
AJProença, Parallel Computing, MiEI, UMinho, 2018/19 1

Parallel Computing

Master Informatics Eng.

2018/19

A.J.Proença

Memory Hierarchy
(some slides are borrowed, mod’s in green)

2 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction
n  Programmers want unlimited amounts of memory with

low latency
n  Fast memory technology is more expensive per bit than

slower memory
n  Solution: organize memory system into a hierarchy

n  Entire addressable memory space available in largest, slowest
memory

n  Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

n  Temporal and spatial locality insures that nearly all
references can be found in smaller memories
n  Gives the illusion of a large, fast memory being presented to the

processor

Introduction

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap
Introduction

4 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design
n  Memory hierarchy design becomes more crucial

with recent multi-core processors:
n  Aggregate peak bandwidth grows with # cores:

n  Intel Core i7 can generate two references per core per clock
n  Four cores and 3.2 GHz clock

n  25.6 billion* 64-bit data references/second +
n  12.8 billion* 128-bit instruction references
n  = 409.6 GB/s!

n  DRAM bandwidth is only 6% of this (25 GB/s)
n  Requires:

n  Multi-port, pipelined caches
n  Two levels of cache per core
n  Shared third-level cache on chip

* US billion = 109

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

The Memory Hierarchy

n  Common principles apply at all levels of
the memory hierarchy
n  Based on notions of caching

n  At each level in the hierarchy
n  Block placement
n  Finding a block
n  Replacement on a miss
n  Write policy

§5.5 A C
om

m
on Fram

ew
ork for M

em
ory H

ierarchies

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Direct Mapped Cache
n  Location determined by address
n  Direct mapped: only one choice

n  (Block address) modulo (#Blocks in cache)

n  #Blocks is a
power of 2

n  Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Associative Caches
n  Fully associative

n  Allow a given block to go in any cache entry
n  Requires all entries to be searched at once
n  Comparator per entry (expensive)

n  n-way set associative
n  Each set contains n entries
n  Block number determines which set

n  (Block number) modulo (#Sets in cache)
n  Search all entries in a given set at once
n  n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

How Much Associativity
n  Increased associativity decreases miss

rate
n  But with diminishing returns

n  Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n  1-way: 10.3%
n  2-way: 8.6%
n  4-way: 8.3%
n  8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Block Placement
n  Determined by associativity

n  Direct mapped (1-way associative)
n  One choice for placement

n  n-way set associative
n  n choices within a set

n  Fully associative
n  Any location

n  Higher associativity reduces miss rate
n  Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Replacement Policy
n  Direct mapped: no choice
n  Set associative

n  Prefer non-valid entry, if there is one
n  Otherwise, choose among entries in the set

n  Least-recently used (LRU)
n  Choose the one unused for the longest time

n  Simple for 2-way, manageable for 4-way, too hard
beyond that

n  Random
n  Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Write Policy
n  Write-through

n  Update both upper and lower levels
n  Simplifies replacement, but may require write

buffer
n  Write-back

n  Update upper level only
n  Update lower level when block is replaced
n  Need to keep more state

n  Virtual memory
n  Only write-back is feasible, given disk write

latency

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time

Memstall-cycles = IC × ... Miss rate ... Mem accesses ... Miss penalty...

CPUexec-time = (IC × CPICPU + Memstall-cycles) × Clock cycle time

13

n  Note2: speculative and multithreaded processors may
execute other instructions during a miss
n  Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time

Memstall-cycles = IC × Misses ⁄ Instruction × Miss Penalty

n  Note1: miss rate/penalty are often different for reads and
writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Performance Example
n  Given

n  I-cache miss rate = 2%
n  D-cache miss rate = 4%
n  Miss penalty = 100 cycles
n  Base CPI (ideal cache) = 2
n  Load & stores are 36% of instructions

n  Miss cycles per instruction
n  I-cache:
n  D-cache:

n  Actual CPI = 2 + ?? + ?? = ??

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Performance Example
n  Given

n  I-cache miss rate = 2%
n  D-cache miss rate = 4%
n  Miss penalty = 100 cycles
n  Base CPI (ideal cache) = 2
n  Load & stores are 36% of instructions

n  Miss cycles per instruction
n  I-cache: 0.02 × 100 = 2
n  D-cache: 0.36 × 0.04 × 100 = 1.44

n  Actual CPI = 2 + 2 + 1.44 = 5.44

16 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
n  Miss rate

n  Fraction of cache access that result in a miss

n  Causes of misses (3C’s +1)
n  Compulsory

n  First reference to a block
n  Capacity

n  Blocks discarded and later retrieved
n  Conflict

n  Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

n  Coherency
n  Different processors should see same value in same location

Introduction

17 Copyright © 2012, Elsevier Inc. All rights reserved.

The 3C’s in diff cache sizes
Introduction

Conflict

18 Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence
n  Coherence

n  All reads by any processor must return the most
recently written value

n  Writes to the same location by any two processors are
seen in the same order by all processors
 (Coherence defines the behaviour of reads & writes to the

 same memory location)

n  Consistency
n  When a written value will be returned by a read
n  If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A
 (Consistency defines the behaviour of reads & writes with
 respect to accesses to other memory locations)

C
entralized S

hared-M
em

ory A
rchitectures

19 Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

n  Coherent caches provide:
n  Migration: movement of data
n  Replication: multiple copies of data

n  Cache coherence protocols
n  Directory based

n  Sharing status of each block kept in one location
n  Snooping

n  Each core tracks sharing status of each block

C
entralized S

hared-M
em

ory A
rchitectures

20 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

n  Six basic cache optimizations:
n  Larger block size

n  Reduces compulsory misses
n  Increases capacity and conflict misses, increases miss penalty

n  Larger total cache capacity to reduce miss rate
n  Increases hit time, increases power consumption

n  Higher associativity
n  Reduces conflict misses
n  Increases hit time, increases power consumption

n  Multilevel caches to reduce miss penalty
n  Reduces overall memory access time

n  Giving priority to read misses over writes
n  Reduces miss penalty

n  Avoiding address translation in cache indexing
n  Reduces hit time

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Multilevel Caches
n  Primary cache attached to CPU

n  Small, but fast
n  Level-2 cache services misses from

primary cache
n  Larger, slower, but still faster than main

memory
n  Main memory services L-2 cache misses
n  Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Multilevel Cache Example
n  Given

n  CPU base CPI = 1, clock rate = 4GHz
n  Miss rate/instruction = 2%
n  Main memory access time = 100ns

n  With just primary cache
n  Miss penalty = ??? = 400 cycles
n  Effective CPI = 1 + ??? = 9

n  Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Multilevel Cache Example
n  Given

n  CPU base CPI = 1, clock rate = 4GHz
n  Miss rate/instruction = 2%
n  Main memory access time = 100ns

n  With just primary cache
n  Miss penalty = 100ns/0.25ns = 400 cycles
n  Effective CPI = 1 + 0.02 × 400 = 9

n  Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Example (cont.)

n  Now add L-2 cache
n  Access time = 5ns
n  Global miss rate to main memory = 0.5%

n  Primary miss with L-2 hit
n  Penalty = 5ns/0.25ns = 20 cycles

n  Primary miss with L-2 miss
n  Extra penalty = 400 cycles

n  CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n  Performance ratio = 9/3.4 = 2.6

Multilevel On-Chip Caches
Intel Nehalem 4-core processor

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-back/
allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, write-back/
allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-back/
allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

