Parallel Computing

Master Informatics Eng.
2018/19
A.J.Proenca
Instruction-Level Parallelism & Data Parallelism
(some slides are borrowed, mod'’s in green)
AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 1
Performance Summary (single-core)
IC CPI T,
: Instructions Clock cycles Seconds
PU Time = X X
Program Instruction Clock cycle

Performance depends on

— Algorithm: affects IC, possibly CPI

— Programming language: affects IC, CPI

— Compiler: affects IC, CPI

— Instruction set architecture: affects IC, CPI, T,

— Processor design: ILP, vectorization, mem-hierar, ...

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 2

COD: Chapter 1 — Computer Abstractions and Technology

Background for Advanced Architectures

o)
IN/N

Key concepts to revise:

— numerical data representation (for error analysis)
—ISA (Instruction Set Architecture)

— how C compilers generate code (a look into assembly code)
* how scalar and structured data are allocated
* how control structures are implemented
* how to call/return from function/procedures
» what architecture features impact performance

— Improvements to enhance performance in a single PU
* ILP: pipeline, multiple issue, ...
* thread-level parallelism
* data parallelism: SIMD/vector processing, ...
* memory hierarchy: cache levels, ...

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 3

Pipeline Summary

7\

 Pipelining improves performance by increasing
instruction throughput
— Executes multiple instructions in parallel
— Each instruction has the same latency

» Subject to hazards
— Structure, data, control

* Instruction set design affects complexity of
pipeline implementation

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19 4

COD: Chapter 4 — The Processor

Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI
> Pipeline CPI (efficient to exploit loop-level parallelism) =>

+ Ideal pipeline CPI + v
» Structural stalls + v
» Data hazard stalls + v
* Control stalls + v
* Memory stalls ... cache techniques ...

> Multiple issue =>
 find enough parallelism to keep pipeline(s) occupied

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 5

Does Multiple Issue Work?

Yes, but not as much as we’ d like

Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate

— e.g., pointer aliasing

Some parallelism is hard to expose

— Limited window size during instruction issue
Memory delays and limited bandwidth

— Hard to keep pipelines full

» Speculation can help if done well

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 6

COD: Chapter 4 — The Processor

Multiple Issue and Static Scheduling

= To achieve CPIl < 1, need to complete
multiple instructions per clock cycle

= Solutions:
= statically scheduled superscalar processors
= VLIW (very long instruction word) processors
= dynamically scheduled superscalar processors

Bulinpayos onels pue anss| ajdnnp

Internal x86 roadmap

7\
ININ

NetBurst
Willamette Northwood Prescott Tejas Nehalem (NetBurst)
J Cedar Mill (Tejas)
P Prescott-2M Cedar Mill

Smithfield Presler

Core Nehalem Sandy Bridge
Core Penryn Nehalem Westmere Sandy Bridge Ivy Bridge

Skylake
Skylake Cannonlake

180 nm 130 nm 90 nm 65 nm

Goldmont

Atom Goldmont

Xeon Phi

rrrrrr

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 8

7\
ININ

Internal architecture of
Intel P6 processors

Note: "Intel P6" is the common uarch name for PentiumPro, Pentium Il & Pentium Ill, which

inspired Core, Nehalem and later generations

L1

L1
Data

Instruction
C Cache

Cache

Retirement
Unit

Front End Register
Instruction Fetch| File

Instruction Control Unit

Fetch Address

Control :
Instruction

Instruction Cache

Decode
| Operations

:Prediction OK?

General
Integer

Integer/
Branch

FP
Add

FP

MulyDiv | -°2d

Store

Operation Res
Execution Engine

N 2
T

Execution Unit

ults

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

7\
ININ

Some capabilities
of Intel P6

« Parallel execution of

several instructions

Integer/

General FP FP

Load

Store

_ 2 :I.nteger (1 can be branch) Branch Integer Add Mult/Div
—1FP Add

—1FP Multiply or Divide Oeration Results

— 1 load

— 1 store Execution Unit

» Some instructions require > 1 cycle, but can be pipelined:

Instruction Latency. Cycles/Issue
Load / Store 3 1
Integer Multiply 4 1
Integer Divide 36 36
Double/Single FP Multiply 5 2
Double/Single FP Add 3 1
Double/Single FP Divide 38 38

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19

10

A detailed example:
generic & abstract form of combine

{
int i;
int length = vec_length(v);
data t *data = get_vec_start(v);
data_t t = IDENT;
for (i = 0; i < length; i++)
t = t OP datal[i];
*dest = t;
}

void abstract_combined (vec_ptr v, data t *dest)

* Procedure to perform addition (w/ some improvements)

— compute the sum of all vector elements
— store the result in a given memory location

— structure and operations on the vector defined by ADT

* Metrics
— Clock-cycles Per Element, CPE

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19

11

Converting instructions with registers
into operations with tags

« Assembly version for combine4
— data type: integer ; operation: multiplication

.L24: # Loop:
imull (%eax,%edx,4) ,%ecx # t *= datal[i]
incl $%edx # i++
cmpl %esi,%edx # i:length
j1 124 #

if < goto Loop

« Translating 1st iteration

(%eax,%edx.0,4) 9 t.1

.L24:
imull (%eax,%edx,4),b%ecx load
imull t.1, %ecx.0
incl %edx incl %edx.0
cmpl %esi,%edx cmpl %esi, %edx.1
jl .L24 jl -taken cc.1

= %ecx.1l
=2 %edx.1l
=2 cc.1

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19

12

Visualizing instruction execution in P6:
1 iteration of the multiplication cycle on combine

tedx. load (%eax,%edx.0,4) 9 t.1
(N (nel) seax.1 imull t.1, %ecx.0 = %ecx.l
Load incl %edx.0 = %edx.1l
oa . cmpl %esi, %edx.1 = cc.1
vecx. 0\ JIGER jl -taken cc.1
t.1
.) * Operations
Time — vertical axis shows the time the
. instruction is executed
imull i o
* an operation cannot start with its
operands
' N secx.1 — time length measures latency
+ Operands
— arcs are only showed for operands
that are used in the context of the
execution unit
AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 13

Visualizing instruction execution in P6:
3 iterations of the same cycle on combine

1 1ncl

s || 10aa

3 Load [Compl) re -, * With unlimited

P Conbl resources

s . . —parallel and pipelined
. Imull P e e exeCUtlon Of

__________________ operations at the EU
vvvvvvvvvvvvvvvvvvv _Out_of_order and

Iteration 1

ST B speculative execution
9

™ . Performance

U . —limitative factor:

12 Iteration 2 Iatency Of .|nteger

13 multlpllcatlon

14 —CPE: 4.0

15

Iteration 3

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 14

Visualizing instruction execution in P6:
4 iterations of the addition cycle on combine

%edx.0 I

1

2

i

! C:-D " 4linteger ops |
5

Iteration 2

6
! Iteration 3 S ‘ |
« With unlimited resources

« Performance
— it can start a new iteration at each clock cycle
— theoretical CPE: 1.0
— it requires parallel execution of 4 integer operations

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 15

Iterations of the addition cycles:

analysis with limited resources
6
o — i
8. onp1 Ginel)\ s
e { .
10 =) crp)| 10a0 |Ginel) s
1) addl 51
e Wl
i3 Iteration 5 jl°°~ (l_r;;:_l) —
) Gt s @#dt_lﬂ) Cmvpl {7
o teration © = (51 Y| 2oaa |Gt soe.s
— only 2 integer units | = | oy
— some options must be delayed, even if s [-n
the operands are avallable . ItETALION 7 0 a ‘

— priority: execution order in the code

* Performance
— expected CPE: 2.0

Iteration 8

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 16

Machine dependent optimization techniques:

ININ

void combine5 (vec_ptr v, int *dest)
{
int length = vec_length(v);
int limit = length-2;
int *data = get vec start(v);
int sum = 0; =~
int i;

/* junta 3 elem's no mesmo ciclo */

for (i = 0; 1 < limit; i+=3) {
sum += data[i] + data[i+1]
+ data[i+2];
}

/* completa os restantes elem's */
for (; i < length; i++) {

sum += datal[i];
}

*dest = sum;

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19

loop unroll (1)

Optimization 4:
—merges several (3)

iterations in a
single loop cycle
—reduces cycle

overhead in loop
iterations

—runs the extra work
at the end

—CPE: 1.33

17

Machine dependent optimization techniques:

loop unroll (2)

—loads can be pipelined,
there are no
dependencies

—only a set of loop control
instructions

%ecx.0c

Time

load (%eax,%edx.0,4) .la
iaddl t.la, %ecx.0c =2 %ecx.la

iaddl t.lc, %ecx.1lb = %ecx.lc
iaddl $3,%edx.0 =2 %edx.l1
cmpl %esi, %edx.l1 = cc.1
jl-taken cc.1

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19

load 4 (%eax,%edx.0,4) & t.1b] |
iaddl t.1b, %ecx.la = %ecx.lb
load 8 (%eax,%edx.0,4) = t.lc

18

Machine dependent optimization techniques:
loop unroll (3)

PRO.N 5

%edx.3

13 Iteration 3

» Estimated performance

— each iteration complete in 3 cycles
— should lead to CPE: 1.0 Iteration 4
Measured performance

— CPE: 1.33

— 1 iteration for each 4 cycles

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 19

Machine dependent optimization techniques:

loop unroll (4)
CPE value for several cases of loop unroll:
Degree of Unroll 1 2 3 4 8 16
Integer | Addition | 2.00 | 1.50 1.33 1.50 1.25 1.06
Integer | Product 4.00
o Addition 3.00
fo Product 5.00

— only improves the integer addition
* remaining cases are limited to the unit latency

— result does not linearly improve with the degree of unroll
» subtle effects determine the exact allocation of operations

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 20

load [(cmpl)

load [(cmpl) %edx.3
load cmpl

Iteration 1

10 Cycle

11

12 Iteration 2

13

14

15

Iteration 3
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

What else can be done?

21

Machine dependent optimization techniques:
loop unroll with parallelism (1)

7\
ININ

Sequential ...

{

}

void combine6 (vec_ptr v, int *dest)

int length = vec_length(v);
int limit length-1;
int *data get _vec_start(v);
int x0 = 1;
int x1 = 1;
int i;
/* junta 2 elem's de cada vez */
for (i = 0; i < limit; i+=2) {
x0 *= data[i];
x1 *= data[i+l];
}
/* completa os restantes elem's */
for (; i < length; i++) {
x0 *= datal[i];
}

*dest = x0 * x1;

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19

versus parallel!

Optimization 5:

—accumulate in 2
different products

 can be in parallel, if
OP is associative!

—merge at the end
—Performance

—CPE: 2.0

—improvement 2x

22

Machine dependent optimization techniques:
loop unroll with parallelism (2)

. %edx.0
— each product at the inner
cycle does not depend from | =
the other one... load | N\ Cempl
. . 1
— s0, they can be pipelined recx. 0 load
— known as iteration splitting j‘:\da
%ebx.0| |
i I t.1lb
load (%eax,%edx.0,4) = t.la imull Time
imull t.la, %ecx.0 = %ecx.1l imull
load 4 (%eax,%edx.0,4) = t.1lb
imull t.1lb, %ebx.0 3 3ebx.1 S N et — |
iaddl $2,%edx.0 > %edx.1 sepx.1
cmpl %esi, %edx.l = cc.1
jl-taken cc.1
AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 23

Machine dependent optimization techniques:

$edx.0

loop unroll with parallelism (3)

%edx 1

load

cmpl
1

addl

%edx.2

:cmpl:

imull

imull

%ecx.1

load
load

S

%ebx.1

Iteration 1

yt.2b

Cycle

11

Estimated performance |z
— the multiply unit is kept

2

imull

%ecx.2

A 4
load
load

%$ebx.2

Iteration 2

busy with 2 simultaneous

operations
— CPE: 2.0

yt.3b

imull

%ecx.3

%ebx.3

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19

lteration 3

24

ININ

Code optimization techniques:
comparative analyses of combine

Method Integer Real (single precision)
+ * + *

Abstract -g 42.06 41.86 41.44 160.00
Abstract -02 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 135.00
Access to data 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
Unroll 4x 1.50 4.00 3.00 5.00
Unroll 16x 1.06 4.00 3.00 5.00
Unroll 2x, paral. 2x 1.50 2.00 2.00 2.50
Unroll 4x, paral. 4x 1.50 2.00 1.50 2.50
Unroll 8x, paral. 4x 1.25 1.25 1.50 2.00
Theoretical Optimiz 1.00 1.00 1.00 2.00
Worst : Best 39.7 33.5 27.6 80.0

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19

25

Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI
> Pipeline CPI (efficient to exploit loop-level parallelism) =>

« Ideal pipeline CPI + v
» Structural stalls + v
» Data hazard stalls + v
» Control stalls + v

* Memory stalls ...

> Multiple issue =>
 find enough parallelism to keep pipeline(s) occupied

* Multithreading =>
» find additional ways to keep pipeline(s) occupied

cache techniques ...

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 26

Multithreading

Performing multiple threads of execution in
parallel
Replicate registers, PC/IP, etc.
Fast switching between threads
Fine-grain multithreading / time-multiplexed MT
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed

Coarse-grain multithreading
Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 27

Simultaneous Multithreading

In multiple-issue dynamically scheduled

processor

Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming
Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

Multithreading Example

Issue slots —

Thread A Thread B Thread C Thread D
[| | HEER [|]| |
| 1]
Time [N [|
[| | H [[]
EEEE B =
EEEE EEN
]
]
|]|

4-way superscalar

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

Multithreading Example

Issue slots —

Thread A Thread B Thread C Thread D
[| | HEN ([] |
| HE
Time IR [|
[|] H [
HEEEE B =
EEEE EEE
HE
| L] |
] | |

4-way superscalar

Issue slots —

Coarse MT Fine MT SMT
Time N Hu 1 11|
| [| | | [1T I] |
HEN 1 | | HEN
[| | | 1] | |
HEEE =B |
[1| L] 1
==- | |
HENN
| HEN]
| |

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Article Talk

X,

T Hyper-threading

The Free E 1 i
ShrecBrcysopeda From Wikipedia, the free encyclopedia

As seen before...

Internal architecture of I EENENCC -
Intel P6 processors C R N N BN Neml §
[O. [—
Note: "Intel P6" is the common parch name for PentiumPro, Pentium Il & Pentium Ill, which R AM
inspired Core, Nehalem and Phi

Instruction Control Unit
- ~ | |Address

......

Regstor T | nstrs.
Fie Deco
ns

=)
Cecd =n e
saer| | s
Execution Data Data
e = U
Execution Unit P
AJProenga, Advanced Architectures, MIEl, UMinho, 2015/16 5

The pipelined functional units might have
better use if shared among more threads =>

Note: white boxes are bubbles...

AJProencga, Advanced Architectures, MiEl, UMinho, 2016/17

Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI
> Pipeline CPI (efficient to exploit loop-level parallelism) =>

« Ideal pipeline CPI + v
+ Structural stalls + v
» Data hazard stalls + v
* Control stalls + v
* Memory stalls ... cache techniques ...

> Multiple issue =>
 find enough parallelism to keep pipeline(s) occupied
* Multithreading =>
» find additional ways to keep pipeline(s) occupied
 Insert data parallelism features

AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 32

Instruction and Data Streams

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Introduction

uononpoJU|

SIMD architectures can exploit significant data-

level parallelism for:

matrix-oriented scientific computing

media-oriented image and sound processing

SIMD is more energy efficient than MIMD
only needs to fetch one instruction per data operation
makes SIMD attractive for personal mobile devices

SIMD allows programmers to continue to think

sequentially

Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

uoIPNPOIU|

m Vector architectures (slides 5 to 18)
m SIMD & extensions (slides 19 to 24)
m Graphics Processor Units (GPUS) (next set)

1000

—%- MIMD*SIMD (32b)
—>¢ MIMD*SIMD (64 b)
SIMD (32b)

m For x86 processors: < o
- Expected grow ..
2 more cores/chip/year

= SIMD width:
2x every 4 years

= Potential speedup:
SIMD 2x that from MIMD!

o
o

Potential parallel speedup

o
E

1 L L L L
2003 2007 2011 2015 2019 2023

uuuuuuuuuuuuuu

Vector Architectures

m Basic idea:

» Read sets of data elements (gather from
memory) into “vector registers”

= Operate on those registers
= Store/scatter the results back into memory

S8INJ08}IYDIY JOJOBA

m Registers are controlled by the compiler
= Used to hide memory latency
= Leverage memory bandwidth

Cray-1 Supercomputer
(1976)

AJProencga, Advanced Architectures, MiEl, UMinho, 2016/17 37

‘ Challenges

n Start up time
= Latency of vector functional unit

= Assume the same as Cray-1
= Floating-point add => 6 clock cycles
= Floating-point multiply => 7 clock cycles
= Floating-point divide => 20 clock cycles
= Vector load => 12 clock cycles

S8INJ08}IYDIY JOJOBA

= Improvements:
= > 1 element per clock cycle (1)
= Non-64 wide vectors (2)
= |F statements in vector code (3)
= Memory system optimizations to support vector processors (4)
= Multiple dimensional matrices (5)
= Sparse matrices (6)
= Programming a vector computer (7)

Vector Programming (7)

m Compilers are a key element to give hints on whether a
code section will vectorize or not

S2INJ09}IYDJY JOJOBA

» Check if loop iterations have data dependencies,
otherwise vectorization is compromised

m Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices;
however:

= most do not support non-unit stride => care must be taken in the
design of data structures

= Ssame applies for gather-scatter...

» Media applications operate on data types narrower than
the native word size
= Intel SIMD Ext
started with 64-bit
wide vectors and
grew to wider vectors
and more facilit

4x float

i j 2x double

SSE and AVX-128 types

4x 32-bit doubleword

1

1x 128-bit doublequadword

s Current AVX AVX-256 types
generation i [y e
51 2'bit Wide I ’ _ 1 . 4x double

» Limitations, compared to vector architectures:
= Number of data operands encoded into op code
» No sophisticated addressing modes (strided, scatter-gather, but...)
= No mask registers

eIpawin|N\ o} suoisus)xg 18g uononasu| anIs

= Implementations:
= Intel MMX (1996)

» Eight 8-bit integer ops or four 16-bit integer ops
= Streaming SIMD Extensions (SSE) (1999)

= Eight 16-bit integer ops

» Four 32-bit integer/fp ops or two 64-bit integer/fp ops

= Advanced Vector eXtensions (AVX) (2010)
» Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2)
» 512-bits wide in AVX-512 (and also in Larrabee & Phi-KC)

SIMD Implementations

eIpawin|Np\ o} suoisualxg 18g uononisul QIS

= Operands must be in consecutive and aligned

memory locations

Extensées de processamento vetorial no Intel 64

63 3231 0 79 0 127 0
RAX
RCX
RDX
gﬁ Advanced Vector eXtensions, AVX 1.0
REP
§§1 4x doubles
i x87 (EP)
R10 83 3231 0 bytes
R11
Eg Program Counter 16-bit shorts
R14 L 32-bit integers
RS [Oniginal xB41432 ge
GPR I sdaedvy a6t SSE/SSE2 bit intege
bit inte
Floating Point (FP) SSE/AVX 128
Avxose e 2 i A Al) s
———— B B) o coweswvas
MIC-512 L , IS e — o
_ _ 26 bis prakii |l||]||‘]|||]||[l||‘||||||]lll]|l QV;\["\'EB
e s s e s R Ym0 SCCiCitltititrt .
s IITITITITITITTTD rox 16bitshorts
zmm ymm xmm | YMML 3 30 & 8 & W @ o« 32-bitintegers
: ir -_ i -' 4x 64-bit integers
L)
Register mapping in AVX I_ YMNILS | _i 2x 128-bit integers
255 12§n;27 AVX 2.0
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 Next: AVX-512 42

Additional features in Intel x86

Y
7/

X i Core i7/Haswell
B Multi-core M Superscalar Execution Core i7/Sandy Bridge

M FMA Instructions Pipelined Execution Core i7/Nehale
¥ SIMD Instructions Frequency Scaling Core 2 Duo

100G

‘I?G

Core Duo
Pentium 4

8

Pentium Il

Pentium I

Pentium MM
Pentium Pro

1OPM

Pentium

Peak DP FLOPS (balanced MUL+ADD)
10M
\

486 DX2
486 DX
387 DX
s
1 9‘90 1 9'95 20'00 20'05 20'1 0
Processor Release Date
from Marat Dukhan, 2014
AJProencga, Advanced Architectures, MiEl, UMinho, 2018/19 43
Beyond Vector/SIMD architectures

» Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device

— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

» Evolution of Vector/SIMD-extended architectures

— CPU cores with wider vectors and/or SIMD cores:
« DSP VLIW cores with vector capabilities: Texas Instruments (...?)
» PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
» ARMG64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
+ x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
» other many-core: ShenWay 260, Adapteva Epiphany-V...
— coprocessors (require a host scalar processor): accelerator devices
* on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)

« focus on SIMT/SIMD to hide memory latency: GPU-type approach
» ISA-free architectures, code compiled to silica: FPGA

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19 44

Intel MIC: Many Integrated Core

Intel evolution, from:

» Larrabee (80-core GPU) & SCC
5 TN R Single-chip
o | : s Cloud
HiF—— £ Compulter,
3 L2 Cache ? odx

dual-core tiles

2
=]
&
a
o
£
&
o
o

to MIC:
° Knights Ferry (pre-production, Stampede)
* Knights Corner >

Xeon Phi co-processor up to 61 Pentium cores

* Knights Landing
Xeon Phi full processor,
36x dual-core tiles with 64-bit Atoms

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

7\
ININ

Shared Multiplier
Circuit for SP/DP

AJProenca, Advanced Architectures, MiEl, UMinho, 2018/19

Intel Knights Landing architecture

7\
ININ

Knights Landing Overview

2x16 X4
| Bl 1x4 DM (e Ae
/ ‘ ’ . Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2
[| YR

Gen 3 Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384GB
10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Tile

4200 w

36 Tiles
connected by
2D Mesh
Interconnect

VWrm2ZP>PIN H2P00 w

VWrErm22>»IT 0

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Scurce Iniet All products, compuder sysiems, dsfes and figues specdied are prelimi

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 47

INTEL" XEON PHI™ X200 PROCESSOR OVERVIEW

Compute

= Intel® Xeon® Processor Binary-Compatible
= 3+ TFLOPS, 3X ST (single-thread) per.vs xnc

Platform Memory
upto 384 GB DDR4

= 2D Mesh Architecture

Knights = Out-of-Order Cores

Landing

On-Package Memory (MCDRAM)
w72 Cores = Up to 16 GB at launch
= Over 5Xx STREAM vs. DDR4 at launch

Integrated Fabric

51

A Spectrum of Possible Use Models

Symmetric Processing Intel® MIC
Architecture

Intel Xeon processor . Intel MIC Architecture Focused
Stand-alone (erreEesi Stand-alone

Intel® Xeon®
Processor
Focused

Intel Xeon "mic

General Purpose Serial Codes with highly parallel

and Parallel Codes phases Highly parallel codes

Intel BVEMI®)

Xeon
Codes Foo()

MIC
Codes

Sponsors of Tomorrow: (||'It€|)

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 49

#1 from June’16 TOP500:
Sunway TaihuLight

7\
ININ

Overview of the Sunwgy TaihuLight System

Sunway
TalhuLight

System

Cabinet Cabinet Cabinet
(4 Supernodes (s o0 oy ——

T
40 Cabinets

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

AJProenga, Advanced Architectures, 256 Nodes = 1 Supernode 256 Nodes = 1 Supernode 256 Nodes = 1 Supernode 256 Nodes = 1 Supernode

One cabinet
with 4 Supernodes

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

One card with two nodes
(two SW26010 chips)

7“"’
SW26010: the 4x64-core 64-bit RISC processor (with SIMD extensions)

. S e 5 e,

#1 from June’16 TOP500:
Sunway TaihuLight

One Supernode
with 32 boards

One board with 4 cards,

2 up & 2 down

51

#1 from June’16 TOP500:
Sunway TaihuLight

| M2in memary

| Main memory

/ r—

[Zl

e \

.....

Ce] []]

s

| |

L |

9

T
1 11
11

w T

- [1
11
||
| w |
I_-u\nl
11

1 11
L1

I
|
1

Group

Growp

i

g

Network on Chip (NoC)

k C

%EJ

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

