
Computação/Programação Paralela Universidade do Minho

João Sobral & André Pereira, nov’21 1

Lab Guide 8

Multiprocess Parallelization with MPI

Objective:
- parallelize the execution of an algorithm in a distributed memory environment

Introduction

This lab session aims to apply the basic MPI communication concepts studied in the previous session to
parallelize specific computations of a simple application.
Copy the /share/cpar/PL08_Codigo folder to your home directory in the SeARCH cluster.

Compile the program in the cluster frontend using the mpic++ -O2 -o primes PrimeMain.cpp
command. Use the sbatch primes_mpi.sh command to run the application.
The primes_mpi.sh file should specify the required resources and should run the MPI application.
The following example requests three PUs and spawns three MPI processes:
 [search7edu]$ cat primes_mpi.sh
 #!/bin/bash
 #SBATCH --time=1:00
 #SBATCH --ntasks=3
 #SBATCH --partition=cpar
 mpirun -np 3 ./primes

The number of requested resources (--ntasks) must be the same as the number of processes (-np) used in
the mpirun command.

Exercise 1 – Prime calculation using the Sieve of Eratosthenes

Consider the following sequential program, which finds all prime numbers up to a given MAXP:

int MAXP = 1000000;
int SMAXP = 1000;
int pack=MAXP/10;

PrimeServer *ps1 = new PrimeServer();
PrimeServer *ps2 = new PrimeServer();
PrimeServer *ps3 = new PrimeServer();

ps1->minitFilter(1,SMAXP/3,SMAXP);
ps2->minitFilter(SMAXP/3+1,2*SMAXP/3,SMAXP);
ps3->minitFilter(2*SMAXP/3+1,SMAXP,SMAXP);

int *ar = new int[pack/2];
for(int i=0; i<10; i++) {
 generate(i*pack, (i+1)*pack, ar);
 ps1->mprocess(ar,pack/2);
 ps2->mprocess(ar,pack/2);
 ps3->mprocess(ar,pack/2);
}
ps3->end();

Computação/Programação Paralela Universidade do Minho

João Sobral & André Pereira, nov’21 2

a) Parallelize the code using MPI through the implementation of a pipeline of processes that receives an
array of integers, created by the generate function, and each process filters out a subset of the input.
The mprocess method implements the filtering of the primes, and end prints the final amount of primes
found. This pipeline should have 3 processes, one for each instance of PrimeServer performing the
filtering.

b) Modify the parallelization implemented in a) to work with an arbitrary number of processes and
messages.

c) Parallelize the sequential application through the implementation of a farm of processes behaving in a
“work sharing” paradigm with dynamic scheduling.

