Parallel Computing

N\
ININ\

Master Informatics Eng.

2019/20
A.J.Proenca

Multithreading & Data Parallelism

(some slides are borrowed, mod'’s in green)

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 1

Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI
> Pipeline CPI (efficient to exploit loop-level parallelism) =>

- |deal pipeline CPI + v
« Structural stalls + v
« Data hazard stalls + v
« Control stalls + v
« Memory stalls ... cache techniques ...

> Multiple issue =>
 find enough parallelism to keep pipeline(s) occupied

* Multithreading =>
» find additional ways to keep pipeline(s) occupied

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 2

l Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC/IP, etc.

Fast switching between threads

Fine-grain multithreading / time-multiplexed
MT

Switch threads after each cycle

Interleave instruction execution

If one thread stalls, others are executed

Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

| Simultaneous Multithreading

In multiple-issue dynamically scheduled
processor

Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT!

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Multithreading Example

Issue slots ——

Thread A Thread B Thread C Thread D
HEN HER
HE
Time
[
H
H
HEN
HEN 4-way superscalar

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Multithreading Example

Issue slots ——

Thread A Thread B
HER
HE
Time B
n
n
HEEE
HE
N HE
HEN
Issue slots —
Coarse MT Fine MT
Time N HE
[HER
HER 1 |
HE
HEEE B
1
HEN n
1
] 1
1 1

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

Thread C

w
<
=

Thread D

4-way superscalar

Article Talk

Wﬁdpnm A Hyper-threading

e Free Encyclopedia From Wikipedia, the free encyclopedia

As seen before...

Internal architecture of

Intel P6 processors
Note: "Intel P6" is the common parch name for PentiumPro, Pentium Il & Pentium Ill, which R AM

inspired Core, Nehalem and Phi

Instruction Control Unit

Front End
nstruction

front end

Prediction OK?

Integer/ General
Branch

execution

CPU

Execution Unit

AJProenga, Advanced Architectures, MiEl, UMinho, 2015/16

The pipelined functional units might have
better use if shared among more threads =>

Note: white boxes are bubbles...

AJProenca, Advanced Architectures, MiEl, UMinho, 2016/17

Processor arch: beyond Instruction-Level Parallelism

* When exploiting ILP, goal is to minimize CPI
> Pipeline CPI (efficient to exploit loop-level parallelism) =>

- |deal pipeline CPI + v
« Structural stalls + v
« Data hazard stalls + v
« Control stalls + v
« Memory stalls ... cache techniques ...

> Multiple issue =>
 find enough parallelism to keep pipeline(s) occupied

* Multithreading =>
» find additional ways to keep pipeline(s) occupied

* |nsert data parallelism features

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 8

l Instruction and Data Streams

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 9

l Introduction

SIMD architectures can exploit significant data-
level parallelism for:

matrix-oriented scientific computing

media-oriented image and sound processing

SIMD is more energy efficient than MIMD
only needs to fetch one instruction per data operation
makes SIMD attractive for personal mobile devices

SIMD allows programmers to continue to think
sequentially

uoIoNPOIU|

Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

uo1PNPOU|

m Vector architectures (slides 5to 18)
s SIMD & extensions (slides 19 to 24)
s Graphics Processor Units (GPUS) (next set)

1000

—%- MIMD*SIMD (32b)
—5¢ MIMD*SIMD (64 b)
SIMD (32b)

m For x86 processors: vk

« Expected grow: N m— A e S
2 more cores/chip/year

= SIMD width:
2X every 4 years

= Potential speedup:
SIMD 2x that from MIMD!

Potential parallel speedup

1 1 1 1 1
2003 2007 2011 2015 2019 2023

l Vector Architectures

s Basic idea:

» Read sets of data elements (gather from
memory) into “vector registers”

= Operate on those reqisters
» Store/scatter the results back into memory

S81N108)IY24y J0JOSA

s Registers are controlled by the compiler
» Used to hide memory latency
» Leverage memory bandwidth

” D
_ Cray-1 Supercomputer

(1976)

- .\Wﬂ(«Wk

AJProenca, Advanced Architectures, MiEl, UMinho, 2016/17

Challenges

s Start up time

= Assume the same as Cray-1

Latency of vector functional unit

S81N108)IY24y J0JOSA

= Floating-point add => 6 clock cycles

= Floating-point multiply => 7 clock cycles
= Floating-point divide => 20 clock cycles
= Vector load => 12 clock cycles

= Improvements:

> 1 element per clock cycle (1)

Non-64 wide vectors (2)

IF statements in vector code (3)

Memory system optimizations to support vector processors (4)
Multiple dimensional matrices (5)

Sparse matrices (6)

Programming a vector computer (7)

l Vector Programming (7)

s Compilers are a key element to give hints on whether a
code section will vectorize or not

S81N108)IY24y J0JOSA

s Check if loop iterations have data dependencies,
otherwise vectorization is compromised

s Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices;
however:

= most do not support non-unit stride => care must be taken in the
design of data structures

= same applies for gather-scatter...

l SIMD Extensions

= Media applications operate on data types narrower than
the native word size

= Intel SIMD Ext o W W W
started with 64-bit ™™ R
wide vectors and ERERERERRERL
grew to wider vectors E B B B
and more facilit [T oot avadword

s Current AVX AVX-256 types _ 1x 128-bit doublequadword
generation is E | 1 = |] EE B
512-bit wide g |

= Limitations, compared to vector architectures:
= Number of data operands encoded into op code
= No sophisticated addressing modes (strided, scatter-gather, but...)
= No mask registers

elpswijjnjy 410} Suoisualx3y oS uoljonJisul gNIs

SIMD Implementations

= Implementations:

s Intel MMX (1996)
« Eight 8-bit integer ops or four 16-bit integer ops

s Streaming SIMD Extensions (SSE) (1999)
« Eight 16-bit integer ops
« Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector eXtensions (AVX) (2010)
« Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2)
» 512-bits wide in AVX-512 (and also in Larrabee & Phi-KC)

elpswijjnjy 410} Suoisualx3y oS uoljonJisul gNIs

= Operands must be in consecutive and aligned

memory locations

Extensoes de processamento vetorial no Intel 64

83 3231 0 79 0 127 0
RAX
RCX
RDX
g’; Advanced Vector eXtensions, AVX 1.0
o =0 TR
RDI AU axdoule
RS X aoubles
e x87 (FP)
RI10 63 32 31 0 ﬁ]ﬁ]ﬁﬂﬁj 16x bytes
Rl — T] .
i:; Program Counter]]ﬂ]]l ' 8x 16-bit shorts
GPR P Addedby xB5-64 SSE/SSE2 i i 2x 64-bit integers
j 1x 128-bit integer
Floating Point (FP) SSE/AVX 128
axone e 24 "B B B A
I o % 4x doubles w/FMA3
MIC.512 L 1 T 1 T T | | | e me. v
_ _8/16 26 bits At I|I|I|I|||I|||||I|I|||||||||||||| C‘;)\t—)'vtt}b
N - e eee et e EEE LN
YMDHD IITIT 7T T T T0 00 M 16x 16-bitshorts
zZmm ymm Xxmm YM&H i l'f .7 l'\ .'y l' .7 l" 8x 32-bit integers
. e 4 4 - . -
: Bl B B B 4 64-bitintegers
Register mapping in AVX YMMIS - B 2 128-bitintegers
e o ’ AVX 2.0
AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 Next: AVX-512 18

Additional features in Intel x86

7N\
ININ\

Core i7/Haswell

Q | B Multi-core B Superscalar Execution Core i7/Sandy Bridge
2 | I FMA Instructions " Pipelined Execution Core i7/Nehale
= SIMD Instructions Frequency Scaling Core 2 Duo
0
=k Core Duo

Pentium 4

k

Pentium [l

Pentium I

Pentium MM
Pentium Pro

1O|OM

Pentium

10|M

Peak DP FLOPS (balanced MUL+ADD)

486 DX2
486 DX
e
= 387 DX
o I | I | |
1990 1995 2000 2005 2010

Processor Release Date

from Marat Dukhan, 2014

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 19

Beyond Vector/SIMD architectures

* Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

 Evolution of Vector/SIMD-extended architectures

— CPU cores with wider vectors and/or SIMD cores:
« DSP VLIW cores with vector capabilities: Texas Instruments (...?)
« PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
« ARMG64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
« x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
« other many-core: ShenWay 260, Adapteva Epiphany-V...

— coprocessors (require a host scalar processor): accelerator devices
« on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
 focus on SIMT/SIMD to hide memory latency: GPU-type approach
» |SA-free architectures, code compiled to silica: FPGA

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 20

