
AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 1

Parallel Computing

Master Informatics Eng.

2018/19

A.J.Proença

Instruction-Level Parallelism & Data Parallelism

(some slides are borrowed, mod’s in green)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 2

Performance Summary (single-core)

•  Performance depends on
– Algorithm: affects IC, possibly CPI
– Programming language: affects IC, CPI
– Compiler: affects IC, CPI
–  Instruction set architecture: affects IC, CPI, Tc

– Processor design: ILP, vectorization, mem-hierar, ...

The BIG Picture

PU Time = Instructions
Program

×
Clock cycles
Instruction

×
Seconds

Clock cycle

IC CPI Tc

C
O

D
: C

ha
pt

er
 1

 —
 C

om
pu

te
r A

bs
tra

ct
io

ns
 a

nd
 T

ec
hn

ol
og

y

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 3

Background for Advanced Architectures

Key concepts to revise:
– numerical data representation (for error analysis)
– ISA (Instruction Set Architecture)
– how C compilers generate code (a look into assembly code)

•  how scalar and structured data are allocated
•  how control structures are implemented
•  how to call/return from function/procedures
•  what architecture features impact performance

– Improvements to enhance performance in a single PU
•  ILP: pipeline, multiple issue, …
•  thread-level parallelism
•  data parallelism: SIMD/vector processing, ...
•  memory hierarchy: cache levels, ...

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 4

Pipeline Summary

•  Pipelining improves performance by increasing
instruction throughput
– Executes multiple instructions in parallel
– Each instruction has the same latency

•  Subject to hazards
– Structure, data, control

•  Instruction set design affects complexity of
pipeline implementation

The BIG Picture
C

O
D

: C
ha

pt
er

 4
 —

 T
he

 P
ro

ce
ss

or

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 5

Processor arch: beyond Instruction-Level Parallelism

•  When exploiting ILP, goal is to minimize CPI
Ø Pipeline CPI (efficient to exploit loop-level parallelism) =>

•  Ideal pipeline CPI + ✔
•  Structural stalls + ✔
•  Data hazard stalls + ✔
•  Control stalls + ✔
•  Memory stalls ... cache techniques ...

Ø Multiple issue =>
•  find enough parallelism to keep pipeline(s) occupied

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 6

Does Multiple Issue Work?

•  Yes, but not as much as we�d like
•  Programs have real dependencies that limit ILP
•  Some dependencies are hard to eliminate

–  e.g., pointer aliasing
•  Some parallelism is hard to expose

–  Limited window size during instruction issue
•  Memory delays and limited bandwidth

–  Hard to keep pipelines full
•  Speculation can help if done well

The BIG Picture
C

O
D

: C
ha

pt
er

 4
 —

 T
he

 P
ro

ce
ss

or

7 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

n  To achieve CPI < 1, need to complete
multiple instructions per clock cycle

n  Solutions:
n  statically scheduled superscalar processors
n  VLIW (very long instruction word) processors
n  dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 8

Knights
Corner

Knights
Landing

Atom

Xeon Phi

Internal x86 roadmap

P5 {

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 9

Internal architecture of
Intel P6 processors

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instrs.

Operations
Prediction OK?

Data Data
Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Execution Unit

Instruction Control Unit

Note: "Intel P6" is the common µarch name for PentiumPro, Pentium II & Pentium III, which
inspired Core, Nehalem and later generations

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 10

•  Parallel execution of
 several instructions
–  2 integer (1 can be branch)
–  1 FP Add
–  1 FP Multiply or Divide
–  1 load
–  1 store

•  Some instructions require > 1 cycle, but can be pipelined:

Funct
Units

.

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Data
Cache

Data Data
Addr. Addr.

General
Integer

Operation Results

Execution Unit

Some capabilities
of Intel P6

Instruction Latency Cycles/Issue
Load / Store 3 1
Integer Multiply 4 1
Integer Divide 36 36
Double/Single FP Multiply 5 2
Double/Single FP Add 3 1
Double/Single FP Divide 38 38

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 11

•  Procedure to perform addition (w/ some improvements)
–  compute the sum of all vector elements
–  store the result in a given memory location
–  structure and operations on the vector defined by ADT
•  Metrics
–  Clock-cycles Per Element, CPE

void combine4(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

A detailed example:
generic & abstract form of combine

void abstract_combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *data = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP data[i];
 *dest = t;
}

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 12

•  Assembly version for combine4
–  data type: integer ; operation: multiplication

•  Translating 1st iteration

.L24: # Loop:
 imull (%eax,%edx,4),%ecx # t *= data[i]
 incl %edx # i++
 cmpl %esi,%edx # i:length
 jl .L24 # if < goto Loop

.L24:
 imull (%eax,%edx,4),%ecx

 incl %edx
 cmpl %esi,%edx
 jl .L24

load (%eax,%edx.0,4) è t.1
imull t.1, %ecx.0 è %ecx.1
incl %edx.0 è %edx.1
cmpl %esi, %edx.1 è cc.1
jl -taken cc.1

Converting instructions with registers
into operations with tags

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 13

•  Operations
–  vertical axis shows the time the

instruction is executed
•  an operation cannot start with its

operands
–  time length measures latency

•  Operands
–  arcs are only showed for operands

that are used in the context of the
execution unit

cc.1

t.1

load

%ecx.1

incl

cmpl

jl

%edx.0

%edx.1

%ecx.0

imull

Time

Visualizing instruction execution in P6:
1 iteration of the multiplication cycle on combine

load (%eax,%edx.0,4) è t.1
imull t.1, %ecx.0 è %ecx.1
incl %edx.0 è %edx.1
cmpl %esi, %edx.1 è cc.1
jl -taken cc.1

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 14

cc.1

t.1

load

%ecx.1

incl

cmpl

jl

%edx.0

%edx.1

%ecx.0

imull

cc.1

cc.2%ecx.0
%edx.3

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cc.1

cc.2

Iteration 3

Iteration 2

Iteration 1

cc.1

cc.2%ecx.0
%edx.3

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cc.1

cc.2

Iteration 3

Iteration 2

Iteration 1

• With unlimited
resources
– parallel and pipelined

execution of
operations at the EU

– out-of-order and
speculative execution

• Performance
– limitative factor:

latency of integer
multiplication

– CPE: 4.0

Visualizing instruction execution in P6:
3 iterations of the same cycle on combine

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 15

•  With unlimited resources
•  Performance

–  it can start a new iteration at each clock cycle
–  theoretical CPE: 1.0
–  it requires parallel execution of 4 integer operations

%edx.0

t.1

%ecx.i +1

incl

cmpl

jl

addl
%ecx.1

i=0

load
cc.1

%edx.0

t.1

%ecx.i +1

incl

cmpl

jl

addl
%ecx.1

i=0

load
cc.1

%edx.1

t.2

%ecx.i +1

incl

cmpl

jl

addl
%ecx.2

i=1

load
cc.2

%edx.1

t.2

%ecx.i +1

incl

cmpl

jl

addl
%ecx.2

i=1

load
cc.2

%edx.2

t.3

%ecx.i +1

incl

cmpl

jl

addl
%ecx.3

i=2

load
cc.3

%edx.2

t.3

%ecx.i +1

incl

cmpl

jl

addl
%ecx.3

i=2

load
cc.3

%edx.3

t.4

%ecx.i +1

incl

cmpl

jl

addl
%ecx.4

i=3

load
cc.4

%edx.3

t.4

%ecx.i +1

incl

cmpl

jl

addl
%ecx.4

i=3

load
cc.4

%ecx.0

%edx.4

Cycle

1

2

3

4

5

6

7

Cycle

1

2

3

4

5

6

7

Iteration 1

Iteration 2

Iteration 3

Iteration 4

4 integer ops

Visualizing instruction execution in P6:
4 iterations of the addition cycle on combine

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 16

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

%ecx.3

%edx.8

%edx.3

t.4
%ecx.i +1

incl

cmpl

jladdl

%ecx.4

i=3

load

cc.4

%edx.3

t.4
%ecx.i +1

incl

cmpl

jladdl

%ecx.4

i=3

load

cc.4

%edx.4

t.5
%ecx.i +1

incl

cmpl

jladdl
%ecx.5

i=4

load

cc.5

%edx.4

t.5
%ecx.i +1

incl

cmpl

jladdl
%ecx.5

i=4

load

cc.5

cc.6

%edx.7

t.8
%ecx.i +1

incl

cmpl

jladdl

%ecx.8

i=7

load

cc.8

%edx.7

t.8
%ecx.i +1

incl

cmpl

jladdl

%ecx.8

i=7

load

cc.8

%edx.5

t.6

incl

cmpl

jl

addl

%ecx.6

load

i=5

%edx.5

t.6

incl

cmpl

jl

addl

%ecx.6

load

i=5

6

7

8

9

10

11

12

Cycle

13

14

15

16

17

6

7

8

9

10

11

12

Cycle

13

14

15

16

17

18

cc.6

%edx.6

t.7

cmpl

jl

addl

%ecx.7

load

cc.7

i=6

incl

%edx.6

t.7

cmpl

jl

addl

%ecx.7

load

cc.7

i=6

incl

–  only 2 integer units
–  some options must be delayed, even if

the operands are available
–  priority: execution order in the code

• Performance
–  expected CPE: 2.0

Iterations of the addition cycles:
analysis with limited resources

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 17

Optimization 4:
– merges several (3)

iterations in a
single loop cycle

– reduces cycle
overhead in loop
iterations

– runs the extra work
at the end

– CPE: 1.33

void combine5(vec_ptr v, int *dest)
{
 int length = vec_length(v);
 int limit = length-2;
 int *data = get_vec_start(v);
 int sum = 0;
 int i;
 /* junta 3 elem's no mesmo ciclo */
 for (i = 0; i < limit; i+=3) {
 sum += data[i] + data[i+1]
 + data[i+2];
 }
 /* completa os restantes elem's */
 for (; i < length; i++) {
 sum += data[i];
 }
 *dest = sum;
}

Machine dependent optimization techniques:
loop unroll (1)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 18

– loads can be pipelined,
there are no
dependencies

– only a set of loop control
instructions

load (%eax,%edx.0,4) è t.1a
iaddl t.1a, %ecx.0c è %ecx.1a
load 4(%eax,%edx.0,4) è t.1b
iaddl t.1b, %ecx.1a è %ecx.1b
load 8(%eax,%edx.0,4) è t.1c
iaddl t.1c, %ecx.1b è %ecx.1c
iaddl $3,%edx.0 è %edx.1
cmpl %esi, %edx.1 è cc.1
jl-taken cc.1

Time

%edx.0

%edx.1

%ecx.0c

cc.1

t.1a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.1c

addl

addl

t.1b

t.1c

%ecx.1a

%ecx.1b

load

load

load

Machine dependent optimization techniques:
loop unroll (2)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 19

i=6

cc.3

t.3a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.3c

addl

addl

t.3b

t.3c

%ecx.3a

%ecx.3b

load

load

load

%ecx.2c

i=9

cc.4

t.4a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.4c

addl

addl

t.4b

t.4c

%ecx.4a

%ecx.4b

load

load

load

cc.4

t.4a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.4c

addl

addl

t.4b

t.4c

%ecx.4a

%ecx.4b

load

load

load

%edx.3

%edx.2

%edx.4

5

6

7

8

9

10

11

Cycle

12

13

14

15

5

6

7

8

9

10

11

Cycle

12

13

14

15

Iteration 3

Iteration 4

•  Estimated performance
–  each iteration complete in 3 cycles
–  should lead to CPE: 1.0

•  Measured performance
–  CPE: 1.33
–  1 iteration for each 4 cycles

Machine dependent optimization techniques:
loop unroll (3)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 20

–  only improves the integer addition
•  remaining cases are limited to the unit latency

–  result does not linearly improve with the degree of unroll
•  subtle effects determine the exact allocation of operations

Degree of Unroll 1 2 3 4 8 16

Integer Addition 2.00 1.50 1.33 1.50 1.25 1.06

Integer Product 4.00

fp Addition 3.00

fp Product 5.00

Machine dependent optimization techniques:
loop unroll (4)

CPE value for several cases of loop unroll:

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 21

What else can be done?

cc.1

cc.2%ecx.0
%edx.3

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cc.1

cc.2

Iteration 3

Iteration 2

Iteration 1

cc.1

cc.2%ecx.0
%edx.3

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cc.1

cc.2

Iteration 3

Iteration 2

Iteration 1

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 22

Sequential ... versus parallel!

Optimization 5:
– accumulate in 2

different products
• can be in parallel, if

OP is associative!
– merge at the end

– Performance
– CPE: 2.0
– improvement 2x

Machine dependent optimization techniques:
loop unroll with parallelism (1)

void combine6(vec_ptr v, int *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 int *data = get_vec_start(v);
 int x0 = 1;
 int x1 = 1;
 int i;
 /* junta 2 elem's de cada vez */
 for (i = 0; i < limit; i+=2) {
 x0 *= data[i];
 x1 *= data[i+1];
 }
 /* completa os restantes elem's */
 for (; i < length; i++) {
 x0 *= data[i];
 }
 *dest = x0 * x1;
}

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 23

–  each product at the inner
cycle does not depend from
the other one…

–  so, they can be pipelined
–  known as iteration splitting

load (%eax,%edx.0,4) è t.1a
imull t.1a, %ecx.0 è %ecx.1
load 4(%eax,%edx.0,4) è t.1b
imull t.1b, %ebx.0 è %ebx.1
iaddl $2,%edx.0 è %edx.1
cmpl %esi, %edx.1 è cc.1
jl-taken cc.1

Time

%edx.1

%ecx.0

%ebx.0

cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load

Machine dependent optimization techniques:
loop unroll with parallelism (2)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 24

%edx.3%ecx.0

%ebx.0

i=0

i=2

cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load
cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load
cc.2

t.2a

imull

%ecx.2

addl

cmpl

jl

%edx.1

imull

%ebx.2

t.2b

load

load
cc.2

t.2a

imull

%ecx.2

addl

cmpl

jl

%edx.1

imull

%ebx.2

t.2b

load

load

i=4

cc.3

t.3a

imull

%ecx.3

addl

cmpl

jl

%edx.2

imull

%ebx.3

t.3b

load

load

14

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Iteration 1

Iteration 2

Iteration 3

 Estimated performance
–  the multiply unit is kept

busy with 2 simultaneous
operations

–  CPE: 2.0

Machine dependent optimization techniques:
loop unroll with parallelism (3)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 25

Code optimization techniques:
comparative analyses of combine

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 26

Processor arch: beyond Instruction-Level Parallelism

•  When exploiting ILP, goal is to minimize CPI
Ø Pipeline CPI (efficient to exploit loop-level parallelism) =>

•  Ideal pipeline CPI + ✔
•  Structural stalls + ✔
•  Data hazard stalls + ✔
•  Control stalls + ✔
•  Memory stalls ... cache techniques ...

Ø Multiple issue =>
•  find enough parallelism to keep pipeline(s) occupied

•  Multithreading =>
Ø find additional ways to keep pipeline(s) occupied

Chapter 7 — Multicores, Multiprocessors, and Clusters — 27

Multithreading
n  Performing multiple threads of execution in

parallel
n  Replicate registers, PC/IP, etc.
n  Fast switching between threads

n  Fine-grain multithreading / time-multiplexed MT
n  Switch threads after each cycle
n  Interleave instruction execution
n  If one thread stalls, others are executed

n  Coarse-grain multithreading
n  Only switch on long stall (e.g., L2-cache miss)
n  Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§7.5 H
ardw

are M
ultithreading

Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

Simultaneous Multithreading
n  In multiple-issue dynamically scheduled

processor
n  Schedule instructions from multiple threads
n  Instructions from independent threads execute

when function units are available
n  Within threads, dependencies handled by

scheduling and register renaming
n  Example: Intel Pentium-4 HT

n  Two threads: duplicated registers, shared
function units and caches
HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

Multithreading Example

4-way superscalar

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Multithreading Example

4-way superscalar

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 31

As seen before...

The pipelined functional units might have
better use if shared among more threads =>

Note: white boxes are bubbles...

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 32

Processor arch: beyond Instruction-Level Parallelism

•  When exploiting ILP, goal is to minimize CPI
Ø Pipeline CPI (efficient to exploit loop-level parallelism) =>

•  Ideal pipeline CPI + ✔
•  Structural stalls + ✔
•  Data hazard stalls + ✔
•  Control stalls + ✔
•  Memory stalls ... cache techniques ...

Ø Multiple issue =>
•  find enough parallelism to keep pipeline(s) occupied

•  Multithreading =>
Ø find additional ways to keep pipeline(s) occupied

•  Insert data parallelism features

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Instruction and Data Streams
§7.6 S

IS
D

, M
IM

D
, S

IM
D

, S
P

M
D

, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n  SPMD: Single Program Multiple Data
n  A parallel program on a MIMD computer
n  Conditional code for different processors

Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction
n  SIMD architectures can exploit significant data-

level parallelism for:
n  matrix-oriented scientific computing
n  media-oriented image and sound processing

n  SIMD is more energy efficient than MIMD
n  only needs to fetch one instruction per data operation
n  makes SIMD attractive for personal mobile devices

n  SIMD allows programmers to continue to think
sequentially

Introduction

35 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

n  Vector architectures (slides 5 to 18)
n  SIMD & extensions (slides 19 to 24)
n  Graphics Processor Units (GPUs) (next set)

n  For x86 processors:
n  Expected grow:

 2 more cores/chip/year
n  SIMD width:

 2x every 4 years
n  Potential speedup:

 SIMD 2x that from MIMD!

Introduction

36 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

n  Basic idea:
n  Read sets of data elements (gather from

memory) into �vector registers�
n  Operate on those registers
n  Store/scatter the results back into memory

n  Registers are controlled by the compiler
n  Used to hide memory latency
n  Leverage memory bandwidth

Vector A
rchitectures

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 37

Cray-1 Supercomputer
(1976)

38 Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges
n  Start up time

n  Latency of vector functional unit
n  Assume the same as Cray-1

n  Floating-point add => 6 clock cycles
n  Floating-point multiply => 7 clock cycles
n  Floating-point divide => 20 clock cycles
n  Vector load => 12 clock cycles

n  Improvements:
n  > 1 element per clock cycle (1)
n  Non-64 wide vectors (2)
n  IF statements in vector code (3)
n  Memory system optimizations to support vector processors (4)
n  Multiple dimensional matrices (5)
n  Sparse matrices (6)
n  Programming a vector computer (7)

Vector A
rchitectures

39 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Programming (7)

n  Compilers are a key element to give hints on whether a
code section will vectorize or not

n  Check if loop iterations have data dependencies,
otherwise vectorization is compromised

n  Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices;
however:
n  most do not support non-unit stride => care must be taken in the

design of data structures
n  same applies for gather-scatter...

Vector A
rchitectures

40 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions
n  Media applications operate on data types narrower than

the native word size
n  Intel SIMD Ext

started with 64-bit
wide vectors and
grew to wider vectors
and more facilit

n  Current AVX
generation is
512-bit wide

n  Limitations, compared to vector architectures:
n  Number of data operands encoded into op code
n  No sophisticated addressing modes (strided, scatter-gather, but…)
n  No mask registers

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

41 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations

n  Implementations:
n  Intel MMX (1996)

n  Eight 8-bit integer ops or four 16-bit integer ops
n  Streaming SIMD Extensions (SSE) (1999)

n  Eight 16-bit integer ops
n  Four 32-bit integer/fp ops or two 64-bit integer/fp ops

n  Advanced Vector eXtensions (AVX) (2010)
n  Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2)
n  512-bits wide in AVX-512 (and also in Larrabee & Phi-KC)

n  Operands must be in consecutive and aligned
memory locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 42

Register mapping in AVX

Next: AVX-512

Advanced Vector eXtensions, AVX 1.0

AVX 2.0

Extensões de processamento vetorial no Intel 64

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 43

Additional features in Intel x86

from	Marat	Dukhan,	2014	

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 44

Beyond Vector/SIMD architectures

•  Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
–  highly pipelined approach to reduce memory access penalty
–  tightly-closed access to shared memory: lower latency

•  Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vectors and/or SIMD cores:

•  DSP VLIW cores with vector capabilities: Texas Instruments (...?)
•  PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...

•  ARM64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
•  x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
•  other many-core: ShenWay 260, Adapteva Epiphany-V...

–  coprocessors (require a host scalar processor): accelerator devices
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach
•  ISA-free architectures, code compiled to silica: FPGA

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 45

Intel evolution, from:
•  Larrabee (80-core GPU) & SCC

to MIC:
•  Knights Ferry (pre-production, Stampede)

•  Knights Corner
Xeon Phi co-processor up to 61 Pentium cores

•  Knights Landing
Xeon Phi full processor,
36x dual-core tiles with 64-bit Atoms

Intel MIC: Many Integrated Core

Single-chip
Cloud
Computer,
24x
dual-core tiles

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 46

Intel Knights Corner architecture

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 47

Intel Knights Landing architecture

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 48

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 49

Intel: Many Integrated Core

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 50

#1 from June’16 TOP500:
Sunway TaihuLight

ht
tp

://
w

w
w

.n
et

lib
.o

rg
/u

tk
/p

eo
pl

e/
Ja

ck
D

on
ga

rr
a/

PA
P

E
R

S
/s

un
w

ay
-r

ep
or

t-2
01

6.
pd

f
Overview of the Sunway TaihuLight System

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 51

#1 from June’16 TOP500:
Sunway TaihuLight

ht
tp

://
w

w
w

.n
et

lib
.o

rg
/u

tk
/p

eo
pl

e/
Ja

ck
D

on
ga

rr
a/

PA
P

E
R

S
/s

un
w

ay
-r

ep
or

t-2
01

6.
pd

f

One cabinet
with 4 Supernodes

One Supernode
with 32 boards

One board with 4 cards,
2 up & 2 down

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 52

#1 from June’16 TOP500:
Sunway TaihuLight

ht
tp

://
w

w
w

.n
et

lib
.o

rg
/u

tk
/p

eo
pl

e/
Ja

ck
D

on
ga

rr
a/

PA
P

E
R

S
/s

un
w

ay
-r

ep
or

t-2
01

6.
pd

f

SW26010: the 4x64-core 64-bit RISC processor (with SIMD extensions)

One card with two nodes
(two SW26010 chips)

