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Abstract:

In this paper, we present some of the fault tolerance
management mechanisms being implemented in the
Multi-µ architecture, namely its support for replica
non-determinism. In this architecture, fault tolerance is
achieved by node active replication, with software based
replica management and fault tolerance transparent
algorithms. A software layer implemented between the
application and the real-time kernel, the Fault Tolerance
Manager (FTManager), is the responsible for the
transparent incorporation of the fault tolerance
mechanisms

The active replication model can be implemented either
imposing replica determinism or keeping replica
consistency at critical points, by means of interactive
agreement mechanisms. One of the Multi-µ architecture
goals is to identify such critical points, relieving the
underlying system from performing the interactive
agreement in every Ada dispatching point.

Keywords: Ada 95, real-time systems, software based
fault tolerance, replica determinism

1.� Introduction

From a real-time system perspective, fault tolerance can
be defined as the ability to deliver the expected service in a
timely manner, even in the presence of faults [6]. An
important issue in real-time systems is that fault tolerance
mechanisms must be time bounded, in order to achieve
timing predictability.

The fault tolerance mechanisms are usually
implemented either by temporal replication, redoing the
calculations, or by structural replication, replicating
physical (and/or logical) resources. In a real-time system,
as the time resource is scarce, structural replication is
usually the preferred one.

Replication management can be achieved using
specialised hardware, which consequently increases the
overall cost of the system. Conversely, the software-based
replication allows the use of COTS (Commercial
Off-The-Shelf) components, decreasing the cost of the
system, and at the same time increasing its portability and
upgradability.

The behaviour of COTS components can be assumed as
either fail-silent or fail-uncontrolled [15]. A fail-silent
component is one that only fails by omission, while
fail-uncontrolled means a component that can fail in an
arbitrary mode. The assumption of fail-silent components
simplifies the fault tolerance mechanisms implementation,
since failures can be detected just by time-out
mechanisms. However, as fail-silent behaviour is only
possible with the use of self-checking techniques, it
demands specific COTS components. Conversely, using
generic COTS components, fault tolerant mechanisms
must support fail-uncontrolled behaviour.

Two main replication approaches are addressed in the
literature [3]: active replication and primary-backup
(passive) replication. In active replication, all replicas
process the same inputs, keeping their internal state
synchronised and voting all on the same outputs. In the
primary-backup approach only one replica (the primary) is
responsible for the inputs processing, being the replicas
kept up to date by the primary, to take over in case of its
failure.

Using the primary-backup approach, backup replicas
can only detect the primary failure through the absence of
service delivery, not being able to reason about the service
correctness. This approach can be used only if we assume
fail-silent replicas. Otherwise, wrong service delivery can
only be detected by active replication. As a consequence,
in the case of the fail-uncontrolled components, the active
replication is the most adequate technique [14].

Real-time applications are based on time-dependent
mechanisms, hence the different processing speed in
replicated nodes can cause dissimilar task interleaving.
Consequently, different replicas (even if correct) can



respond to the same inputs in different orders, providing
inconsistent results if inputs are non-commutative. That is
the problem of Replica Determinism in distributed
real-time systems [13].

In the proposed approach, fault tolerance is achieved by
node replication, with software based replica management
and fault tolerance transparent algorithms. A software
layer implemented between the application and the
real-time kernel, the Fault Tolerance Manager
(FTManager), is the responsible for the transparent
incorporation of the fault tolerance mechanisms. The
FTManager, is subdivided in the two following sub-layers:

• the Communication Manager, which implements
the communication algorithms based on group
abstractions;

• the Replica Manager, which provides the necessary
mechanisms for the replica management, hiding its
implementation from the application programmer.

The paper starts presenting issues related to replica
determinism for software based fault tolerance
management. Afterwards, some of Ada non-determinism
problems are identified and discussed. Finally the Multi-µ
approach is presented and its Fault Tolerance Manager is
discussed.

2.� Guaranteeing Replica Determinism

In order to guarantee replica determinism, the group
abstraction can be used to implement a framework for the
replica management [3]. Two problems are identified [2]:
consensus, where there must be a decision despite the
presence of failures, and membership, where there must be
an agreement on who belongs to the group. In the
proposed approach, active replication can be implemented
using static groups, since there is no need to consider the
case of leaving or joining a group (membership).

Assuming replica determinism the consensus between
replicas can be achieved by:

• providing Byzantine Agreement on single-source
data;

• providing Interactive Consistency on replicated
sensor data;

• providing Consensus on output values.
To provide replica determinism, different approaches can
be used:

• restricting the programmer from using mechanisms
that can lead to timing non-determinism (the
state-machine approach [17]);

• performing an interactive agreement on every
scheduling decision;

• performing an interactive agreement only when
non-deterministic execution can lead to replica
inconsistency.

Replica determinism can be easily achieved restricting
the programmer from using timing non-deterministic

mechanisms. However, the use of multitasking which is
fundamental for real-time systems would not be possible,
since task synchronisation and communication
mechanisms inherently lead to timing non-determinism.

Guaranteeing that replicas make the same scheduling
decisions, by performing an interactive agreement in every
scheduling decision, allows the use of non-deterministic
mechanisms. However, it imposes the modification of the
underlying scheduling mechanisms. Such approach leads
to a large overhead, since scheduling decisions must be
made at every dispatching point.

Delaying synchronisation until there is the possibility
of divergence between replicas, due to their distinguished
execution, also allows the use of non-deterministic
mechanisms, but at the expense of smaller overheads,
since only a subset of scheduling decisions must be
synchronised.

3.� Identifying Replica Non-Determinism
Problems in Ada

Ada is a programming language specially suited for
real-time systems programming. However, it doesn’t
provide direct support for fault tolerance mechanisms,
apart from the exception mechanism that only is able to
support forward error recovery. Furthermore, exceptions
can not provide tolerance to unanticipated faults or to
design faults [7]. The usual solution is to burden the
application programmer with the explicit programming of
fault tolerance mechanisms.

Work has (and is) being done in the integration of fault
tolerance and Ada. Two approaches coexist: incorporating
explicit programmer support for fault tolerance
mechanisms, or providing transparent support for software
replication.

To guarantee replica determinism, Ada provides
mechanisms like pragma Restrictions that can be used to
prevent multitasking [4]. Also the code can be analysed to
ensure that none of the non-deterministic mechanisms are
used. However, guaranteeing deterministic replicas
imposes several restrictions on the application
programmer, excluding Ada constructs that may cause
non-deterministic replicas evolution.

Guaranteeing replica determinism by means of explicit
programming mechanisms [7] [8] [19] or extending the
language [11] are not appropriated in a fault tolerant
transparent approach. Allowing the use of non-
deterministic replication of an Ada program is not also an
easy task since Ada is inherently a non-deterministic
language.

In an Ada application some causes for divergence
between replicas are:

• use of rendezvous;
• use of protected objects;
• use of the select construct.



When several client tasks can make a call on a server
task entry, a different interleaving may cause these calls to
be accepted in a different order. In the following code
snapshot two different tasks of the same type (Client) can
call task Server entry. It is possible that, while in one
replica Client1 executes the call (and is accepted) first, in
another replica Client2 is the first to be accepted.

WDVN Server LV
HQWU\ Service;

HQG Server;

WDVN ERG\ Server LV
EHJLQ

ORRS
DFFHSW Service GR

--...
HQG Service;

HQG ORRS;
HQG Server;

WDVN W\SH Client;

WDVN ERG\ Client LV
EHJLQ

--...
Server.Service;
--...

HQG Client;

Client1, Client2: Client;

Asynchronous communication using protected objects
can cause different tasks interleaving in different replicas.
In the following code both tasks Reader and Writer
concurrently access protected object Obj and because
execution order can be different, protected object Obj may
have different state in different replicas.

SURWHFWHG Obj LV
SURFHGXUH Write(D: Integer);
IXQFWLRQ Read UHWXUQ Integer;

SULYDWH
Data: Integer;

HQG obj;

SURWHFWHG ERG\ Obj LV

SURFHGXUH Write(D: Integer) LV
EHJLQ

Data:= D;
HQG Write;

IXQFWLRQ Read UHWXUQ Integer LV
EHJLQ

UHWXUQ Data;
HQG Read;

HQG obj;

WDVN Writer;

WDVN ERG\ Writer LV
Data: Integer;

EHJLQ
--...
Obj.Write(Data);

--...
HQG Writer;
WDVN Reader;

WDVN ERG\ Reader LV
Data: Integer;

EHJLQ
--...
Data:= Obj.Read;
--...

HQG Reader;

Ada select can also provide different results depending
on the different tasks interleaving or different clocks pace.
Different clients (or none) can be accepted by a server in
different replicas, or a client making a conditional or timed
entry call can be successful in one replica and not in
another. Furthermore, select is also used in the
Asynchronous Transfer of Control (ATC) feature of Ada,
which, as a consequence, can also provide different results
in different replicas.

In the following code both Client1 and Client2 call an
entry in Server. The Server task can accept any of these
calls or even can execute the else part if no call is queued.
Furthermore Client1 executes a timed entry call, that can
expire before the service is accepted. In Client2 there is a
conditional entry call, where the else part can be executed
if the Server is not ready. Any one of these different
possible execution paths may lead to inconsistent state
between different replicas.

WDVN Server LV
HQWU\ Service1;
HQWU\ Service2;

HQG Server;

WDVN ERG\ Server LV
EHJLQ

ORRS
VHOHFW

DFFHSW Service1 GR
--...

HQG Service1;
RU

DFFHSW Service2 GR
--...

HQG Service2;
HOVH

--...
HQG VHOHFW;
--...

HQG ORRS;
HQG Server;

WDVN Client1;

WDVN ERG\ Client1 LV
EHJLQ

VHOHFW
Server.Service1;

RU
GHOD\ 1.0;

HQG VHOHFW;
HQG Client1;



WDVN Client2;

WDVN ERG\ Client2 LV
EHJLQ

VHOHFW
Server.Service2;

HOVH
--...

HQG VHOHFW;
HQG Client2;

If the presented services are non-commutative then,
after execution, different replicas will be in different
states. These presented problems are even more
complicated considering additional mechanisms like
requeue or guards, not due to timing non-determinism but
due to their interaction with the previous mechanisms.

However, the use of these constructs is not always
non-deterministic. If there is only one client that can
rendezvous with the server, there is no need for
synchronisation between replicas. Also, if in a protected
object the reader uses an entry guarded by the writer
execution, then there is no need to synchronise. As a
consequence, some of these tasks precedence relations can
be captured by static analysis, being synchronisation
unnecessary.

Therefore, performing an interactive agreement in
every Ada dispatching point introduces an unnecessary
overhead. The goal of the Multi-µ architecture is to
perform the agreement only when it is necessary.

4.� Managing Fault Tolerance in the Multi-µ
Architecture

The Multi-µ [12] architecture targets the development
of fault tolerance mechanisms for systems where reliability
and availability are of most importance.
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The architecture (figure 1) is based on replicated
software components on top of replicated nodes, which are
built with both COTS kernel and hardware. The fault
tolerance transparent mechanisms are implemented below

the application, interacting with the real-time kernel.
Being a tightly-coupled system with nodes interconnected
by a parallel bus, it implements a synchronous distributed
system. The advantage of a synchronous system is that
communication times are bounded, simplifying both the
algorithms to implement fault tolerance mechanisms and
the application timing analysis.

CPU board
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Each node (figure 2) has a real-time kernel, responsible
for the multitasking environment and for inter-node
communication. The application is built on top of the
compiler library, to ensure abstraction from kernel
implementation, and also on top of the FTManager
(responsible for the replica management and for the
communication algorithms implementation) to provide the
fault tolerance abstraction. The selected kernel and Ada
compiler are, respectively, RTEMS [16] and GNAT [18].
Both GNAT and RTEMS sources are freely available and
can be adapted and extended to implement the
FTManager.

The FTManager is responsible for the transparent
incorporation of the fault tolerance mechanisms into the
application. As replica determinism is not assumed, it
allows the programmer to use all the Ada constructs. The
FTManager is sub-divided in the two following layers:

• the Communication Manager, which implements
the communication algorithms, based on group
communication abstractions;

• the Replica Manager, which provides the necessary
mechanisms for the replica management, hiding its
implementation from the application programmer.

4.1� Communication Manager

To support consensus between replicas, communication
mechanisms must be provided to disseminate replicas
private values. The implemented fault tolerant
communication algorithm is the Signed Messages
(SM(m)) algorithm of Lamport, Shostak and Pease [9], to
solve the byzantine agreement problem.



As it is possible to know the maximum number of
exchanged messages, and giving the bounded
communication times, this algorithm has bounded
worst-case execution time.

To solve the interactive consistency problem we allow
for the concurrent execution of several signed messages
algorithms. To solve consensus we simply choose for the
output value the majority of the values received in an
interactive consistency exchange.

The Communication Manager layer (an extended
discussion of this layer is included in [12]) is built on top
of a thin Ada binding to RTEMS queues. This interface
provides a mechanism to exchange messages between
nodes, without knowledge of the physical distribution of
the sender and receiver tasks, being a good framework to
build replicated systems.

This layer provides group abstraction to the higher
layer, and also logical links between nodes. The child
package concept of Ada allows functionality extension
without changes to the code of the parent, providing
extended capabilities for the signed message algorithm.
Other extensions can be provided, such as atomic
broadcast or clock synchronisation.

The communication between replicas is implemented
using two unidirectional queues (send and receive queues)
between each pair of nodes, providing full logical
connectivity. We envisage the use of queue redundancy in
order to cope with queue failures, providing redundant
paths between each pair of nodes.

4.2� Replica Manager

Without assuming replica determinism, there is the
need to explicitly synchronise replicas, in every code point
that can lead to execution divergence. The Replica
Manager hides the communication algorithms from the
application, and copes with the possible non-deterministic
behaviour of replicas, by delaying requests until all nodes
make the same request.

Two different mechanisms for synchronisation are
currently being considered:

• synchronisation on rendezvous;
• synchronisation on protected objects with

procedures and functions.
Synchronisation of the select construct, protected

objects with entries and the use of requeue are not yet
being considered, so they are not supported at the moment.

To perform the rendezvous synchronisation, the server
must know each of the calling tasks group and must also
be able to accept a specific one. Such synchronisation can
only be made using an entry family instead of a single
entry. This would however imply higher complexity code.

Another option to perform such synchronisation is
doing the client-server interaction through a protected
object (instead of the rendezvous) as presented in [10].

However, this approach changes the semantics of the
rendezvous, as: “during rendezvous, the task accepting the
entry call inherits the active priority of the caller” (D.1(22)
of the Ada Reference Manual [5]).

A different approach is to use a monitor object, which
performs the synchronisation of the calling clients before
the entry call, maintaining the rendezvous. This approach
can lead to a priority inversion, which is already present in
the rendezvous due to its semantics [1]. Although an entry
family to distinguish between different clients is still
required, its implementation in a protected object is easier
than in a task and there is no need to tailor it for each task
entry.

Protected objects synchronisation is more complex than
in the case of rendezvous, since there is no limit on the
number and type of procedures and functions. As protected
objects are passive entities, when they need to synchronise
accesses a monitor task is created to perform the necessary
agreement.

The approach used to the rendezvous synchronisation
can not be used for protected objects, since it would
introduce priority inversion problems in the use of
protected objects. This solution would imply the use of
Ada dynamic priorities inside the monitor to change the
task base priority and resetting it again when it was
released.

Protected objects are much more powerful than
rendezvous, thus we can use Ada object-oriented features
in order to allow the programmer to request
synchronisation in any procedure or function using the
same request entry of the monitor, and a private entry
family where to requeue each request.

Information regarding replication (replica
configuration) is only integrated in a final configuration
phase. Therefore, real-time applications can be
programmed disregarding distribution and still use all the
Ada powerful constructs. This configuration phase scheme
looks like the model of the Distributed Systems Annex of
Ada, but a different goal is intended.

An automated tool can be provided to help the
programmer identifying possible sources of
non-determinism, hiding at the same time the
configuration of the system from the application reader.

This configuration phase is made through the
introduction of three pragmas in the application code,

• pragma Replicated, to identify the tasks and
protected objects that must have replication
management;

• pragma Synchronise, to identify code locations
where there is the need for replica synchronisation;

• pragma Agreement, to identify where there is need
for agreement on replicated (or single-source)
values;

An application example shows how the referred
pragmas may be used in order to solve some of the



identified problems in section 3. In this example, two
client tasks read some device data, make requests to a
single server task ensuring that it is ready for data
processing, sending data to the server through a protected
object. The server task then reads the data and processes it.

The protected object Buffer procedures Write and Read
can be called from different tasks. As already stated,
system replication can induce non-deterministic access to
objects. The pragma Replicated applied to the object
implies that it must be monitored. Tasks Server, ClientA
and ClientB are replicated among the system. Thus,
pragma Replicated is used to achieve the needed
consensus. Every time that a task makes a call on a
protected object, or on a server task entry, the need for
synchronisation arises, so pragma Synchronise is used.
The necessary agreement on Input and Output is provided
by pragma Agreement, when tasks read device data.

--------------------------------------
-- Small Controller
-- An example of Replica Manager use
--------------------------------------

SURFHGXUH Controller LV

W\SH Some_Data LV ...;

--------------------------------------
-- Replicated Protected Object
--------------------------------------

SUDJPD Replicated;
SURWHFWHG Buffer LV

SURFHGXUH Write(Data: Some_Data);
SURFHGXUH Read(Data: Some_Data);

SULYDWH
Data: Some_Data;

HQG Buffer;

SURWHFWHG ERG\ Buffer LV VHSDUDWH;

--------------------------------------
-- Replicated Server task
--------------------------------------

SUDJPD Replicated;
WDVN Server LV

HQWU\ Request;
HQG Server;

   WDVN ERG\ Server LV
Data: Some_Data;

bHJLQ
ORRS

-- Synchronisation of
-- entry call accept

SUDJPD�Synchronise;
DFFHSW Request GR

-- ...
HQG Request;

-- Reading from the Buffer must
-- be synchronised

SUDJPD Synchronise;
Buffer.Read(Data);

-- ...
HQG ORRS;

HQG Server;

----------------------------------------
-- Replicated Client task
----------------------------------------

SUDJPD Replicated;
WDVN ClientA;

WDVN ERG\ ClientA LV
Data: Some_Data;

EHJLQ
ORRS

-- Device1 is replicated in
-- all nodes. Its values must
-- be agreed upon.
SUDJPD Agreement;
Request_Device1_Data(Data);

-- Calling an entry must
-- be synchronised
SUDJPD Synchronise;
Server.Request;

-- ...
SUDJPD Synchronise;
Buffer.Write(Data);

HQG ORRS;
HQG ClientA;

----------------------------------------
-- Client task, calling Server entry,
-- write access to the protected object,
-- and providing sigle-source values
----------------------------------------

SUDJPD Replicated;
WDVN ClientB;

WDVN ERG\ ClientB LV
Data: Some_Data;

EHJLQ
ORRS

-- Device2 is not replicated.
-- Its values must be provided
-- from Node 1 to other nodes.
SUDJPD Agreement (Source_Node => 1);
Request_Device2_Data(Data);

       -- ...
SUDJPD Synchronise;
Server.Request;

-- ...
SUDJPD Synchronise;
Buffer.Write(Data);

HQG ORRS;
   HQG ClientB;

EHJLQ
-- ...

HQG Controller;



5.� Conclusions

The paper presented some of the fault tolerance
management mechanisms being implemented in the
Multi-µ architecture, which is intended to study and
develop software based fault tolerance mechanisms for
real-time systems, using the Ada language.

Multi-µ is implemented through the active replication
of processing nodes, with fault tolerance being achieved
by means of a specially proposed software layer, the Fault
Tolerance Manager (FTManager).

Issues regarding fault tolerance are presented and the
problems of using Ada to build fault-tolerant systems are
discussed. Multi-µ architecture develops the approach of
not imposing replica determinism and performing the
interactive agreement only at the necessary
synchronisation points. One of the Multi-µ architecture
goals is to identify such critical points.
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