferred Networks MN-Core, MN-Core DirectConnect, Preferred Networks Preferred Networks Japan	#1 in Jun'20				
2 + A100	291	SSC-21 Scalable Module - Apollo 6500 Gen10 plus, AMD EPYC 7543 32C 2.8GHz, NVIDIA A100 80GB, Infiniband HDR200, HPE Samsung Electronics South Korea	16,704	2,274.1	103	33.983	
on EPYc	295	Tethys - NVIDIA DGX A100 Liquid Cooled Prototype, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100 80GB, Infiniband HDR, Nvidia NVIDIA Corporation United States	19,840	2,255.0	72	31.538	
All based on EPYc + A100	280	Wilkes-3 - PowerEdge XE8545, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 80GB, Infiniband HDR200 dual rail, DELL EMC University of Cambridge United Kingdom	26,880	2,287.0	74	30.797	
5	30	HiPerGator AI - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Infiniband HDR, Nvidia University of Florida United States	138,880	17,200.0	583	29.521	
Xeon + A100	403	Snellius Phase 1 GPU - ThinkSystem SD650-N V2, Xeon Platinum 8360Y 36C 2.4GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR, Lenovo SURF Netherlands	6,480	1,818.0	63	29.046	

Additional comments:

- from #7 to #11, #13 to# 21, ... all based on EPYC/Xeon + A100
- #12: NA-IT1, follow-up of NA-1 with PEZY-SC<u>3</u>
 - 12 435 NA-IT1 ZettaScaler3.0, AMD EPYC 7702P 64C 1.5GHz, PEZY-SC3, Infiniband EDR, PEZY Computing / Exascaler Inc. NA Simulation Japan

The MN-3 system #1 in Jun'20 Green500

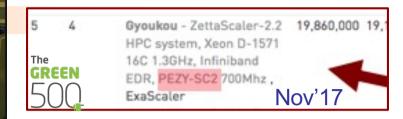

2

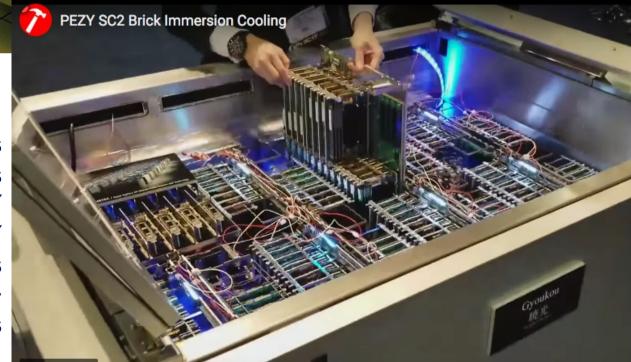

330

The GREEN

500

MN-3 - MN-Core Server, Xeon Platinum 8260M 24C 2.4GHz, Preferred Networks MN-Core, MN-Core DirectConnect, Preferred Networks Preferred Networks Japan




10,000 PEZY-SC2 + 1,250 16-cores Xeon = 19.84 M PEZY cores + 20 K Xeon cores

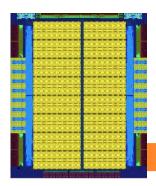
Gyoukou

Gyoukou ZettaScaler-2.2

NA-1, #3 in Jun'20 is similar to Gyoukou, but w/less cores

20 immersion tanks each tank 16 bricks each brick 32 PEZY each PEZY ~2K 8-way SMT cores => each tank ~1M cores

AJProença, Parallel Computing, MEI, UMinho, 2021/22


Gyoukou ZettaScaler-2.2

		PEZY-SC	2 in Zett	aScaler-2	2.2
11 minute 11 minute		City (16x PE) Special Function Unit Village Village Village L2d\$ (64 KB)	Village (4x PE) PE PE L1d\$(2KB) PE L10x ¹ 2KB	8-way SM 8 c Program Cou L1is (2KB) Registe (32x2 ALU Local Storage (1	PE inter er File 256)
PEZY-SC2: 2 048 cores + 8x MIPS cores (2017)	City City City City C City City City City C	ity City City City City ity City City City City ity City City City City ity City City City City ity City City City City	CityCityCityCCityCityCityCCityCityCityCCityCityCityCCityCityCityCCityCityCityC	ity City City City ity City City City	Host I/F & Processor I/F
 PEZY-SC3: 8 192 cores (due 2019, arrived 2021) PEZY-SC4: 16 384 cores (due in 2020, but) 	City City City City C Custom TCI Link (0.5 TB/s)	ity City City City City ity City City City City LLC (40 M Custom TCI Link (0.5 TB/s) Custom TCI Link (0.5 TB/s)	City City City C		MIP 364 MIP 364 P6600 P6600 MIP 364 MIP 364 P6600 MIP 364 MIP 364 MIP 364 MIP 364 MIP 364

AJProença, Parallel Computing, MEI, UMinho, 2021/22

ZettaScaler-3.0 with PEZY-SC3: estimation in 2019

1 tank => 40 nodes x [1 AMD Epyc (64-core) + 4 PEZY-SC3 (8192-core)] 1 tank has 1312320 cores

Estimated ZettaScaler-3.0 Specs

tanks configuration will provide about 100 PetaFLOPS (Rmax) and only consumes 4MW with the system cost of around 100M

ZettaScaler-3.0 single tank will have 40 nodes, 40 AMD EPYC2 (64 core), 160 of PEZY-SC3 with 48DC power

Single tank will have 3.2 PetaFLOPS (Rpeak) and 2.4 PetaFLOPS (Rmax) of DP performance

System power efficiency will be 30 GFLOPS/W or so and single tank AJPI requires 100kW range power

Outline

\sim

1. TOP500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Country distribution over the past 25 years
- c) PU chip technology evolution in the past 25 years and since last year
- d) Evolution of the accelerators since they were available
- e) Analysis of some relevant systems and architectures

2. GREEN500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Analysis of some relevant systems and architectures

3. HPCG500

- a) HPCG vs. HPL: an overview
- b) TOP10 lists from Nov'17 to Nov'20
- c) Analysis of some relevant systems

4. HPL-AI

a) High-performance Linpack (HPL) and Artificial Intelligence (AI) workloads

HPCG benchmark

Image: Wikipedia, the free encyclopedia HPCG is a self-contained C++ program with MPI and OpenMP support that measures the performance of basic operations in a unified code: Image: HPCG benchmark • Sparse matrix-vector multiplication Image: HPCG benchmark • Clobal dot products From Wikipedia, the free encyclopedia • Sparse triangular solve (part of Gauss-Seidel smoother)

The **HPCG** (high performance conjugate gradient) benchmark is a supercomputing benchmark test proposed by Michael Heroux from Sandia National Laboratories, and Jack Dengarra and Piotr Luszczek from the University of Tennessee.^{[1][2]} It is intended to model the data access patterns of real-world applications such as sparse matrix calculations, thus testing the effect of limitations of the memory subsystem and internal interconnect of the supercomputer on its computing performance.^[3] Because it is internally I/O bound, HPCG testing generally achieves only a tiny fraction of the peak FLOPS of the computer.^[4]

HPCG is intended to complement benchmarks such as the LINPACK benchmarks that put relatively little stress on the internal interconnect.^[5] The source of the HPCG benchmark is available on GitHub.^[6]

TOP500: HPCG vs. HPL

\sim

HPCG Benchmark

The High Performance Conjugate Gradients (HPCG) Benchmark project is an effort to create a new metric for ranking HPC systems. HPCG is intended as a complement to the High Performance LINPACK (HPL) benchmark, currently used to rank the TOP500 computing systems. The computational and data access patterns of HPL are still representative of some important scalable applications, but not all. HPCG is designed to exercise computational and data access patterns that more closely match a different and broad set of important applications, and to give incentive to computer system designers to invest in capabilities that will have impact on the collective performance of these applications.

HPCG is a complete, stand-alone code that measures the performance of basic operations in a unified code:

- Sparse matrix-vector multiplication.
- Vector updates.
- · Global dot products.
- Local symmetric Gauss-Seidel smoother.
- Sparse triangular solve (as part of the Gauss-Seidel smoother).
- Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key kernels on a nested set of coarse grids.
- AJP.
 Reference implementation is written in C++ with MPI and OpenMP support.

Top 10 HPCG systems Nov'17

	XX												
Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	HPCG (TFlop/s)							
1	10	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect , Fujitsu	705,024	-	11,280.4	-	6	9	Oakforest-PACS - PRIMERGY	556,104	13,554.6	24,913.5	385.479
		RIKEN Advanced Institute for Computational Science (AICS) Japan							CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path , Fujitsu				
2	2	Tianhe-2 (MilkyWay-2) - TH-IVB- FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2,	3,120,000	33,862.7	54,902.4	580.109			Joint Center for Advanced High Performance Computing Japan				
		Intel Xeon Phi 31S1P , NUDT National Super Computer Center in Guangzhou China					7	8	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc . DOE/SC/LBNL/NERSC	622,336	14,014.7	27,880.7	355.442
3	7	Trinity - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States	979,968	14,137.3	43,902.6	546.124	8	6	United States Sequoia - BlueGene/Q, Power	1,572,864	17 172 2	20 122 7	220 272
						l	0	0	BQC 16C 1.60 GHz, Custom , IBM DOE/NNSA/LLNL United States	1,372,804	17,173.2	20,132.7	330.373
4	3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	486.398	9	5	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory	560,640	17,590.0	27,112.5	322.322
5	1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C	10,649,600	00 93,014.6	125,435.9	480.8	10	13	United States TSUBAME3.0 - SGI ICE XA, IP139-	135 828	8,125.0	12,127.1	188.6
		1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China			_		10 13		SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2, HPE GSIC Center, Tokyo Institute of	- 133,626 6,123.0		12,127.1	100.0
	AJP	roença, Parallel Comput	ing, MEI	, UMinh	o, 2021	/22			Technology Japan				

	HPU	G LIST	for November 2018					
HPCG	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	HPCG (TFlop/s)	Тор	10 systems
TI C	1	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	2925.75		Nov'18
	2	2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	1795.67		
	3	18	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect , Fujitsu RIKEN Advanced Institute for Computational Science (AICS) Japan	705,024	10,510.0	602.74		
	4	6	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States	979,072	20,158.7	546.12		
	5	7	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	508.85		
	6	5	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	496.98		
	7	3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	480.85		
	8	13	Nurion - Cray CS500, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path , Cray Inc. Korea Institute of Science and Technology Information Korea, South	570,020	13,929.3	391.45		
	9	14	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path , Fujitsu Joint Center for Advanced High Performance Computing Japan	556,104	13,554.6	385.48		
AJProença, Parallel (10	12	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc . D0E/SC/LBNL/NERSC United States	622,336	14,014.7	355.44		47

HPCG List for November 2018

	HPC	CG List	for November 2019				
HPCG	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	HPCG (TFlop/s)	Top systems
Tro	1	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	2925.75	Top systems Nov'19
	2	2	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	1795.67	
	3	7	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray/HPE DOE/NNSA/LANL/SNL United States	979,072	20,158.7	546.12	
	4	8	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	508.85	
	5	6	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray/HPE Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	496.98	
	6	3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	480.85	
	7	14	Nurion - Cray CS500, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni- Path , Cray/HPE Korea Institute of Science and Technology Information Korea, South	570,020	13,929.3	391.45	
	8	15	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path , Fujitsu Joint Center for Advanced High Performance Computing Japan	556,104	13,554.6	385.48	
28	5 19	98	Astra - Apollo 70, Marvell ThunderX2 ARM CN9975-2000 4xEDR Infiniband , HPE Sandia National Laboratories United States	28C 2GHz,	143,640	1,833.0	90.90

AJProença, Parallel Computing, MEI, UMinho, 2021/22

HPC						o systems Nov'20
	TOP50 Rank Rank	0 System	Cores	Rmax (TFlop/s)	HPCG (TFlop/s)	1101 20
	1 1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	16004.50	
	2 2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	2925.75	
	3 3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	1795.67	
<	4 5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	1622.51	
	5 7	JUWELS Booster Module - Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280 8 19	44,120.0	1275.36 I KI-SORA - PRIMEHP	°C FX1000, <mark>A64FX 48C</mark> 2.2GHz,
	6 10	Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, <mark>NVIDIA Tesla V100</mark> SXM2, InfiniBand HDR 100, HPE		To Ja	fu interconnect D, Fuj pan Aerospace eXplor pan	jitsu
		Saudi Arabia	ator - SX-Auro AE 8C 1.58GHz			560 7,892.7 529.16
AJProença,	7 8	HPC5 - PowerEdg National Instit NVIDIA Tesla V100 Japan	ute for Fusion	Science (NIFS)	

Outline

\sim

1. TOP500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Country distribution over the past 25 years
- c) PU chip technology evolution in the past 25 years and since last year
- d) Evolution of the accelerators since they were available
- e) Analysis of some relevant systems and architectures

2. GREEN500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Analysis of some relevant systems and architectures

3. HPCG500

- a) HPCG vs. HPL: an overview
- b) TOP10 lists from Nov'17 to Nov'20
- c) Analysis of some relevant systems

4. HPL-AI

a) High-performance Linpack (HPL) and Artificial Intelligence (AI) workloads

HPL-AI Mixed-Precision Benchmark

\sim

The HPL-AI benchmark seeks to highlight the emerging convergence of high-performance computing (HPC) and artificial intelligence (AI) workloads. While traditional HPC focused on simulation runs for modeling phenomena in physics, chemistry, biology, and so on, the mathematical models that drive these computations require, for the most part, 64-bit accuracy. On the other hand, the machine learning methods that fuel advances in AI achieve desired results at 32-bit and even lower floating-point precision formats. This lesser demand for accuracy fueled a resurgence of interest in new hardware platforms that deliver a mix of unprecedented performance levels and energy savings to achieve the classification and recognition fidelity afforded by higher-accuracy formats.

HPL-AI strives to unite these two realms by delivering a blend of modern algorithms and contemporary hardware while simultaneously connecting to the solver formulation of the decades-old HPL framework of benchmarking the largest supercomputing installations in the world. The solver method of choice is a combination of LU factorization and iterative refinement performed afterwards to bring the solution back to 64-bit accuracy. The innovation of HPL-AI lies in dropping the requirement of 64-bit computation throughout the entire solution process and instead opting for low-precision (likely 16-bit) accuracy for LU, and a sophisticated iteration to recover the accuracy lost in factorization. The iterative method guaranteed to be numerically stable is the generalized minimal residual method (GMRES), which uses application of the L and U factors to serve as a preconditioner. The combination of these algorithms is demonstrably sufficient for high accuracy and may be implemented in a way that takes advantage of the current and upcoming devices for accelerating AI workloads.

A HPL-AI

\sim

November 2021

Rank	Site	Computer	Cores	HPL-AI (Eflop/s)	TOP500 Rank
1	RIKEN	Fugaku	7,630,848	2.000	1
2	DOE/SC/ORNL	Summit	2,414,592	1.411	2
3	NVIDIA	Selene	555,520	0.630	6
4	DOE/SC/LBNL	Perlmutter	761,856	0.590	5
5	FZJ	JUWELS BM	449,280	0.470	8
6	University of Florida	HiPerGator	138,880	0.170	31
7	SberCloud	Christofari Neo	98,208	0.123	44

https://icl.bitbucket.io/hpl-ai/

HPL-AI List

(Nov'21)

TOP500 Overview

\sim

1. TOP500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Country distribution over the past 25 years
- c) PU chip technology evolution in the past 25 years and since last year
- d) Evolution of the accelerators since they were available
- e) Analysis of some relevant systems and architectures

2. GREEN500

- a) TOP10 lists from Nov'17 to Nov'21
- b) Analysis of some relevant systems

3. HPCG500

- a) HPCG vs. HPL: an overview
- b) TOP10 lists from Nov'17 to Nov'20
- c) Analysis of some relevant systems

4. HPL-AI

a) High-performance Linpack (HPL) and Artificial Intelligence (AI) workloads