Master Informatics Eng.

2018/19 A.J.Proença

Beyond traditional PUs (GPU/CUDA, Tensor Cores, ...) (most slides are borrowed)

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

1

Beyond Vector/SIMD architectures

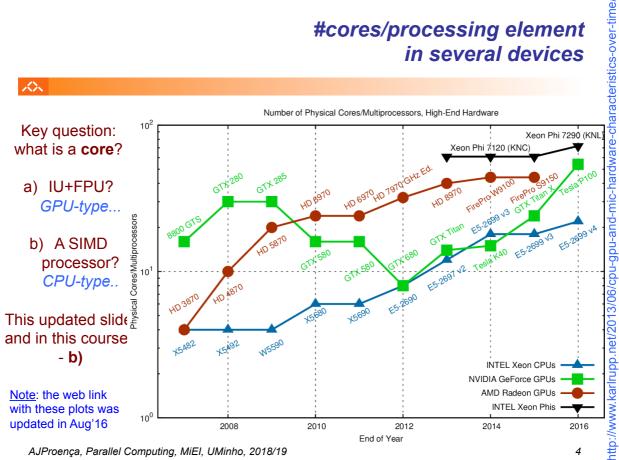
XX

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - CPU cores with wider vector units
 - x86 many-core: Intel MIC / Xeon KNL
 - IBM Power cores with SIMD extensions: BlueGene/Q Compute
 - other many-core: **ShenWay** 260
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
 - · ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - heterogeneous processors (multicore with GPU-cores, SoC)

• ...

Graphical Processing Units

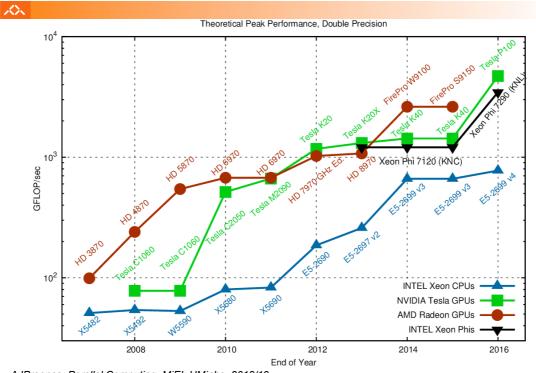
众人


- Question to GPU architects:
 - Given the hardware invested to do graphics well, how can we supplement it to improve the performance of a wider range of applications?
- Key ideas:
 - Heterogeneous execution model
 - CPU is the host, GPU is the device
 - Develop a C-like programming language for GPU
 - Unify all forms of GPU parallelism as CUDA_threads
 - Programming model follows SIMT: "Single Instruction Multiple Thread"

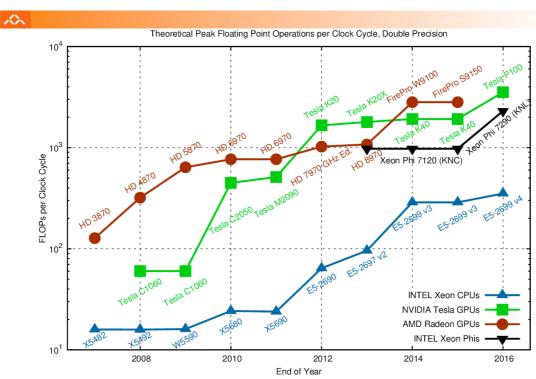
Copyright © 2012, Elsevier Inc. All rights reserved.

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

3


#cores/processing element in several devices

AJProença, Parallel Computing, MiEI, UMinho, 2018/19


http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Theoretical peak performance in several computing devices (DP)

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

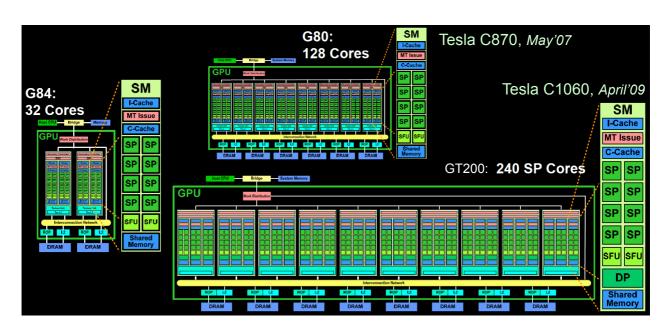
Theoretical peak FP Op's per clock cycle in several computing devices (DP)

众入

- · Similarities to vector machines:
 - Works well with data-level parallel problems
 - Scatter-gather transfers
 - Mask registers
 - Large register files

Differences:

- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units like a vector processor

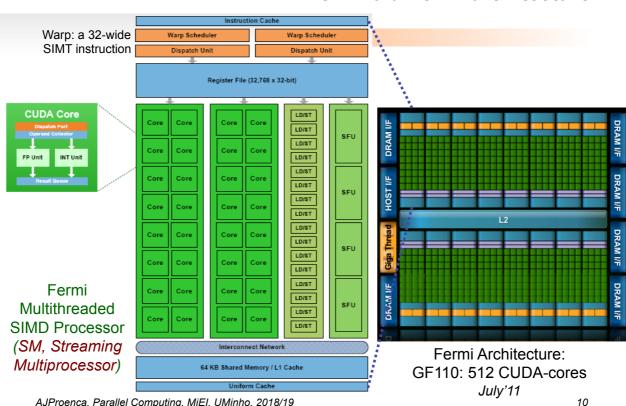

Copyright © 2012, Elsevier Inc. All rights reserved.

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

7

Early NVidia GPU Computing Modules

八入

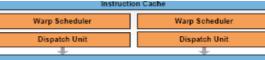

NVIDIA GPU Memory Structures

- Each SIMD Lane has private section of off-chip DRAM
 - "Private memory" (Local Memory)
 - Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor (SM) also has local memory (Shared Memory)
 - Shared by SIMD lanes / threads within a block
- SM MT Issue SP SP SP SP SP SP SP SFU SFU DP Shared Memory
- Memory shared by SIMD processors (SM) is GPU Memory, off-chip DRAM (Global Memory)
 - Host can read and write GPU memory

Copyright © 2012, Elsevier Inc. All rights reserved.

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

The NVidia Fermi architecture



AJProença, Parallel Computing, MiEI, UMinho, 2018/19

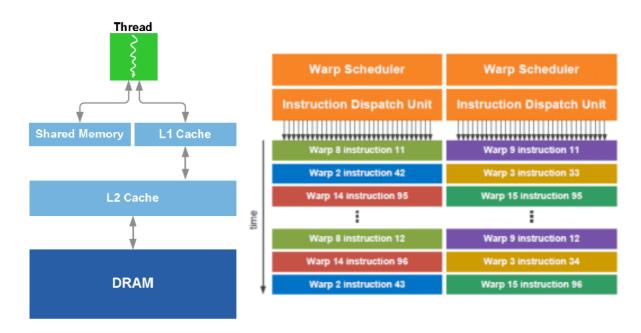
Fermi Architecture Innovations

X

- Each SIMD processor has
 - Two SIMD thread schedulers, two instruction dispatch units
 - 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
 - Thus, two threads of SIMD instructions are scheduled every two clock cycles

- Fast double precision
- Caches for GPU memory (16/64KB_L1/SM and global 768KB_L2)
- 64-bit addressing and unified address space
- Error correcting codes
- · Faster context switching
- Faster atomic instructions

Copyright © 2012, Elsevier Inc. All rights reserved. AJProença, Parallel Computing, MiEI, UMINIO, 2018/19


11

Beyond Vector/SIMD architectures

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - PU (Processing Unit) cores with wider vector units
 - x86 many-core: Intel MIC / Xeon KNL
 - other many-core: IBM BlueGene/Q Compute, ShenWay 260
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
 - · ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - ...
 - heterogeneous PUs in a SoC: multicore PUs with GPU-cores
 - ...

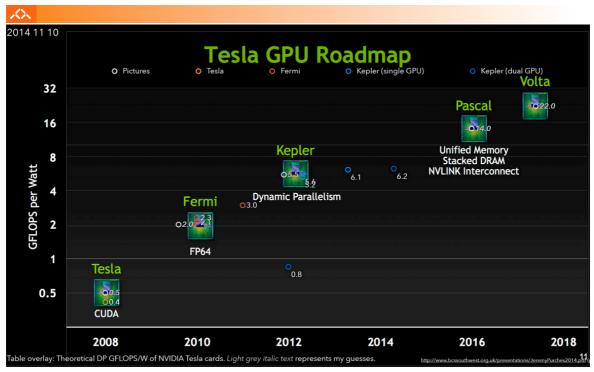
Fermi: Multithreading and Memory Hierarchy

人入

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

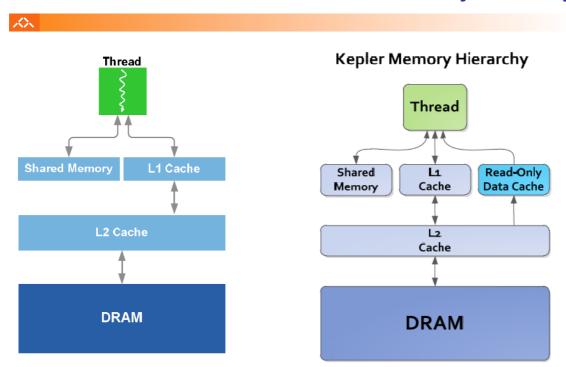
13

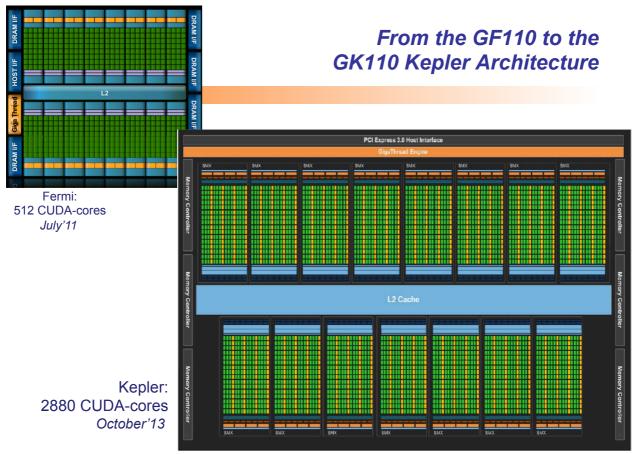
TOP500 list in November 2010: 3 systems in the top4 use Fermi GPUs


XX

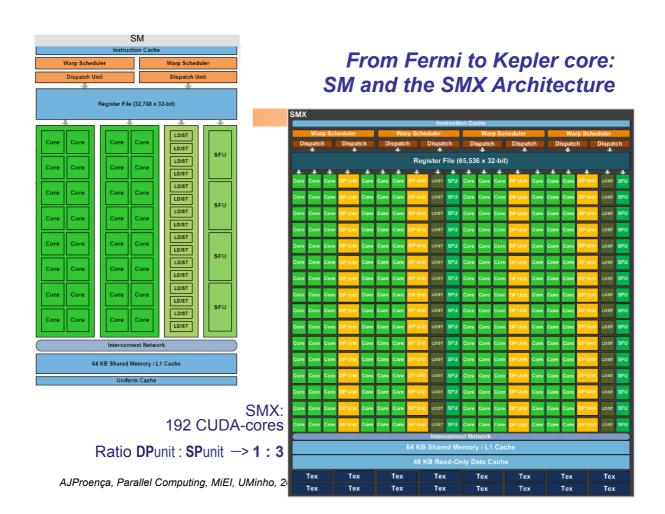
HIGHLIGHTS: NOVEMBER 2010

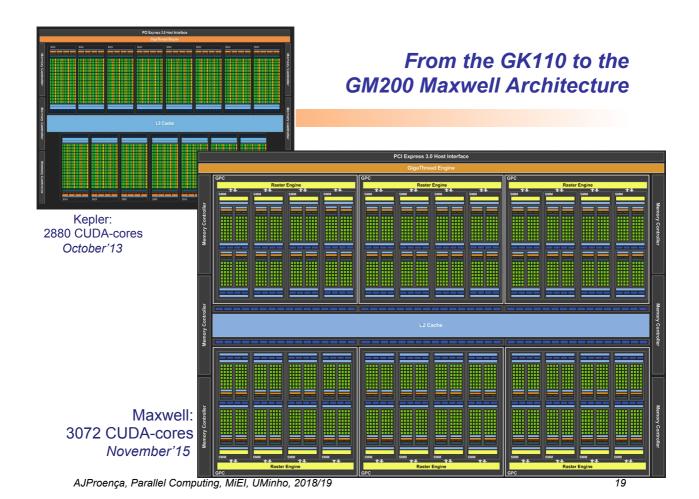
- The Chinese Tianhe-1A system is the new No. 1 on the TOP500 and clearly in the lead with 2.57 petaflop/s performance.
- No. 3 is also a Chinese system called Nebulae, built from a Dawning TC3600 Blade system with Intel X5650 processors and NVIDIA Tesla C2050 GPUs
- There are seven petaflop/s systems in the TOP10
- The U.S. is tops in petaflop/s with three systems performing at the petaflop/s level
- The two Chinese systems and the new Japanese Tsubame 2.0 system at No. 4 are all using NVIDIA GPUs to accelerate computation and a total of 28 systems on the list are using GPU technology.

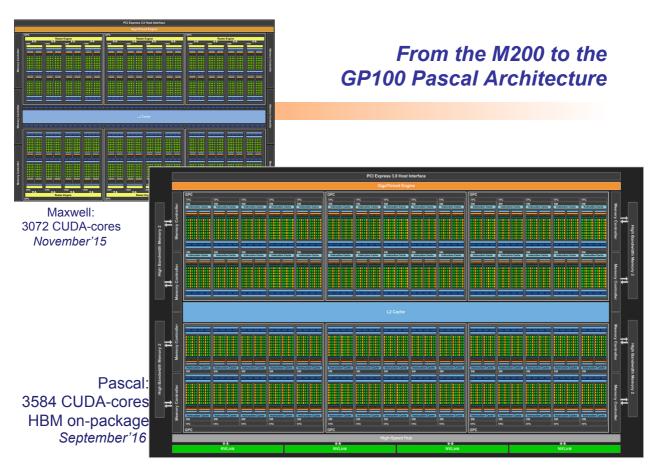

Families in NVidia Tesla GPUs



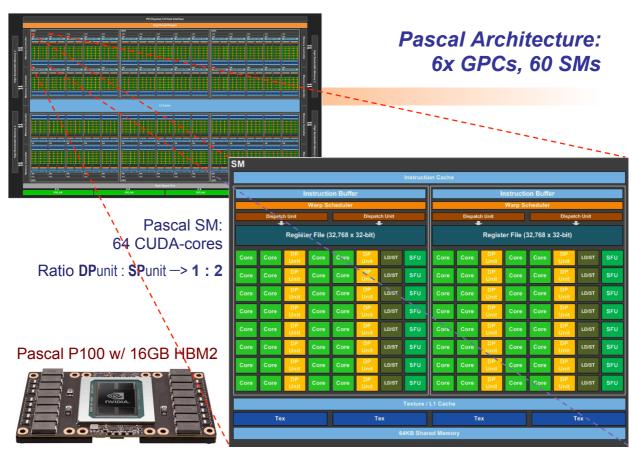
AJProença, Parallel Computing, MiEI, UMinho, 2018/19

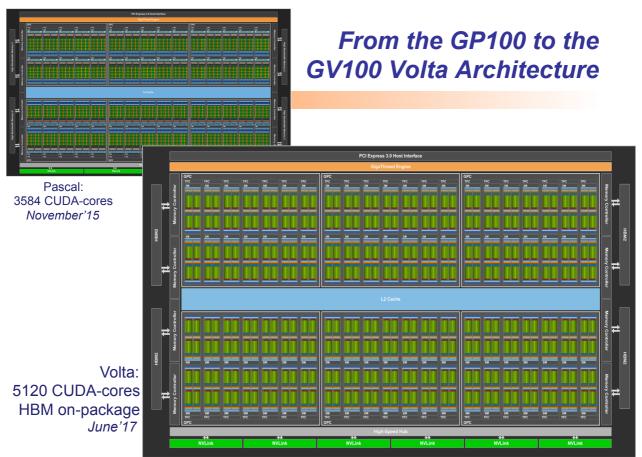

15

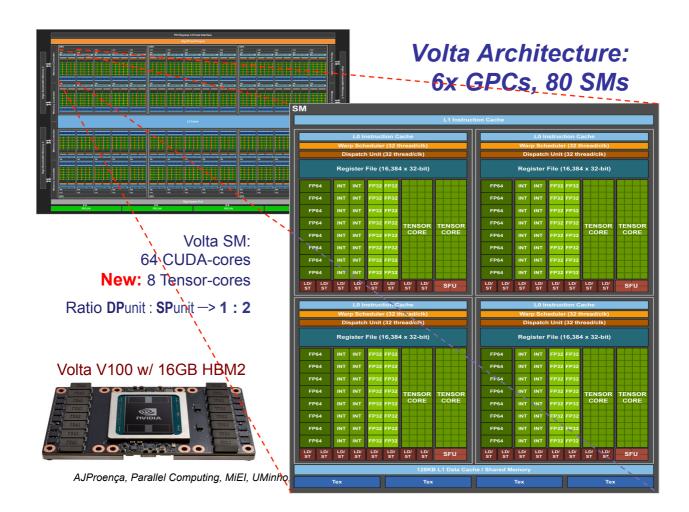

From Fermi into Kepler: The Memory Hierarchy



AJProença, Parallel Computing, MiEI, UMinho, 2018/19





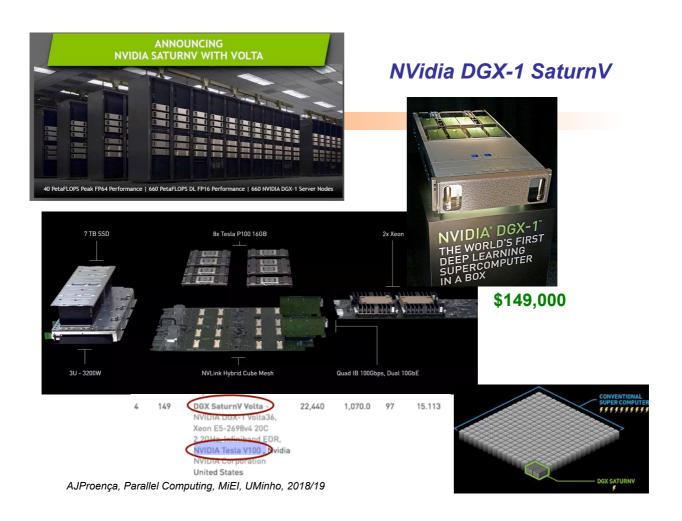


AJProença, Parallel Computing, MiEl, UMinho, 2018/19

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200	GP100	GV100 (Volta)
		(Maxwell)	(Pascal)	
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOP/s*	5.04	6.8	10.6	15.7
Peak FP64 TFLOP/s*	1.68	.21	5.3	7.8
Peak Tensor Core TFLOP/s*	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm²	601 mm²	610 mm ²	815 mm²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

Tesla accelerators: recent evolution


https://devblogs.nvidia.com/parallelforall/inside-volta/

25

Current top 10 greener-HPC systems Nov'17 Green500

						_							
	TOP500			Rmax	Power	Power Efficiency							
Rank	Rank	System	Cores	(TFlop/s)	(kW)	(GFlops/watts)							
1	259	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.36Hz, Infiniband EDR, PEZY-SC2 PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN	794,400	842.0	50	17.009	6	13	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan		8,125.0	792	13.704
2	307	Japan Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. High Energy Accelerator Research Organization /KEK	762,624	788.2	47	16.759	7	195	AIST AI Cloud - NEC 4U-80PU Server, Xeon E5-2630Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Tesla P100 SXM2 , NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681
3	276	Japan Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, PEZY-SC2 PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	794,400	824.7	50	16.657	8	419	RAIDEN GPU subsystem - NVIDIA DGX-1, Xeon E5-26984/2 QC 2.26Hz, Infiniband EDR, NVIDIA Testa P100 , Fujitsu Center for Advanced Intelligence Project, RIKEN Japan	11,712	635.1	60	10.603
4	149	DOX SaturnV Volta NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2 2GHz, Inflatband EDR, NVIDIA Corporation ViDIA Corporation United States	22,440	1,070.0	97	15.113	9	115	Wilkes-2 - Dell C4130, Xeon E5-2650v4 12C 2.2GHz, Infinband EDR, NVIDIA Tesla P100 , Dell EMC University of Cambridge United Kingdom	21,240	1,193.0	114	10.428
5	4		19,860,000	19,135.8	1,350	14.173	- 10	3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Testa P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	2,272	10.398

The CUDA programming model

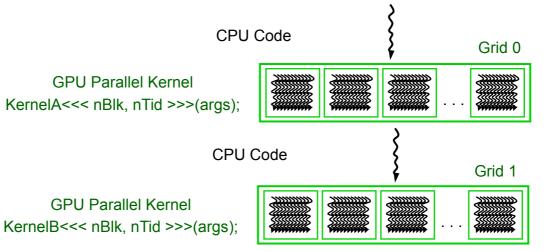
XX

- Compute Unified Device Architecture
- CUDA is a recent programming model, designed for
- a multicore CPU *host* coupled to a many-core *device*, where
 - devices have wide SIMD/SIMT parallelism, and
 - the host and the device do not share memory
 - · CUDA provides:
 - a thread abstraction to deal with SIMD
 - synchr. & data sharing between small groups of threads
 - CUDA programs are written in C with extensions
- OpenCL inspired by CUDA, but hw & sw vendor neutral
 - programming model essentially identical

CUDA Devices and Threads

众人

- A compute device
 - is a coprocessor to the CPU or host
 - has its own DRAM (device memory)
 - runs many threads in parallel
 - is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads - SIMT
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - very little creation overhead, requires LARGE register bank
 - GPU needs 1000s of threads for full efficiency
 - · multi-core CPU needs only a few


AJProença, Parallel Computing, MiEI, UMinho, 2018/19

29

CUDA basic model: Single-Program Multiple-Data (SPMD)

众人

- CUDA integrated CPU + GPU application C program
 - Serial C code executes on CPU
 - Parallel Kernel C code executes on GPU thread blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2005 ECE 498AL, University of Illinois, Urbana-Champaign

David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

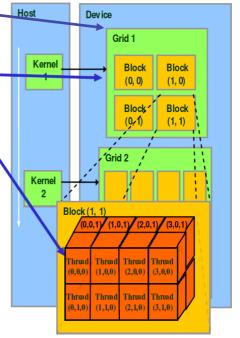
Programming Model: SPMD + SIMT/SIMD

CPU

众人

- Hierarchy
 - Device => Grids
 - Grid => Blocks
 - Block => Warps
 - Warp => Threads
- Single kernel runs on multiple blocks (SPMD)
- Threads within a warp are executed in a lock-step way called singleinstruction multiple-thread (SIMT)
- Single instruction are executed on multiple threads (SIMD)
 - Warp size defines SIMD granularity (32 threads)
- Synchronization within a block uses shared memory

Serial Code Grid 1 Kernel Block Block (1, 0)(2, 0)(0, 0)Block Block Block (0, 1)(2, 1)Serial Code Grid 2 Kernel Block (1, 1) Thread Thread Thread **Courtesy NVIDIA** Thread


GPU

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

The Computational Grid: Block IDs and Thread IDs

X

- A kernel runs on a computational grid of thread blocks
 - Threads share global memory
- Each thread uses IDs to decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D
- A thread block is a batch of threads that can cooperate by:
 - Sync their execution w/ barrier
 - Efficiently sharing data through a low latency shared memory
 - Two threads from two different blocks cannot cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign 众人

- Multiply two vectors of length 8192
 - Code that works over all elements is the grid
 - Thread blocks break this down into manageable sizes
 - 512 threads per block
 - SIMD instruction executes 32 elements at a time
 - Thus grid size = 16 blocks
 - Block is analogous to a strip-mined vector loop with vector length of 32
 - Block is assigned to a multithreaded SIMD processor by the thread block scheduler
 - Current-generation GPUs (Fermi) have 7-16 multithreaded SIMD processors

Copyright © 2012, Elsevier Inc. All rights reserved.

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

33

XX

void saxpy_serial(int n, float a, float *x, float *y) { for (int i = 0; i < n; ++i) y[i] = a*x[i] + y[i]; Standard C Code } // Invoke serial SAXPY kernel saxpy_serial(n, 2.0, x, y); __global__ void saxpy_parallel(int n, float a, float *x, float *y) { int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < n) y[i] = a*x[i] + y[i]; Parallel C Code } // Invoke parallel SAXPY kernel with 256 threads/block int nblocks = (n + 255) / 256; saxpy_parallel <<<nblocks, 256>>> (n, 2.0, x, y);

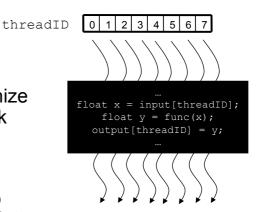
Terminology (and in NVidia)

//\

- Threads of SIMD instructions (warps)
 - Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
 - Thread scheduler uses scoreboard to dispatch
 - No data dependencies between threads!
 - Threads are organized into blocks & executed in groups of 32 threads (thread block)
 - · Blocks are organized into a grid
- The <u>thread block scheduler</u> schedules blocks to SIMD processors (<u>Streaming Multiprocessors</u>)
- Within each SIMD processor:
 - 32 SIMD lanes (thread processors)
 - Wide and shallow compared to vector processors

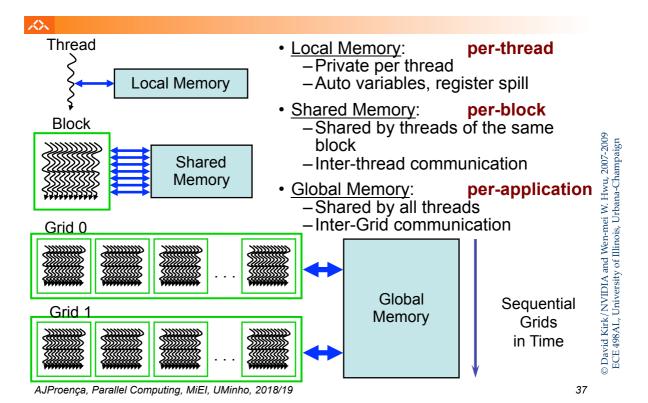
Copyright © 2012, Elsevier Inc. All rights reserved.

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

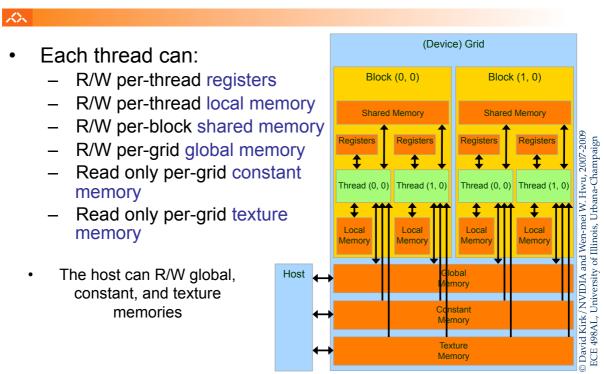

35

CUDA Thread Block

XX

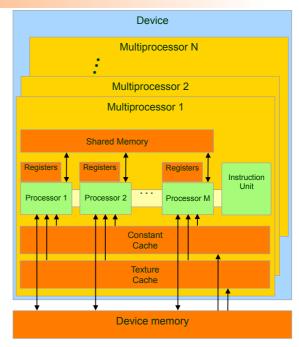

- Programmer declares (Thread) Block:
 - Block size 1 to 512 concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- All threads in a Block execute the same thread program
- Threads share data and synchronize while doing their share of the work
- Threads have thread id numbers within Block
- Thread program uses thread id to select work and address shared data

CUDA Thread Block



) David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Memory Sharing


CUDA Memory Model Overview

Hardware Implementation: Memory Architecture

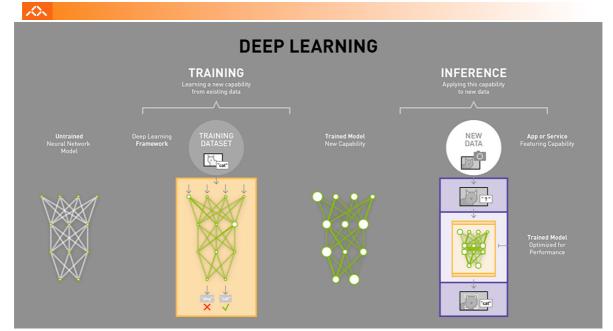
众入

- Device memory (DRAM)
 - Slow (2~300 cycles)
 - <u>Local</u>, global, constant, and texture memory
- · On-chip memory
 - Fast (1 cycle)
 - Registers, shared memory, constant/texture cache

Courtesy NVIDIA

39

AJProença, Parallel Computing, MiEI, UMinho, 2018/19


Beyond Vector/SIMD architectures

众人

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - PU (Processing Unit) cores with wider vector units
 - x86 many-core: Intel MIC / Xeon KNL
 - other many-core: IBM Power BlueGene/Q Compute, ShenWay 260
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
 - ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU
 - heterogeneous PUs in a SoC: multicore PUs with GPU-cores

• ...

Machine learning w/ neural nets & deep learning...

Key algorithms to train & classify use matrix products, but require lower precision numbers!

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

41

NVidia Volta Architecture: the new Tensor Cores

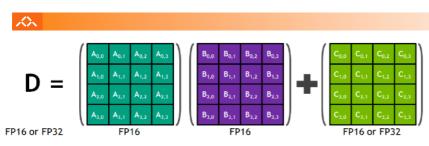
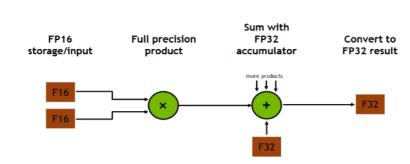
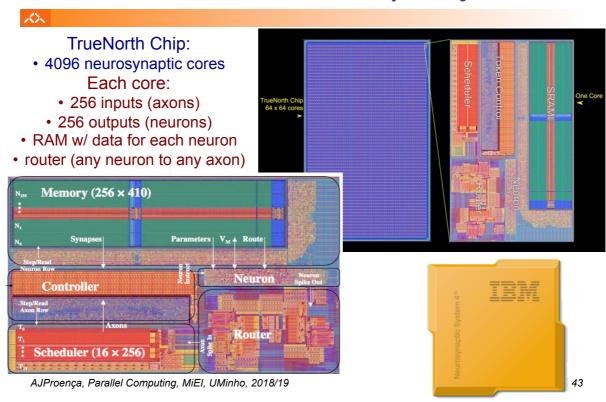
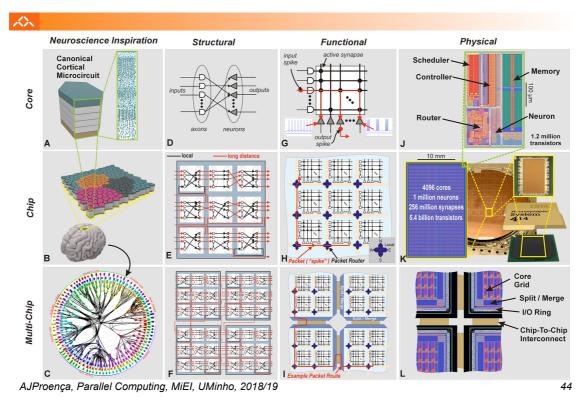


Figure 8. Tensor Core 4x4 Matrix Multiply and Accumulate




Figure 9. Mixed Precision Multiply and Accumulate in Tensor Core

http://www.nvidia.com/content/gated-pdfs/Volta-Architecture-Whitepaper-v1.1.pdf


For each SM:

8x 64 FMA ops/cycle 1k FLOPS/cycle!

NVidia competitors with neural net features: IBM TrueNorth chip array (August'2014)

NVidia competitors with neural net features: the IBM TrueNorth architecture

NVidia competitors with neural net features: Intel Nervana Neural Network Processor, NNP

200

History

- Nervana Engine announced in May'16
 - Key features:
- ASIC chip, focused on matrix multiplication, convolutions,... (for neural nets)
 - HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w
- no h/w managed cache hierarchy (saves die area, higher compute density)
 - built-in networking (6 bi-directional high-b/w links)
 - separate pipelines for computation and data management

 proprietary numeric format Flexpoint in-between floating point and fixed point precision

Nervana acquired by Intel in August 2

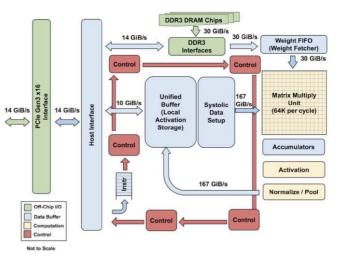
renamed the project to "Lake Cre

· later to Nervana NNP, launched in Oct

 Loihi test chip w/ self-learning capal announced in Sept'17, to be launched in

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

https://www.top500.org/news/intel-will-ship-


Loihi

NVidia competitors with neural net features: Google Tensor Processing Unit, TPU (April'17)

XX

- The Matrix Unit: 65,536 (256x256)
 8-bit multiply-accumulate units
- 700 MHz clock rate
- Peak: 92T operations/second
 - 65,536 * 2 * 700M
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
- 24 MiB of on-chip Unified Buffer, (activation memory)
- 3.5X as much on-chip memory vs GPU
- Two 2133MHz DDR3 DRAM channels
- 8 GiB of off-chip weight DRAM memory

TPU: High-level Chip Architecture

NVidia competitors with neural net features: Google Tensor Processing Unit, TPU (April'17)

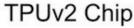
XX

Chip floor plan Unified Buffer Matrix Multiply Unit for Local Activations (256x256x8b=64K MAC) (96Kx256x8b = 24 MiB) 29% of chip Accumulators Host R (4Kx256x32b = 4 MiB) 6% Interf. 2% A M M Control 2% Activation Pipeline 6% port port ddr3 ddr3 **PCle** 3% Misc. I/O 1% Interface 3%

TPU: a Neural Network

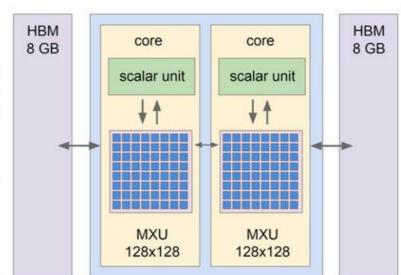
Accelerator Chip

TPUs are intensively used by Google, namely in RankBrain, StreetView & Google Translate


AJProença, Parallel Computing, MiEI, UMinho, 2018/19

47

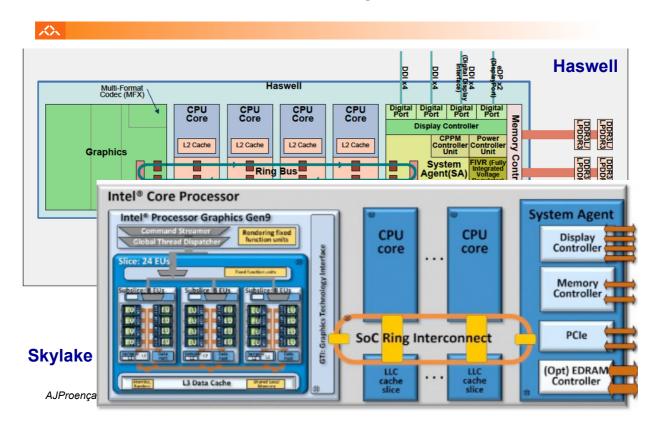
nttps://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processir


NVidia competitors with neural net features: Google TPUv2 (September'17)

XX

- 16 GB of HBM
- 600 GB/s mem BW
- Scalar unit: 32b float
- MXU: 32b float accumulation but reduced precision for multipliers
- 45 TFLOPS

Beyond Vector/SIMD architectures


众入

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - PU (Processing Unit) cores with wider vector units
 - x86 many-core: Intel MIC / Xeon KNL
 - other many-core: IBM Power BlueGene/Q Compute, ShenWay 260
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
 - ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU
 - heterogeneous PUs in a SoC: multicore PUs with GPU-cores
 - x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
 - ARMv8 cores coupled with SIMT/SIMD cores: NVidia Tegra

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

49

Intel multicore coupled with GPU-cores

NVidia Tegra: SoC partnership with ARM (1)

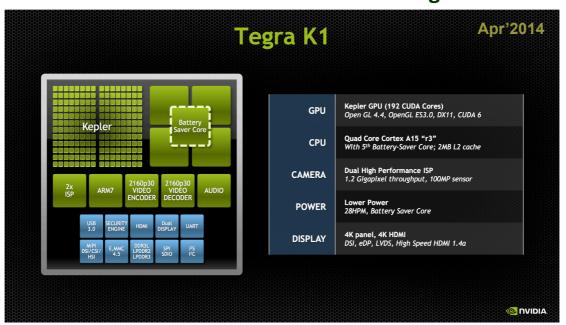
ムス

- Tegra 2 in Android (2010) ...
- Tegra 3 in Audi infotainment (2012) ...

Tegra 3 Nov'2011

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

Tegra 4: replace the 32-bit ARM Cortex A9 by Cortex A15, and add 72 CUDA-cores



Tegra 4 May'2013

NVidia Tegra: SoC partnership with ARM (2)

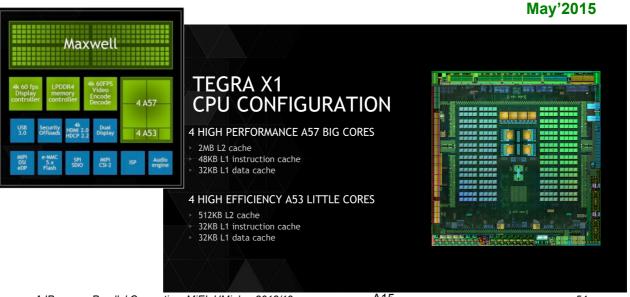
XX

Replace the GPU block by 192 GPU-cores (from Kepler) and offer either 32/64-bit CPU cores => **Tegra K1**

NVidia Tegra: SoC partnership with ARM (2)

人入

Replace the GPU block by 192 GPU-cores (from Kepler) and offer either 32/64-bit CPU cores => **Tegra K1**

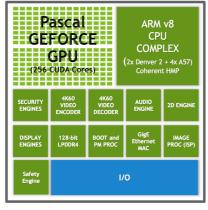


53

NVidia Tegra: SoC partnership with ARM (3)

众人

Replace the 5x 32-bit ARM by 2x4 32-bit Cortex (A57 & A53)
 and the 192 Kepler CUDA cores by 256 Maxwell => Tegra X1



A15

NVidia Tegra: pathway towards ARM-64 (1)

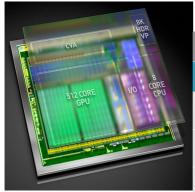
//>

Upgrade 32-bit ARM to 64-bit ARM (*Denver 2 & A57*) and replace Maxwell cores by Pascal ones => Parker Aug'2016

"PARKER" CPU COMPLEX

- 2x Denver2 + 4x Cortex-A57 Fully Coherent HMP system
 - Proprietary Coherent Interconnect
- ARM V8 64-bit
- Highest performance ARM CPU
 - 2nd generation Denver core
 - Significant Perf/W improvements
- Dynamic Code Optimization
 - OoO execution without the power
 - Optimize once, use many times
- 7-wide superscalar
- Low power retention states

7 **② N**


AJProença, Parallel Computing, MiEI, UMinho, 2018/19

55

NVidia Tegra: pathway towards ARM-64 (2)

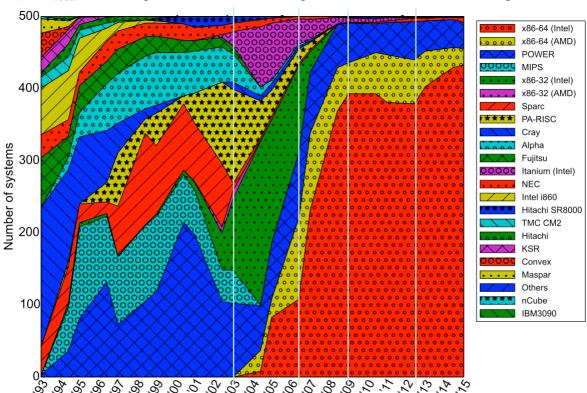
众人

 Increment #ARMv8-cores (custom architecture) and replace Pascal cores by Volta (w/ tensor cores) => Xavier Jan'2018?

NVIDIA ARM SoCs							
	Xavier	Parker	Erista (Tegra XI)				
CPU	8x NVIDIA Custom ARM	2x NVIDIA Denver + 4x ARM Cortex-A57	4x ARM Cortex-A57 + 4x ARM Cortex-A53				
GPU	Volta, 512 CUDA Cores	Pascal, 256 CUDA Cores	Maxwell, 256 CUDA Cores				
Memory	?	LPDDR4, 128-bit Bus	LPDDR3, 64-bit Bus				
Video Processing	7680x4320 Encode & Decode	3840x2160p60 Decode 3840x2160p60 Encode	3840x2160p60 Decode 3840x2160p30 Encode				
Transistors	7B	?	?				
Manufacturing Process	TSMC 16nm FinFET+	TSMC 16nm FinFET+	TSMC 20nm Planar				

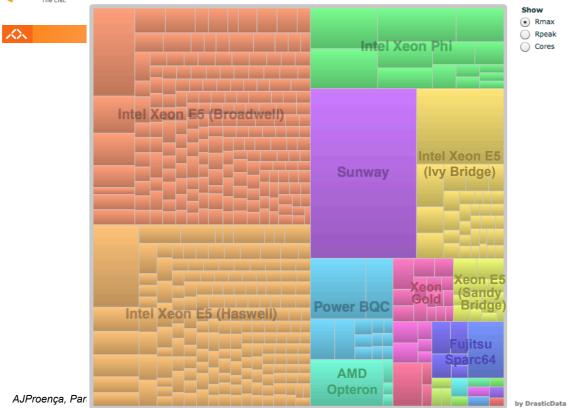
Beyond Vector/SIMD architectures

XX

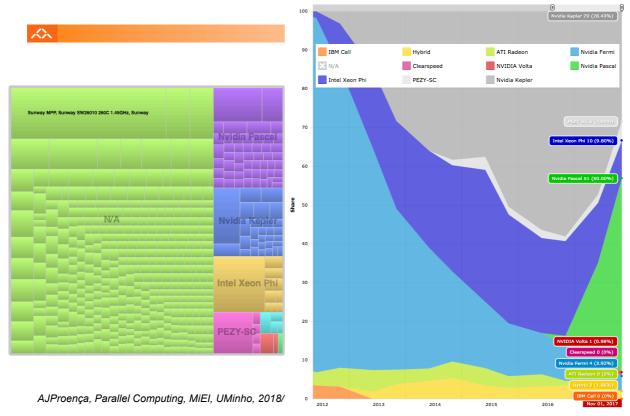

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - PU (Processing Unit) cores with wider vector units
 - x86 many-core: Intel MIC / Xeon KNL
 - other many-core: IBM Power BlueGene/Q Compute, ShenWay 260
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
 - ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU
 - heterogeneous PUs in a SoC: multicore PUs with GPU-cores
 - x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
 - ARMv8 cores coupled with SIMT/SIMD cores: NVidia Tegra

AJProença, Parallel Computing, MiEI, UMinho, 2018/19

57


Past: processor family distribution of all systems

TOP500 Date



Processor generations in November'17

TOP 500 The List.

Accelerator family distribution over all systems Nov'17

