
Computação/Programação Paralela Universidade do Minho

 1

Guião Laboratorial 4

Introduction to OpenMP

Objective:
- introduce the basic concepts of parallel programming, based on shared memory, using OpenMP

Introduction

These exercises consist on running a small C program with OpenMP directives to enable parallel execution
(with two threads). Students should run the program multiple times, looking at the output of each run and
try to understand/explain its output (e.g., the relative order of the printf statements). More specifically,
for each OpenMP directive, students should answer to several questions related to what constraints are
imposed. Note that the output order probably will change from execution to execution but OpenMP defined
constraints are always valid for all runs.

The compilation and execution can be performed, as usually, on a node of the SeARCH cluster (login into the
s7edu.di.uminho.pt machine). The program should be compiled with the -fopenmp flag.

gcc -std=c99 -O2 -fopenmp ex41.c

Execution can be performed, as usually, on a node of the cluster (partition “cpar”).

srun --partition=cpar ./a.out

Exercise 1- The basic OpenMP construct: the parallel region

Copy & paste the following code to a new file, compile, and run the code 2/3 times. This code contains a
small loop that displays the loop iteration number and the identification of the thread executing each
iteration. Note that each thread has a private variable id and the OpenMP function omp_get_thread_num()
returns a different number for each calling thread.

#include<omp.h>
#include<stdio.h>

int main() {

 printf("master thread\n");
#pragma omp parallel num_threads(2)
 for(int i=0;i<100;i++) {
 int id = omp_get_thread_num();
 printf("T%d:i%d ", id, i);

 }
 printf("master thread\n");
}

a) The order of the output is always the same across multiple runs? Why?

b) The order of the output OF EACH thread is always the same? Why?

c) How is the loop execution distributed (i.e., scheduled) between threads?

Computação/Programação Paralela Universidade do Minho

 2

Exercise 2- Work sharing and synchronization

Successively introduce one of the following directives between the #pragma omp parallel and the “for” in
code of exercise 1 and answer the following questions:

2.1. #pragma omp for

2.2. #pragma omp master

2.3. #pragma omp single

a) In 2.1/2.2/2.3, how is the loop execution distributed (i.e., scheduled) between threads?

b) In 2.1/2.2/2.3, the loop division is always the same?

2.4. #pragma omp critical

c) In 2.4, the order of the output is always the same? What kind of synchronization occurs?

Exercise 3- Synchronization

3.1. Include a barrier inside the loop, after the printf statement (#pragma omp barrier).

a) The order of the output is always the same? What kind of synchronization occurs?

3.2. Include the directive #pragma omp ordered inside the loop, before the printf statement. Use the
program developed in 2.1, also adding ordered to the #pragma omp for

b) The order of the output is always the same? What kind of synchronization occurs?

Exercise 4 - Loop scheduling

Exploit the impact of the following of the loop scheduling options in program 2.1, by adding the schedule
clause to the for directive:

4.1. schedule(static) and schedule(static,10)

4.2. schedule(dynamic) and schedule(dynamic,10)

4.3. schedule(guided)

a) In 4.1/4.2/4.3, how is the loop execution distributed (i.e., scheduled) between threads?

b) In 4.1/4.2/4.3, the loop distribution (i.e., scheduling) is always the same?

