
Computação/Programação Paralela Universidade do Minho

João Sobral & André Pereira, nov'21 1

Lab Guide 5

Code Parallelisation with OpenMP

Objective:
- manage accesses to data in shared memory environments with OpenMP
- analyse the performance scalability

Introduction

The following exercises aim to introduce the data related concepts of code parallelisation on shared memory
environments with OpenMP. Students should run the application multiple times, looking at the output of each
run for clues to understand how its behaviour is affected by various OpenMP directives.
The number of threads to be used by OpenMP can be set through the bash environment, instead of hardcoded
in the application, by executing the command:

user > export OMP_NUM_THREADS=N

The compilation and execution can be performed on a node of the SeARCH cluster (login into the server with
s7edu.di.uminho.pt). The program should be compiled with the -fopenmp flag:

gcc -std=c99 -O2 -fopenmp -lm sample.c

Execution can be performed on a compute node of the cluster, in the partition “cpar”.

srun --partition=cpar ./a.out

Exercise 1 - Data sharing with OpenMP

Copy & paste the following code to a new file, compile and run it 2/3 times. The code contains a small loop that
displays the current iteration number and the identification of the corresponding thread executing it, as well as
a counter w, shared among all threads.

#include<omp.h>
#include<stdio.h>

int main() {
 int w=10;
#pragma omp parallel
#pragma omp for
 for(int i=0;i<100;i++) {
 int id = omp_get_thread_num();
 printf("T%d:i%d w=%d\n", id, i, w++);
 }
 printf("w=%d\n", w);
}

Test the code as is (version 1.0) and then add & test the following clauses to the #pragma omp for directive:

1.1. private(w)

 1.2. firstprivate(w)

 1.3. lastprivate(w)

 1.4. reduction(+:w)

a) How does the initial value of w vary with the use of the 1.0-1.4 directives?

b) Does the final value of w inside the loop vary with the use of the 1.0-1.4 directives?

c) The final value of w after the loop execution is what would be expected?

Computação/Programação Paralela Universidade do Minho

João Sobral & André Pereira, nov'21 2

Exercise 2 - Data races in OpenMP

Consider the following code that computes the dot product of two vectors:
#include<omp.h>
#include<stdio.h>
#define size 100000

double a[size], b[size];

int main() {

 // init vectors
 for(int i=0;i<size; i++) {
 a[i] = 1.0/((double) (size-i));
 b[i] = a[i] * a[i];
 }

 // compute dot product
 double dot = 0;
 for(int i=0;i<size; i++) {
 dot += a[i]*b[i];
 }

 printf("Dot is %18.16f\n",dot);
}

Parallelise the execution of the dot product (2nd for-loop) with the directive #pragma omp parallel for.

a) Does the result of the dot product differ from run to run? If so, why?
b) Is the result of the dot product affected by using different amounts of threads?

Suggestion: run the code with 2, 4, and 8 threads.

c) Adapt the parallelisation to produce the correct results using any of the OpenMP directives studied in
the previous lab session (lab 4).
Validate the correctness of the implementation by testing with different number of threads.

d) Is it possible to achieve a better functionally correct parallelisation using different directive(s)?

Exercise 3 – Parallelisation scalability

Consider the following code that computes an approximation of the value of pi:

double f(double a) {
 return (4.0 / (1.0 + a*a));
}

double pi = 3.141592653589793238462643;

int main() {
 double mypi = 0;
 int n = 1000000000; // number of points to compute
 float h = 1.0 / n;

 for(int i=0; i<n; i++) {
 mypi = mypi + f(i*h);
 }
 mypi = mypi * h;
 printf(" pi = %.10f \n", mypi);
}

Parallelise the code with OpenMP, using adequate directives to tackle potential data races. Measure the
performance of the code for 2, 4, 8, and 16 threads, and calculate the speedup relative to its sequential
execution. Does the performance improve as expected?
Note: compile the code without -fopenmp to generate a sequential application.
Suggestion: Consider the real clock time of the time command as the application execution time

time srun –partition=cpar./a.out

