
AJProença, Parallel Computing, MiEI, UMinho, 2019/20 1

Parallel Computing

Master Informatics Eng.

2019/20

A.J.Proença

Memory Hierarchy
(some slides are borrowed, mod’s in green)

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction
n Programmers want unlimited amounts of memory with

low latency
n Fast memory technology is more expensive per bit than

slower memory
n Solution: organize memory system into a hierarchy

n Entire addressable memory space available in largest, slowest
memory

n Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

n Temporal and spatial locality insures that nearly all
references can be found in smaller memories
n Gives the illusion of a large, fast memory being presented to the

processor

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap
Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design
n Memory hierarchy design becomes more crucial

with recent multi-core processors:
n Aggregate peak bandwidth grows with # cores:

n Intel Core i7 can generate two references per core per clock
n Four cores and 3.2 GHz clock

n 25.6 billion* 64-bit data references/second +
n 12.8 billion* 128-bit instruction references
n = 409.6 GB/s!

n DRAM bandwidth is only 6% of this (25 GB/s)
n Requires:

n Multi-port, pipelined caches
n Two levels of cache per core
n Shared third-level cache on chip

* US billion = 109

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

The Memory Hierarchy

n Common principles apply at all levels of
the memory hierarchy
n Based on notions of caching

n At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy

§
5.5 A C

om
m

on Fram
ew

ork for M
em

ory H
ierarchies

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Direct Mapped Cache
n Location determined by address
n Direct mapped: only one choice

n (Block address) modulo (#Blocks in cache)

n #Blocks is a
power of 2

n Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

How Much Associativity
n Increased associativity decreases miss

rate
n But with diminishing returns

n Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Block Placement
n Determined by associativity

n Direct mapped (1-way associative)
n One choice for placement

n n-way set associative
n n choices within a set

n Fully associative
n Any location

n Higher associativity reduces miss rate
n Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Replacement Policy
n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, manageable for 4-way, too hard
beyond that

n Random
n Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Write Policy
n Write-through

n Update both upper and lower levels
n Simplifies replacement, but may require write

buffer
n Write-back

n Update upper level only
n Update lower level when block is replaced
n Need to keep more state

n Virtual memory
n Only write-back is feasible, given disk write

latency

12Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduction

CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time

Memstall-cycles = IC × ... Miss rate ... Mem accesses ... Miss penalty...

CPUexec-time = (IC × CPICPU + Memstall-cycles) × Clock cycle time

13

n Note2: speculative and multithreaded processors may
execute other instructions during a miss
n Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduction

CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time

Memstall-cycles = IC ×Misses ⁄ Instruction ×Miss Penalty

n Note1: miss rate/penalty are often different for reads and
writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache:
n D-cache:

n Actual CPI = 2 + ?? + ?? = ??

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache: 0.02 × 100 = 2
n D-cache: 0.36 × 0.04 × 100 = 1.44

n Actual CPI = 2 + 2 + 1.44 = 5.44

16Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
n Miss rate

n Fraction of cache access that result in a miss

n Causes of misses (3C’s +1)
n Compulsory

n First reference to a block
n Capacity

n Blocks discarded and later retrieved
n Conflict

n Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

n Coherency
n Different processors should see same value in same location

Introduction

17Copyright © 2012, Elsevier Inc. All rights reserved.

The 3C’s in diff cache sizes
Introduction

Conflict

18Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence
n Coherence

n All reads by any processor must return the most
recently written value

n Writes to the same location by any two processors are
seen in the same order by all processors

(Coherence defines the behaviour of reads & writes to the
same memory location)

n Consistency
n When a written value will be returned by a read
n If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

(Consistency defines the behaviour of reads & writes with
respect to accesses to other memory locations)

C
entralized Shared-M

em
ory Architectures

19Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

n Coherent caches provide:
n Migration: movement of data
n Replication: multiple copies of data

n Cache coherence protocols
n Directory based

n Sharing status of each block kept in one location
n Snooping

n Each core tracks sharing status of each block

C
entralized Shared-M

em
ory Architectures

20Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
n Six basic cache optimizations:

n Larger block size
n Reduces compulsory misses
n Increases capacity and conflict misses, increases miss penalty

n Larger total cache capacity to reduce miss rate
n Increases hit time, increases power consumption

n Higher associativity
n Reduces conflict misses
n Increases hit time, increases power consumption

n Multilevel caches to reduce miss penalty
n Reduces overall memory access time

n Giving priority to read misses over writes
n Reduces miss penalty

n Avoiding address translation in cache indexing
n Reduces hit time

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Multilevel Caches
n Primary cache attached to CPU

n Small, but fast
n Level-2 cache services misses from

primary cache
n Larger, slower, but still faster than main

memory
n Main memory services L-2 cache misses
n Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = ??? = 400 cycles
n Effective CPI = 1 + ??? = 9

n Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = 100ns/0.25ns = 400 cycles
n Effective CPI = 1 + 0.02 × 400 = 9

n Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Example (cont.)

n Now add L-2 cache
n Access time = 5ns
n Global miss rate to main memory = 0.5%

n Primary miss with L-2 hit
n Penalty = 5ns/0.25ns = 20 cycles

n Primary miss with L-2 miss
n Extra penalty = 400 cycles

n CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n Performance ratio = 9/3.4 = 2.6

Multilevel On-Chip Caches
Intel Nehalem 4-core processor

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, write-
back/allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

