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Processor arch: beyond Instruction-Level Parallelism

• When exploiting ILP, goal is to minimize CPI
Ø Pipeline CPI (efficient to exploit loop-level parallelism) =>

• Ideal pipeline CPI + ✔
• Structural stalls +  ✔

• Data hazard stalls + ✔

• Control stalls + ✔

• Memory stalls ... cache techniques ... 
Ø Multiple issue => 

• find enough parallelism to keep pipeline(s) occupied

• Multithreading => 
Ø find additional ways to keep pipeline(s) occupied
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Multithreading
n Performing multiple threads of execution in 

parallel
n Replicate registers, PC/IP, etc.
n Fast switching between threads

n Fine-grain multithreading / time-multiplexed 
MT
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

n Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls 

(eg, data hazards)

§
7.5 H

ardw
are M

ultithreading



Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Simultaneous Multithreading
n In multiple-issue dynamically scheduled 

processor
n Schedule instructions from multiple threads
n Instructions from independent threads execute 

when function units are available
n Within threads, dependencies handled by 

scheduling and register renaming
n Example: Intel Pentium-4 HT

n Two threads: duplicated registers, shared 
function units and caches
HT: Hyper-Threading, Intel trade mark for their SMT implementation
MT in Xeon Phi KNC: 4-way SMT with time-mux MT, not HT!
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Multithreading Example

4-way superscalar
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Multithreading Example

4-way superscalar
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As seen before...

The pipelined functional units might have
better use if shared among more threads =>

Note: white boxes are bubbles...



AJProença, Advanced Architectures, MiEI, UMinho, 2019/20 8

Processor arch: beyond Instruction-Level Parallelism

• When exploiting ILP, goal is to minimize CPI
Ø Pipeline CPI (efficient to exploit loop-level parallelism) =>

• Ideal pipeline CPI + ✔
• Structural stalls +  ✔

• Data hazard stalls + ✔

• Control stalls + ✔

• Memory stalls ... cache techniques ... 
Ø Multiple issue => 

• find enough parallelism to keep pipeline(s) occupied

• Multithreading => 
Ø find additional ways to keep pipeline(s) occupied

• Insert data parallelism features
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Instruction and Data Streams
§
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Single Multiple

Instruction 
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE 
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n SPMD: Single Program Multiple Data
n A parallel program on a MIMD computer
n Conditional code for different processors
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Introduction
n SIMD architectures can exploit significant data-

level parallelism for:
n matrix-oriented scientific computing
n media-oriented image and sound processing

n SIMD is more energy efficient than MIMD
n only needs to fetch one instruction per data operation
n makes SIMD attractive for personal mobile devices

n SIMD allows programmers to continue to think 
sequentially

Introduction
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SIMD Parallelism

n Vector architectures (slides 5 to 18)

n SIMD  & extensions (slides 19 to 24)

n Graphics Processor Units (GPUs) (next set)

n For x86 processors:
n Expected grow:

2 more cores/chip/year
n SIMD width: 

2x every 4 years
n Potential speedup:

SIMD 2x that from MIMD!

Introduction
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Vector Architectures

n Basic idea:
n Read sets of data elements (gather from 

memory) into “vector registers”
n Operate on those registers
n Store/scatter the results back into memory

n Registers are controlled by the compiler
n Used to hide memory latency
n Leverage memory bandwidth

Vector Architectures
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Cray-1 Supercomputer
(1976)
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Challenges
n Start up time

n Latency of vector functional unit
n Assume the same as Cray-1

n Floating-point add => 6 clock cycles
n Floating-point multiply => 7 clock cycles
n Floating-point divide => 20 clock cycles
n Vector load => 12 clock cycles

n Improvements:
n > 1 element per clock cycle (1)
n Non-64 wide vectors (2)
n IF statements in vector code (3)
n Memory system optimizations to support vector processors (4)
n Multiple dimensional matrices (5)
n Sparse matrices (6)
n Programming a vector computer (7)

Vector Architectures
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Vector Programming (7)
n Compilers are a key element to give hints on whether a 

code section will vectorize or not

n Check if loop iterations have data dependencies, 
otherwise vectorization is compromised

n Vector Architectures have a too high cost, but simpler 
variants are currently available on off-the-shelf devices; 
however:
n most do not support non-unit stride => care must be taken in the 

design of data structures
n same applies for gather-scatter...

Vector Architectures
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SIMD Extensions
n Media applications operate on data types narrower than 

the native word size
n Intel SIMD Ext

started with 64-bit
wide vectors and
grew to wider vectors
and more facilit

n Current AVX 
generation is
512-bit wide

n Limitations, compared to vector architectures:
n Number of data operands encoded into op code
n No sophisticated addressing modes (strided, scatter-gather, but…)
n No mask registers

SIM
D

 Instruction Set Extensions for M
ultim
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SIMD Implementations
n Implementations:

n Intel MMX (1996)
n Eight 8-bit integer ops or four 16-bit integer ops

n Streaming SIMD Extensions (SSE) (1999)
n Eight 16-bit integer ops
n Four 32-bit integer/fp ops or two 64-bit integer/fp ops

n Advanced Vector eXtensions (AVX) (2010)
n Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2)
n 512-bits wide in AVX-512 (and also in Larrabee & Phi-KC)

n Operands must be in consecutive and aligned 
memory locations

SIM
D

 Instruction Set Extensions for M
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Register mapping in AVX

Next: AVX-512

Advanced Vector eXtensions, AVX 1.0

AVX 2.0

Extensões de processamento vetorial no Intel 64
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Additional features in Intel x86

from Marat Dukhan, 2014
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Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vectors and/or SIMD cores: 

• DSP VLIW cores with vector capabilities: Texas Instruments (...?)

• PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
• ARM64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
• x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
• other many-core: ShenWay 260, Adapteva Epiphany-V...

– coprocessors (require a host scalar processor): accelerator devices
• on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
• focus on SIMT/SIMD to hide memory latency: GPU-type approach
• ISA-free architectures, code compiled to silica: FPGA


