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Performance Summary  (single-core) 

•  Performance depends on 
– Algorithm: affects IC, possibly CPI 
– Programming language: affects IC, CPI 
– Compiler: affects IC, CPI 
–  Instruction set architecture: affects IC, CPI, Tc 

– Processor design: ILP, vectorization, mem-hierar, ... 

The BIG Picture 

PU Time = Instructions
Program

×
Clock cycles
Instruction

×
Seconds

Clock cycle

IC CPI Tc 
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Background for Advanced Architectures 

Key concepts to revise: 
– numerical data representation (for error analysis) 
– ISA (Instruction Set Architecture) 
– how C compilers generate code (a look into assembly code) 

•  how scalar and structured data are allocated 
•  how control structures are implemented 
•  how to call/return from function/procedures 
•  what architecture features impact performance 

– Improvements to enhance performance in a single PU 
•  ILP: pipeline, multiple issue, … 
•  thread-level parallelism 
•  data parallelism: SIMD/vector processing, ... 
•  memory hierarchy: cache levels, ... 
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Pipeline Summary 

•  Pipelining improves performance by increasing 
instruction throughput 
– Executes multiple instructions in parallel 
– Each instruction has the same latency 

•  Subject to hazards 
– Structure, data, control 

•  Instruction set design affects complexity of 
pipeline implementation 
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C

O
D

: C
ha

pt
er

 4
 —

 T
he

 P
ro

ce
ss

or
 



AJProença, Advanced Architectures, MiEI, UMinho, 2018/19  5 

Processor arch: beyond Instruction-Level Parallelism 

•  When exploiting ILP, goal is to minimize CPI 
Ø Pipeline CPI (efficient to exploit loop-level parallelism) => 

•  Ideal pipeline CPI +  ✔ 
•  Structural stalls +    ✔ 
•  Data hazard stalls +  ✔ 
•  Control stalls +   ✔ 
•  Memory stalls ...  cache techniques ...  

Ø Multiple issue =>  
•  find enough parallelism to keep pipeline(s) occupied 
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Does Multiple Issue Work? 

•  Yes, but not as much as we�d like 
•  Programs have real dependencies that limit ILP 
•  Some dependencies are hard to eliminate 

–  e.g., pointer aliasing 
•  Some parallelism is hard to expose 

–  Limited window size during instruction issue 
•  Memory delays and limited bandwidth 

–  Hard to keep pipelines full 
•  Speculation can help if done well 
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Multiple Issue and Static Scheduling 

n  To achieve CPI < 1, need to complete 
multiple instructions per clock cycle 

n  Solutions: 
n  statically scheduled superscalar processors 
n  VLIW (very long instruction word) processors 
n  dynamically scheduled superscalar processors 

M
ultiple Issue and S

tatic S
cheduling 
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Knights 
Corner 

Knights 
Landing 

Atom 

Xeon Phi 

Internal x86 roadmap 

P5 { 
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Internal architecture of 
Intel P6 processors 

Functional 
Units  

 
 

Integer/ 
Branch 

FP 
Add 

FP 
Mult/Div Load Store 

Instruction 
Cache 

Data 
Cache 

Fetch 
Control 

Instruction 
Decode 

Address 

Instrs. 

Operations 
Prediction OK? 

Data Data 
Addr. Addr. 

General 
Integer 

Operation Results 

Retirement 
Unit 

Register 
File 

Execution Unit 

Instruction Control Unit 

Note: "Intel P6" is the common µarch name for PentiumPro, Pentium II & Pentium III, which 
inspired Core, Nehalem and later generations 
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•  Parallel execution of 
    several instructions 
–  2 integer (1 can be branch) 
–  1 FP Add 
–  1 FP Multiply or Divide 
–  1 load 
–  1 store 

•  Some instructions require > 1 cycle, but can be pipelined: 

Funct 
Units  

. 
 

Integer/ 
Branch 

FP 
Add 

FP 
Mult/Div Load Store 

Data 
Cache 

Data Data 
Addr. Addr. 

General 
Integer 

Operation Results 

Execution Unit 

Some capabilities 
of Intel P6 

Instruction Latency  Cycles/Issue 
Load / Store 3 1 
Integer Multiply 4 1 
Integer Divide 36 36 
Double/Single FP Multiply 5 2 
Double/Single FP Add 3 1 
Double/Single FP Divide 38 38 
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•  Procedure to perform addition (w/ some improvements) 
–  compute the sum of all vector elements 
–  store the result in a given memory location 
–  structure and operations on the vector defined by ADT 
•  Metrics 
–  Clock-cycles Per Element, CPE 

void combine4(vec_ptr v, int *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  int *data = get_vec_start(v); 
  int sum = 0; 
  for (i = 0; i < length; i++) 
    sum += data[i]; 
  *dest = sum; 
} 

A detailed example: 
generic & abstract form of combine 

void abstract_combine4(vec_ptr v, data_t *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  data_t *data = get_vec_start(v); 
  data_t t = IDENT; 
  for (i = 0; i < length; i++) 
    t = t OP data[i]; 
  *dest = t; 
} 
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•  Assembly version for combine4 
–  data type: integer ; operation: multiplication 

•  Translating 1st  iteration 

.L24:   # Loop: 
 imull (%eax,%edx,4),%ecx  # t *= data[i] 
 incl  %edx  # i++ 
 cmpl  %esi,%edx  # i:length 
 jl  .L24  # if < goto Loop 

.L24:   
 imull (%eax,%edx,4),%ecx 
 
 incl  %edx 
 cmpl  %esi,%edx 
 jl  .L24 

 
load  (%eax,%edx.0,4) è t.1 
imull t.1, %ecx.0   è %ecx.1 
incl  %edx.0  è %edx.1 
cmpl  %esi, %edx.1    è cc.1 
jl  -taken cc.1 

Converting instructions with registers 
into operations with tags 
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•  Operations 
–  vertical axis shows the time the 

instruction is executed 
•  an operation cannot start with its 

operands 
–  time length measures latency 

•  Operands 
–  arcs are only showed for operands 

that are used in the context of the 
execution unit 

cc.1 

t.1 

load 

%ecx.1 

incl 

cmpl 

jl 

%edx.0 

%edx.1 

%ecx.0 

imull 

Time

Visualizing instruction execution in P6:  
1 iteration of the multiplication cycle on combine 

load  (%eax,%edx.0,4) è t.1 
imull t.1, %ecx.0   è %ecx.1 
incl  %edx.0  è %edx.1 
cmpl  %esi, %edx.1   è cc.1 
jl  -taken cc.1 
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• With unlimited 
resources 
– parallel and pipelined 

execution of 
operations at the EU 

– out-of-order and 
speculative execution 

• Performance 
– limitative factor: 

latency of integer 
multiplication 

– CPE: 4.0 

Visualizing instruction execution in P6:  
3 iterations of the same cycle on combine 
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•  With unlimited resources 
•  Performance 

–  it can start a new iteration at each clock cycle 
–  theoretical CPE: 1.0 
–  it requires parallel execution of 4 integer operations 
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Visualizing instruction execution in P6:  
4 iterations of the addition cycle on combine 
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Iteration 4

Iteration 5

Iteration 6

Iteration 7
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–  only 2 integer units 
–  some options must be delayed, even if 

the operands are available 
–  priority: execution order in the code 

• Performance 
–  expected CPE: 2.0 

Iterations of the addition cycles:  
analysis with limited resources 
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Optimization 4: 
– merges several (3) 

iterations in a 
single loop cycle 

– reduces cycle 
overhead in loop 
iterations 

– runs the extra work 
at the end 

– CPE: 1.33 

void combine5(vec_ptr v, int *dest) 
{ 
  int length = vec_length(v); 
  int limit = length-2; 
  int *data = get_vec_start(v); 
  int sum = 0; 
  int i; 
  /* junta 3 elem's no mesmo ciclo */ 
  for (i = 0; i < limit; i+=3) { 
    sum += data[i] + data[i+1] 
           + data[i+2]; 
  } 
  /* completa os restantes elem's */ 
  for (; i < length; i++) { 
    sum += data[i]; 
  } 
  *dest = sum; 
} 

Machine dependent optimization techniques:  
loop unroll (1) 
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– loads can be pipelined, 
there are no 
dependencies 

– only a set of loop control 
instructions 

load (%eax,%edx.0,4)  è t.1a 
iaddl t.1a, %ecx.0c   è %ecx.1a 
load 4(%eax,%edx.0,4) è t.1b 
iaddl t.1b, %ecx.1a   è %ecx.1b 
load 8(%eax,%edx.0,4) è t.1c 
iaddl t.1c, %ecx.1b   è %ecx.1c 
iaddl $3,%edx.0       è %edx.1 
cmpl %esi, %edx.1     è cc.1 
jl-taken cc.1 

Time
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Machine dependent optimization techniques:  
loop unroll (2) 
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•  Estimated performance 
–  each iteration complete in 3 cycles 
–  should lead to CPE: 1.0 

•  Measured performance 
–  CPE: 1.33 
–  1 iteration for each 4 cycles 

Machine dependent optimization techniques:  
loop unroll (3) 
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–   only improves the integer addition 
•  remaining cases are limited to the unit latency 

–  result does not linearly improve with the degree of unroll 
•  subtle effects determine the exact allocation of operations 

Degree of Unroll 1 2 3 4 8 16 

Integer Addition 2.00 1.50 1.33 1.50 1.25 1.06 

Integer Product 4.00 

fp Addition 3.00 

fp Product 5.00 

Machine dependent optimization techniques:  
loop unroll (4) 

CPE value for several cases of loop unroll:  
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What else can be done? 
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Sequential ... versus parallel! 

Optimization 5: 
– accumulate in 2 

different products 
• can be in parallel, if 

OP is associative! 
– merge at the end 

– Performance 
– CPE: 2.0 
– improvement 2x 

Machine dependent optimization techniques:  
loop unroll with parallelism (1) 

void combine6(vec_ptr v, int *dest) 
{ 
  int length = vec_length(v); 
  int limit = length-1; 
  int *data = get_vec_start(v); 
  int x0 = 1; 
  int x1 = 1; 
  int i; 
  /* junta 2 elem's de cada vez */ 
  for (i = 0; i < limit; i+=2) { 
    x0 *= data[i]; 
    x1 *= data[i+1]; 
  } 
  /* completa os restantes elem's */ 
  for (; i < length; i++) { 
    x0 *= data[i]; 
  } 
  *dest = x0 * x1; 
} 
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–  each product at the inner 
cycle does not depend from 
the other one… 

–  so, they can be pipelined 
–  known as iteration splitting 

load (%eax,%edx.0,4)  è t.1a 
imull t.1a, %ecx.0    è %ecx.1 
load 4(%eax,%edx.0,4) è t.1b 
imull t.1b, %ebx.0    è %ebx.1 
iaddl $2,%edx.0       è %edx.1 
cmpl %esi, %edx.1     è cc.1 
jl-taken cc.1 

Time
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Machine dependent optimization techniques:  
loop unroll with parallelism (2) 
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 Estimated performance 
–  the multiply unit is kept 

busy with 2 simultaneous 
operations 

–  CPE: 2.0 

Machine dependent optimization techniques:  
loop unroll with parallelism (3) 
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Code optimization techniques:  
comparative analyses of combine 
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Processor arch: beyond Instruction-Level Parallelism 

•  When exploiting ILP, goal is to minimize CPI 
Ø Pipeline CPI (efficient to exploit loop-level parallelism) => 

•  Ideal pipeline CPI +  ✔ 
•  Structural stalls +    ✔ 
•  Data hazard stalls +  ✔ 
•  Control stalls +   ✔ 
•  Memory stalls ...  cache techniques ...  

Ø Multiple issue =>  
•  find enough parallelism to keep pipeline(s) occupied 

•  Multithreading =>  
Ø find additional ways to keep pipeline(s) occupied 
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Multithreading 
n  Performing multiple threads of execution in 

parallel 
n  Replicate registers, PC/IP, etc. 
n  Fast switching between threads 

n  Fine-grain multithreading / time-multiplexed MT 
n  Switch threads after each cycle 
n  Interleave instruction execution 
n  If one thread stalls, others are executed 

n  Coarse-grain multithreading 
n  Only switch on long stall (e.g., L2-cache miss) 
n  Simplifies hardware, but doesn’t hide short stalls 

(eg, data hazards) 

§7.5 H
ardw

are M
ultithreading 
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Simultaneous Multithreading 
n  In multiple-issue dynamically scheduled 

processor 
n  Schedule instructions from multiple threads 
n  Instructions from independent threads execute 

when function units are available 
n  Within threads, dependencies handled by 

scheduling and register renaming 
n  Example: Intel Pentium-4 HT 

n  Two threads: duplicated registers, shared 
function units and caches 
HT: Hyper-Threading, Intel trade mark for their SMT implementation 
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT! 
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Multithreading Example 

4-way superscalar 
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Multithreading Example 

4-way superscalar 
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As seen before... 

The pipelined functional units might have 
better use if shared among more threads => 

Note: white boxes are bubbles... 
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Processor arch: beyond Instruction-Level Parallelism 

•  When exploiting ILP, goal is to minimize CPI 
Ø Pipeline CPI (efficient to exploit loop-level parallelism) => 

•  Ideal pipeline CPI +  ✔ 
•  Structural stalls +    ✔ 
•  Data hazard stalls +  ✔ 
•  Control stalls +   ✔ 
•  Memory stalls ...  cache techniques ...  

Ø Multiple issue =>  
•  find enough parallelism to keep pipeline(s) occupied 

•  Multithreading =>  
Ø find additional ways to keep pipeline(s) occupied 

•  Insert data parallelism features  
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Instruction and Data Streams 
§7.6 S

IS
D

, M
IM

D
, S

IM
D

, S
P

M
D

, and Vector 

Data Streams 
Single Multiple 

Instruction 
Streams 

Single SISD: 
Intel Pentium 4 

SIMD: SSE 
instructions of x86 

Multiple MISD: 
No examples today 

MIMD: 
Intel Xeon e5345 

n  SPMD: Single Program Multiple Data 
n  A parallel program on a MIMD computer 
n  Conditional code for different processors 

Copyright © 2012, Elsevier Inc. All rights reserved. 

Introduction 
n  SIMD architectures can exploit significant data-

level parallelism for: 
n  matrix-oriented scientific computing 
n  media-oriented image and sound processing 

n  SIMD is more energy efficient than MIMD 
n  only needs to fetch one instruction per data operation 
n  makes SIMD attractive for personal mobile devices 

n  SIMD allows programmers to continue to think 
sequentially 

Introduction 
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SIMD Parallelism 

n  Vector architectures (slides 5 to 18) 
n  SIMD  & extensions (slides 19 to 24) 
n  Graphics Processor Units (GPUs) (next set) 

n  For x86 processors: 
n  Expected grow: 

 2 more cores/chip/year 
n  SIMD width:  

 2x every 4 years 
n  Potential speedup: 

 SIMD 2x that from MIMD! 

Introduction 
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Vector Architectures 

n  Basic idea: 
n  Read sets of data elements (gather from 

memory) into �vector registers� 
n  Operate on those registers 
n  Store/scatter the results back into memory 

n  Registers are controlled by the compiler 
n  Used to hide memory latency 
n  Leverage memory bandwidth 

Vector A
rchitectures 
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Cray-1 Supercomputer 
(1976) 
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Challenges 
n  Start up time 

n  Latency of vector functional unit 
n  Assume the same as Cray-1 

n  Floating-point add => 6 clock cycles 
n  Floating-point multiply => 7 clock cycles 
n  Floating-point divide => 20 clock cycles 
n  Vector load => 12 clock cycles 

n  Improvements: 
n  > 1 element per clock cycle (1) 
n  Non-64 wide vectors (2) 
n  IF statements in vector code (3) 
n  Memory system optimizations to support vector processors (4) 
n  Multiple dimensional matrices (5) 
n  Sparse matrices (6) 
n  Programming a vector computer (7) 

Vector A
rchitectures 
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Vector Programming (7) 

n  Compilers are a key element to give hints on whether a 
code section will vectorize or not 

n  Check if loop iterations have data dependencies, 
otherwise vectorization is compromised 

n  Vector Architectures have a too high cost, but simpler 
variants are currently available on off-the-shelf devices; 
however: 
n  most do not support non-unit stride => care must be taken in the 

design of data structures 
n  same applies for gather-scatter... 

 

Vector A
rchitectures 
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SIMD Extensions 
n  Media applications operate on data types narrower than 

the native word size 
n  Intel SIMD Ext 

started with 64-bit 
wide vectors and 
grew to wider vectors 
and more facilit 

n  Current AVX  
generation is 
512-bit wide 

n  Limitations, compared to vector architectures: 
n  Number of data operands encoded into op code 
n  No sophisticated addressing modes (strided, scatter-gather, but…) 
n  No mask registers 

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia 



41 Copyright © 2012, Elsevier Inc. All rights reserved. 

SIMD Implementations 

n  Implementations: 
n  Intel MMX (1996) 

n  Eight 8-bit integer ops or four 16-bit integer ops 
n  Streaming SIMD Extensions (SSE) (1999) 

n  Eight 16-bit integer ops 
n  Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

n  Advanced Vector eXtensions (AVX) (2010) 
n  Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2) 
n  512-bits wide in AVX-512 (and also in Larrabee & Phi-KC) 

n  Operands must be in consecutive and aligned 
memory locations 

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia 

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19  42 

Register mapping in AVX 

Next: AVX-512 

Advanced Vector eXtensions, AVX 1.0 

AVX 2.0 

Extensões de processamento vetorial no Intel 64 



AJProença, Advanced Architectures, MiEI, UMinho, 2018/19  43 

Additional features in Intel x86 

from	Marat	Dukhan,	2014	
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Beyond Vector/SIMD architectures 

•  Vector/SIMD-extended architectures are hybrid approaches 
– mix (super)scalar + vector op capabilities on a single device 
–  highly pipelined approach to reduce memory access penalty 
–  tightly-closed access to shared memory: lower latency 

•  Evolution of Vector/SIMD-extended architectures 
– CPU cores with wider vectors and/or SIMD cores:  

•  DSP VLIW cores with vector capabilities: Texas Instruments (...?) 
•  PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC... 

•  ARM64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?) 
•  x86 many-core: Intel MIC / Xeon KNL, AMD FirePro... 
•  other many-core: ShenWay 260, Adapteva Epiphany-V... 

–  coprocessors (require a host scalar processor): accelerator devices 
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC) 
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach 
•  ISA-free architectures, code compiled to silica: FPGA 
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Intel evolution, from:  
•  Larrabee (80-core GPU)       &   SCC 
 
 
 
 
 
to MIC: 
•  Knights Ferry (pre-production, Stampede) 

•  Knights Corner 
Xeon Phi co-processor up to 61 Pentium cores 

•  Knights Landing 
Xeon Phi full processor,  
36x dual-core tiles with 64-bit Atoms 

 

Intel MIC: Many Integrated Core 

Single-chip  
Cloud  
Computer,  
24x  
dual-core tiles 
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Intel Knights Corner architecture 
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Intel Knights Landing architecture 
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Intel: Many Integrated Core 
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#1 from June’16 TOP500: 
Sunway TaihuLight  
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Overview of the Sunway TaihuLight System 
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#1 from June’16 TOP500: 
Sunway TaihuLight  
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One cabinet 
with 4 Supernodes 

One Supernode  
with 32 boards 

One board with 4 cards, 
2 up & 2 down 
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#1 from June’16 TOP500: 
Sunway TaihuLight  
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SW26010: the 4x64-core 64-bit RISC processor (with SIMD extensions) 

One card with two nodes 
(two SW26010 chips) 


