
Computação/Programação Paralela Universidade do Minho

João Sobral, nov’21 1

Lab Guide 7

Introduction to MPI

Objectives:
- basic message passing concepts
- concept of a single program on multiple data (SPMD)
- pipeline parallelism pattern

Introduction

This lab session aims to introduce the basic concepts of MPI programming, starting from a basic program with
two processes, where one process sends a message to another process. The basic program will be extended to
support any number of processes (a pipeline of N processes) and any number of messages among processes.

The program should be compiled in the cluster frontend using the mpicc -O2 prog.c command. To run
the program, use the sbatch mpi.sh. The mpi.sh file should specify the required resources and should
run the MPI program. The following example requests two PUs during 1 second and spawns two MPI
processes:

[search7edu]$ cat mpi.sh
#!/bin/bash
#SBATCH --time=1:00
#SBATCH --ntasks=2
#SBATCH --partition=cpar

mpirun -np 2 ./a.out

Note that the number of requested resources (--ntasks) must be the same as the number of resources
used in the mpirun command.

Exercise 1 - Pipeline of processes

Compile and run the following MPI program, where the process with rank 0 sends a message (integer value
123456) to the process with rank 1:

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[]) {
 int rank, msg;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // gets this process rank

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 msg = 123456;
 MPI_Send(&msg, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&msg, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 printf("Received %d\n", msg);
 }
 MPI_Finalize();
 return 0;
}

Computação/Programação Paralela Universidade do Minho

João Sobral, nov’21 2

Modify the program to implement a pipeline of processes (using the SPMD model):

a) Start by modifying the program to support a pipeline with four processes: process with rank 0 sends
the message that is successively processed (e.g., printed) by each process in the pipeline.

b) Modify the program developed in a) to implement a pipeline with an arbitrary number of processes
specified as a parameter in the command mpirun -np xx.
Note that MPI is based on the SPMD style of parallel programming: the same process will be spawned
xx times. The number of processes spawned by the mpirun command can be retrieved with the
MPI_Comm_size call.

c) Modify the program developed in b) to process 10 messages: the process with rank 0 should send 10
messages to the next in the pipeline; each other process should receive a message, process it (e.g.,
print) and send it to the next one in the pipeline.

Exercise 2 (optional) - Farm of processes and collective operations

Modify the original program to implement a directive-like behaving as “work sharing”. A master process has a
set of tasks to process, where each task will perform a given operation and produce as result an integer.
Each worker receives the required data to process its task — which is a message with the argument (an
integer) — and returns the processed task to the master.
Implement the following variations:

a) Static scheduling: set the number of tasks to process equal to the number of MPI worker processes
(one task per worker).

b) Dynamic scheduling: set the number of tasks as 10x the number of MPI worker processes; faster
processes should get more tasks.

c) Collective operations: a message is broadcasted to all workers and then a reduce with the sum
operation joins the results from all workers.

