Parallel Computing

Master Informatics Eng.

2019/20 *A.J.Proença*

Beyond traditional PUs (GPU/CUDA, Tensor Cores, ...)

(most slides are borrowed)

Beyond Vector/SIMD architectures

\sim

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - CPU cores with wider vector units
 - <u>x86</u> many-core: Intel MIC / Xeon KNL
 - IBM Power cores with SIMD extensions: BlueGene/Q Compute
 - other many-core: **ShenWay 260**
 - coprocessors (require a host scalar processor)
 - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
 - ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach

• ...

- heterogeneous processors (multicore with GPU-cores, SoC)

•

Intel MIC: <u>Many Integrated Core</u>

公

Intel evolution, from:

• Larrabee (80-core GPU)

& SCC

<u>S</u>ingle-chip <u>C</u>loud <u>C</u>omputer, 24x dual-core tiles

to MIC:

- Knights Ferry (pre-production, Stampede)
- Knights Corner
 Xeon Phi <u>co</u>-processor up to 61 Pentium cores
- Knights Landing
 Xeon Phi <u>full</u> processor,
 36x dual-core tiles with 64-bit Atoms

Intel Knights Corner architecture

Intel Knights Landing architecture

公

Chip: 36 Tiles interconnected by 2D Mesh Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW DDR4: 6 channels @ 2400 up to 384GB IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset Node: 1-Socket only Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops Scalar Perf: ~3x over Knights Corner Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Source Intel: All products, computer systems, detes and figures specified are preliminary based on current expectations, an are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change without notice. TBinary Compatible with Intel Xeon processors using Haswell based on SEL (except TEX). "Bandwidth numbers are based on STREAM-like memory access pattern where the CRAM word an information, Results here been estimated based on internal Intel analysis and example of the line of our purposes only. Any difference in system

INTEL[®] XEON PHI[™] X200 PROCESSOR OVERVIEW

Compute

- Intel[®] Xeon[®] Processor Binary-Compatible
- 3+ TFLOPS, 3X ST (single-thread) perf. vs KNC
- 2D Mesh Architecture
- Out-of-Order Cores

On-Package Memory (MCDRAM)

- Up to 16 GB at launch
- Over 5x STREAM vs. DDR4 at launch

A Spectrum of Possible Use Models

IBM Power BlueGene/Q Compute (Sequoia)

Top 10 HPC systems Nov'17 TOP500

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)				
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371				
2	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT National Super Computer Center in Guangzhou China	3,120,000 6 Se Cu DO Un	33,862.7 quoia - Blue stom , IBM E/NNSA/LLN ited States	54,902.4 Gene/Q, <mark>Powe</mark> NL	17,808 r BQC 160	<mark>0</mark> 1.60 GHz,	1,572,864	17,173.2	20,132.7 7,890
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	7 Tri Ari D0 Un	nity - Cray X es interconn E/NNSA/LAN ited States	C40, Intel Xec ect , Cray Inc NL/SNL	n Phi 725(<mark>0 68C</mark> 1.4GHz,	979,968	14,137.3	43,902.6 3,844
4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	8 Co int DO Un	ri - Cray XC4 erconnect , C E/SC/LBNL/ ited States	0, <mark>Intel Xeon</mark> Cray Inc. NERSC	Phi 7250 6	8C 1.4GHz, Aries	622,336	14,014.7	27,880.7 3,939
5	Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	9 0a 72 Joi Ja	kforest-PAC 50 68C 1.4GH nt Center for pan	S - PRIMERG Iz, Intel Omni Advanced Hi	Y CX1640 I -Path , Fuj gh Perfori	M1, <mark>Intel Xeon Phi</mark> jitsu mance Computing	556,104	13,554.6	24,913.5 2,719
		10 K d Fu RII (Al Ja	computer, <mark>SP</mark> jitsu KEN Advance CS) pan	ARC64 VIIIfx :	2.0GHz, To • Computa	fu interconnect , ational Science	705,024	10,510.0	11,280.4 12,660

#1 from June'16 TOP500: Sunway TaihuLight

Overview of the Sunway TaihuLight System

#1 from June'16 TOP500: Sunway TaihuLight

One card with two nodes (two SW26010 chips)

SW26010: the 4x64-core 64-bit RISC processor (with SIMD extensions)

Beyond Vector/SIMD architectures

~~

• Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL
- IBM Power cores with SIMD extensions: BlueGene/Q Compute
- other many-core: ShenWay 260

- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
- ISA-free architectures, code compiled to silica: FPGA
- focus on SIMT/SIMD to hide memory latency: **GPU-type** approach

• ...

- heterogeneous processors (multicore with GPU-cores, SoC)

•

Graphical Processing Units

汄

- Question to GPU architects:
 - Given the hardware invested to do graphics well, how can we supplement it to improve the performance of a wider range of applications?
- Key ideas:
 - Heterogeneous execution model
 - CPU is the *host*, GPU is the *device*
 - Develop a C-like programming language for GPU
 - Unify all forms of GPU parallelism as CUDA_threads
 - Programming model follows SIMT:
 "Single Instruction Multiple Thread"

Copyright © 2012, Elsevier Inc. All rights reserved.

#cores/processing element in several devices

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

公义

Theoretical peak performance in several computing devices (DP)

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

Theoretical peak FP Op's per clock cycle in several computing devices (DP)

AJProença, Parallel Computing, MiEI, UMinho, 2019/20

NVIDIA GPU Architecture

汄

- Similarities to vector machines:
 - Works well with data-level parallel problems
 - Scatter-gather transfers
 - Mask registers
 - Large register files
- Differences:
 - No scalar processor
 - Uses multithreading to hide memory latency
 - Has many functional units, as opposed to a few deeply pipelined units like a vector processor

Copyright © 2012, Elsevier Inc. All rights reserved.

Early NVidia GPU Computing Modules

NVIDIA GPU Memory Structures

\sim

- Each SIMD Lane has private section of off-chip DRAM
 - "Private memory" (Local Memory)
 - Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor (SM) also has local memory (Shared Memory)
 - Shared by SIMD lanes / threads within a block
- Memory shared by SIMD processors (SM) is GPU Memory, off-chip DRAM (Global Memory)
 - Host can read and write GPU memory

Copyright © 2012, Elsevier Inc. All rights reserved.

The NVidia Fermi architecture

Fermi Architecture Innovations

$\langle \rangle$

- Each SIMD processor has
 - Two SIMD thread schedulers, two instruction dispatch units
 - 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units
 4 special function units
 - Thus, two threads of SIMD instructions are scheduled every two clock cycles
- Fast double precision
- Caches for GPU memory (16/64KiB_L1/SM and global 768KiB_L2)
- 64-bit addressing and unified address space
- Error correcting codes
- Faster context switching
- Faster atomic instructions

Fermi: Multithreading and Memory Hierarchy

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

公

TOP500 list in November 2010: 3 systems in the top4 use Fermi GPUs

公

HIGHLIGHTS: NOVEMBER 2010

- The Chinese Tianhe-1A system is the new No. 1 on the TOP500 and clearly in the lead with 2.57 petaflop/s performance.
- No. 3 is also a Chinese system called Nebulae, built from a Dawning TC3600 Blade system with Intel X5650 processors and NVIDIA Tesla C2050 GPUs
- There are seven petaflop/s systems in the TOP10
- The U.S. is tops in petaflop/s with three systems performing at the petaflop/s level
- The two Chinese systems and the new Japanese Tsubame 2.0 system at No. 4 are all using NVIDIA GPUs to accelerate computation and a total of 28 systems on the list are using GPU technology.

Families in NVidia Tesla GPUs

From Fermi into Kepler: The Memory Hierarchy

\sim

Kepler Memory Hierarchy

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

DRAN

DRAM

SMX: 192 CUDA-cores

Ratio DPunit : SPunit --> 1 : 3

AJProença, Parallel Computing, MiEI, UMinho, 20

From Fermi to Kepler core: SM and the SMX Architecture

	187		_		_	101-			_		101-1	- 0-1			_	10/-			
Pierestel Dierestel						wa	rp Scheo	Dispatch Dispatch Dispatch				Warp Scheduler							
		Dispatch Dispatch			Dispatch Dispatch			ch	Dispatch										
Register File (65,536 x 32-bit)																			
Ŧ	÷	+	+	÷	÷	+	+	+	+	+	÷	+	+	÷	÷	÷	+	÷	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	1
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	
							64 KB	Inter Share	conne ed Me	ct Nel emor	work y / L1	Cac	he						
							48 K	B Re	ad-Oi	nly D	ata C	ache							
	Tex		Tex	:		Tex		Tex	(Tex		Tex	(Tex		Tex	
	Toy		Tor			Toy		Tax			T		Tee			T		Ter	

Raster Engine

3072 CUDA-cores November'15

Kepler:

October'13

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

Raster Engine

29

Raster Engine

The move from Kepler to Maxwell : from 15 SMXs to 48 SMMs in 6 GPCs

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

Register File (65 536 x 32-bit

.D/ST

Maxwell: 3072 CUDA-cores *November'15*

Pascal: 3584 CUDA-cores HBM on-package September'16

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

From the M200 to the GP100 Pascal Architecture

31

`	
	Volta SM:
64	CUDA-cores
New: \87	Tensor-cores
Ratio DP unit : SF	Punit —> 1 : 2

CI Evorace 2.0 Most I

Volta	V100	w/	16GB	HBM2

	L0 Instruction Cache												
Warp Scheduler (32 thread/clk)													
Dispatch Unit (32 thread/clk)													
	Register File (16,384 x 32-bit)												
FP	64	INT	INT	FP32	FP32								
FP	64	INT	INT	FP32	FP32								
FP	FP64		INT	FP32	FP32								
FP	64	INT	INT	FP32	FP32	TEN	SOR	TENSOF					
FP	64	INT	INT	FP32	FP32	CC	DRE	CORE					
FR	64	INT	INT	FP32	FP32								
FP	64	INT	INT	FP32	FP32								
FP	64	INT	INT	FP32	FP32								
LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU					

SM

L0 Instruction Cache												
	Warp Scheduler (32 thread/clk)											
Dispatch Unit (32 thread/clk)												
Register File (16,384 x 32-bit)												
FP64	ΙΝΤ	INT	FP32	FP32	\square							
FP64	INT	INT	FP32	FP32								
FP64	INT	INT	FP32	FP32								
FP64	INT	INT	FP32	FP32	TEN	ISOR	TENSO					
FP64	INT	INT	FP32	FP32	CC	DRE	CORE					
FP64	INT	INT	FP32	FP32	\square							
FP64	INT	INT	FP32	FP32								
FP64	INT	INT	FP32	FP32								
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU					
	128KB L1 Data											

Tex

Tex

ıct	ion Cache										
٦	L0 Instruction Cache										
		War	Warp Scheduler (32 thread/clk)								
		Dis	Dispatch Unit (32 thread/clk)								
		Regi	ister	File (1	16,384	4 x 32-bit)					
	FP64	INT	INT	FP32	FP32						
	FP64	INT	INT	FP32	FP32						
	FP64	INT	INT	FP32	FP32						
	FP64	INT	INT	FP32	FP32	TENSOR	TENSOR				
	FP64	INT	INT	FP32	FP32	CORE	CORE				
	FP64	INT	INT	FP32	FP32						
	FP64	INT	INT	FP32 FP32							
	FP64	INT	INT	FP32	FP32						
	LD/ LD/	LD/	LD/	LD/	LD/	LD/ LD/	e E LI				
	ST ST	ST	ST	ST	ST	ST ST	360				
╡	ST ST	ST	ST	sт	ST tion C	ST ST	3F0				
		ST War	ST L0 II p Sch	ST nstruct ledulei	ST tion C r (32 t	ST ST ache hread/clk)	570				
		ST War Dis	ST L0 Ir p Sch spatcl	ST Instruct Iedulei In Unit (ST tion C r (32 t (32 th	st st ache hread/clk) read/clk)	370				
		ST War Dis Regi	ST L0 In p Sch spatcl ister	ST nstruct neduler h Unit (File (1	ST tion C r (32 t (32 th 16,384	ST ST ache hread/clk) read/clk) 4 x 32-bit)					
	ST ST	ST War Dis Regi	ST LO II p Sch spatcl ister INT	ST Instruct Ineduler In Unit File (1	ST tion C (32 th (32 th (6,384 FP32	st st ache hread/clk) read/clk) 4 x 32-bit)					
	FP64 FP64	ST War Dis Regi	ST LO II p Sch spatcl ister INT INT	st nstruct n Unit File (1 FP32 FP32	ST tion C (32 t (32 th (6,38 FP32 FP32	st st ache hread/clk) read/clk) 4 x 32-bit)					
	FP64 FP64 FP64 FP64	ST War Dis Regi	ST LO II p Sch spatcl ister INT INT	ST Instruct Hounit File (1 FP32 FP32 FP32	ST (32 t (32 th (6,384 FP32 FP32 FP32	st st ache hread/clk) read/clk) 4 x 32-bit)					
	57 57 FP64 FP64 FP54 FP64	ST War Dis Regi INT INT INT	ST LO II p Sch spatcl ister INT INT INT	ST Instruct Heduler H Unit File (1 FP32 FP32 FP32 FP32	ST (32 th (32 th (6,38) FP32 FP32 FP32 FP32	st st ache hread/clk) read/clk) 4 x 32-bit) TENSOR	TENSOR				
	57 57 FP64 FP64 FP64 FP64 FP64	Var Dis Regi INT INT INT INT	ST LO II p Sch spatcl ister INT INT INT	ST Instruct Heduler h Unit File (1 FP32 FP32 FP32 FP32 FP32	ST tion C (32 th (32 th (32 th (32 th (32 th (32 th (32 th (32 th (32 th (32 th) (32 t	st st ache hread/clk) read/clk) 4 x 32-bit) 4 x 32-bit) TENSOR CORE	TENSOR				
	ST ST FP64 FP64 FP64 FP64 FP64 FP64	Var Dis Regi INT INT INT INT	ST LO li spatc ister INT INT INT INT	ST ISTruct Hedulei h Unit FP32 FP32 FP32 FP32 FP32 FP32 FP32	ST (32 th (32 th (6,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	st st ache hread/clk) read/clk) 4 x 32-bit) TENSOR CORE	TENSOR				
	ST ST FP64 FP64 FP64 FP64 FP64 FP64 FP64	War Dis Regi INT INT INT INT INT	ST LO III p Schopatcl ister INT INT INT INT INT	ST reduler h Unit File (1 FP32 FP32 FP32 FP32 FP32 FP32	ST (ion C (32 th (32 th (6,38) (FP32) (FP32) (FP32) (FP32) (FP32) (FP32)	st st ache hread/clk) read/clk) 4 x 32-bit) TENSOR CORE	TENSOR				
	ST ST FP64 FP64 FP64 FP64 FP64 FP64 FP64	ST War Dis Regi INT INT INT INT INT INT	ST LO III p Schopatcl ister INT INT INT INT INT INT	ST Instruction File (1) FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	ST (32 th (32 th (32 th (32 th (32 th (32 th (32 th (32 th (32 th (32 th) (32	st st ache hread/clk) read/clk) 4 x 32-bit) TENSOR CORE	TENSOR				

ST

Tex

ST

Tex

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOP/s	5.04	6.8	10.6	15.7
Peak FP64 TFLOP/s	1.68	.21	5.3	7.8
Peak Tensor Core TFLOP/s	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm²	601 mm²	610 mm²	815 mm²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

Tesla accelerators: the Volta evolution

ANNOUNCING TESLA V100 GIANT LEAP FOR AI & HPC VOLTA WITH NEW TENSOR CORE

21B xtors | TSMC 12nm FFN | 815mm² 5,120 CUDA cores 7.5 FP64 TFLOPS | 15 FP32 TFLOPS NEW 120 Tensor TFLOPS 20MB SM RF | 16MB Cache | 16GB BB 300 GB/s NVLink

https://devblogs.nvidia.com/parallelforall/inside-volta/

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)				
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783	Тор	10 HF No	PC sy ov'18	vstems TOP500
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438				
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371				
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482				
5	Piz Daint - Cray XC50, Xeon E5-2690v3 12C	387,872	21,230.0	27,154.3	2,384				
	Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	8	SuperMU Platinum Lenovo	I C-NG - Thinl 8174 24C 3.1	(System) GHz, Inte	SD530, <mark>Xeon</mark> el Omni-Path ,	305,856	19,476.6	26,873.9
6	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz,	979,	Leibniz R Germany	echenzentru	m				
	, Cray Inc. DOE/NNSA/LANL/SNL United States	9	Titan - Cr Cray Gen DOE/SC/0	ray XK7, <mark>Opte</mark> nini interconr Dak Ridge Na	eron 6274 nect, <mark>NVIE</mark> ntional La	. 16C 2.200GHz, DIA K20x , Cray In Iboratory	560,640 c.	17,590.0	27,112.5 8,209
7	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 \$XM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science	391 <u>,</u> 10	Sequoia Custom , DOE/NNS United St	- BlueGene/G IBM GA/LLNL ates	, Power I	BQC 16C 1.60 GH	z, 1,572,864	17,173.2	20,132.7 7,890
	and Technology (AIST) Japan								36

IBM POWER9 Summit (Nov'18 #1 TOP500)

Summit Overview

Compute System

10.2 PB Total Memory 256 compute racks

4,608 compute nodes Mellanox EDR IB fabric 200 PFLOPS ~13 MW

22-core IBM POWER9

POWER9 Processor – Common Features

IBM

New Core Microarchitecture

- Stronger thread performance
- · Efficient agile pipeline
- · POWER ISA v3.0

Enhanced Cache Hierarchy

- 120MB NUCA L3 architecture
- 12 x 20-way associative regions
- Advanced replacement policies
- Fed by 7 TB/s on-chip bandwidth

Cloud + Virtualization Innovation

- · Quality of service assists
- · New interrupt architecture
- · Workload optimized frequency
- Hardware enforced trusted execution

+ SN	IP/Accelerat	or Signaling	М	emory Signa	ling	
	Core Core	Core Core	Bili iB	Core Core	Core Core	
	12 12	12				I
	L3 Region	L3 Region	- E	L3 Region	L3 Region	in a la l
8	L3 Region	L3 Region	Enab Brab	L3 Region	L3 Region	g
gnall						Inali
Cles	Core Core	Core Core		Core Core	Core Core	MPIS
	PCle		Acd		n-Chip Accel	S
	L3 Region	L3 Region	5 <u>6</u>	L3 Region	L3 Region	
						11.11
			#:X:B			
* SN	/IP/Accelerat	or Signaling		Memory Sign	aling	

14nm finFET Semiconductor Process

- Improved device performance and reduced energy
- 17 layer metal stack and eDRAM
- 8.0 billion transistors

Leadership Hardware Acceleration Platform

- Enhanced on-chip acceleration
- Nvidia NVLink 2.0: High bandwidth and advanced new features (25G)
- CAPI 2.0: Coherent accelerator and storage attach (PCIe G4)
- New CAPI: Improved latency and bandwidth, open interface (25G)

State of the Art I/O Subsystem

PCle Gen4 – 48 lanes

High Bandwidth Signaling Technology

- 16 Gb/s interface
 - Local SMP
- 25 Gb/s Common Link interface
 - Accelerator, remote SMP

公入

IBM POWER9 + NVidia V100

公

Summit node architecture

Current top 10 greener-HPC systems Nov'17 Green500

	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)							
	1	259	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN	794,400	842.0	50	17.009	6	13	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2, HPE GSIC Center, Tokyo Institute of Technology Japan	135,828	8,125.0	792	13.704
	2	307	Japan Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. High Energy Accelerator Research Organization /KEK	762,624	788.2	47	16.759	7	195	AIST AI Cloud - NEC 4U-8GPU Server, Xeon E5-2630Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Tesla P100 SXM2, NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681
	3	276	Japan Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	794,400	824.7	50	16.657	8	419	RAIDEN GPU subsystem - NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100 , Fujitsu Center for Advanced Intelligence Project, RIKEN Japan	11,712	635.1	60	10.603
	4	149	DGX SaturnV Volta NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2.26Uz, Infinibend EDR, NVIDIA Corporation United States	22,440	1,070.0	97	15.113	9	115	Wilkes-2 - Dell C4130, Xeon E5-2650v4 12C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100, Dell EMC University of Cambridge United Kingdom	21,240	1,193.0	114	10.428
JP	5	4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine- Earth Science and Technology Japan	19,860,000	19,135.8	1,350	14.173	10	3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	2,272	10.398

The	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)	,
GREEN	1	375	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN Japan	953,280	1,063.3	60	17.604	<i>Top systems</i> <i>Nov'18 Green500</i>
	2	374	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla V100 , Nvidia NVIDIA Corporation United States	22,440	1,070.0	97	15.113	
	3	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	9,783	14.668	
	4 7 Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY 391,680 19,880.0 1,649 14.423 CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	14.423						
5 22 TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	135,828	8,125.0	792	13.704			
	6	2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz <mark>, NVIDIA Volta GV100</mark> , Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	7,438	12.723	
	7	446	AIST AI Cloud - NEC 4U-8GPU Server, Xeon E5-2630Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Tesla P100 SXM2 , NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681	
	8	411	MareNostrum P9 CTE - IBM Power System AC922, IBM POWER2 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100, IBM Barcelona Supercomputing Center Spain	19,440	1,018.0	86	11.865	
	9	38	Advanced Computing System(PreE) - Sugon TC8600, Hygon Dhyana 32C 2GHz, Deep Computing Processor, 200Gb 6D-Torus , Sugon Sugon China	163,840	4,325.0	380	11.382	
AJProença, Para	10	20	Taiwania 2 - QCT QuantaGrid D52G-4U/LC, Xeon Gold 6154 18C 3GHz, Mellanox InfiniBand EDR, NVIDIA Tesla V100 SXM2, Quanta Computer / Taiwan Fixed Network / ASUS Cloud National Center for High Performance Computing Taiwan	170,352	9,000.0	798	11.285	43

The CUDA programming model

- Compute Unified Device Architecture
- CUDA is a recent programming model, designed for
 - a multicore CPU *host* coupled to a many-core *device*, where
 - devices have wide SIMD/SIMT parallelism, and
 - the *host* and the *device* do not share memory
- CUDA provides:
 - a thread abstraction to deal with SIMD
 - synchr. & data sharing between small groups of threads
- CUDA programs are written in C with extensions
- OpenCL inspired by CUDA, but hw & sw vendor neutral
 - programming model essentially identical

CUDA Devices and Threads

- A compute device
 - is a coprocessor to the CPU or host
 - has its own DRAM (device memory)
 - runs many threads in parallel
 - is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads - SIMT
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - very little creation overhead, requires LARGE register bank
 - GPU needs 1000s of threads for full efficiency
 - multi-core CPU needs only a few

CUDA basic model: Single-Program Multiple-Data (SPMD)

Programming Model: SPMD + SIMT/SIMD

公入

- Hierarchy
 - Device => Grids
 - Grid => Blocks
 - Block => Warps
 - Warp => Threads
- Single kernel runs on multiple blocks (SPMD)
- Threads within a warp are executed in a lock-step way called singleinstruction multiple-thread (SIMT)
- Single instruction are executed on multiple threads (SIMD)
 - Warp size defines SIMD granularity (32 threads)
- Synchronization within a block uses shared memory

The Computational Grid: Block IDs and Thread IDs

Example

公

- Multiply two vectors of length 8192
 - Code that works over all elements is the grid
 - Thread blocks break this down into manageable sizes
 - 512 threads per block
 - SIMD instruction executes 32 elements at a time
 - Thus grid size = 16 blocks
 - Block is analogous to a strip-mined vector loop with vector length of 32
 - Block is assigned to a *multithreaded SIMD processor* by the *thread block scheduler*
 - Current-generation GPUs (Fermi) have 7-16 multithreaded SIMD processors

公

C with CUDA Extensions: C with a few keywords

```
void saxpy_serial(int n, float a, float *x, float *y)
       for (int i = 0; i < n; ++i)
          y[i] = a*x[i] + y[i];
                                                    Standard C Code
   // Invoke serial SAXPY kernel
   saxpy_serial(n, 2.0, x, y);
    int i = blockIdx.x*blockDim.x + threadIdx.x:
       if (i < n) y[i] = a*x[i] + y[i];
                                                      Parallel C Code
   // Invoke parallel SAXPY kernel with 256 threads/block
   int nblocks = (n + 255) / 256;
   saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);
NVIDIA Confidential
```

Terminology (and in NVidia)

ふ

- Threads of SIMD instructions (warps)
 - Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
 - Thread scheduler uses scoreboard to dispatch
 - No data dependencies between threads!
 - Threads are organized into blocks & executed in groups of 32 threads (*thread block*)
 - Blocks are organized into a grid
- The <u>thread block scheduler</u> schedules blocks to SIMD processors (Streaming Multiprocessors)
- Within each SIMD processor:
 - 32 SIMD lanes (thread processors)
 - Wide and shallow compared to vector processors

CUDA Thread Block

公

- Programmer declares (Thread) Block:
 - Block size 1 to 512 concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- All threads in a Block execute the same thread program
- Threads share data and synchronize while doing their share of the work
- Threads have thread id numbers within Block
- Thread program uses thread id to select work and address shared data

CUDA Thread Block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Memory Sharing

CUDA Memory Model Overview

\sim

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory
 - The host can R/W global, constant, and texture memories

Hardware Implementation: Memory Architecture

~~

- Device memory (DRAM)
 - Slow (2~300 cycles)
 - Local, global, constant, and texture memory
- On-chip memory
 - Fast (1 cycle)
 - Registers, shared memory, constant/texture cache

Courtesy NVIDIA

Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- PU (Processing Unit) cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL
- other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures, code compiled to silica: FPGA
- focus on SIMT/SIMD to hide memory latency: **GPU**-type approach
- focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores

•

Machine learning w/ neural nets & deep learning...

Key algorithms to train & classify use matrix products, but require lower precision numbers!

NVidia Volta Architecture: the new Tensor Cores

Figure 8. Tensor Core 4x4 Matrix Multiply and Accumulate

公

Figure 9. Mixed Precision Multiply and Accumulate in Tensor Core

NVidia competitors with neural net features: IBM TrueNorth chip array (August'2014)

公

NVidia competitors with neural net features: the IBM TrueNorth architecture

公

NVidia competitors with neural net features: Intel Nervana Neural Network Processor, NNP

History

<u>/</u>>

- Nervana Engine announced in May 2016
- Key features:
 - ASIC chip, focused on matrix multiplication, convolutions,... (for neural nets)
 - HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w
 - no h/w managed cache hierarchy (saves die area, higher compute density)
 - built-in networking (6 bi-directional high-b/w links)
 - separate pipelines for computation and data management
 - proprietary numeric format Flexpoint in-between floating point and fixed point precision
- Nervana acquired by Intel in August 2016
 - renamed the project to "Lake Crest"
 - later to Nervana NNP, launched in October'17
 - Loihi test chip w/ self-learning capabilities announced in Sept'17, to be launched in 2018

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

Loihi

https://www.top500.org/news/intel-will-ship-first-neural-network-chip-this-yea

NVidia competitors with neural net features: Google Tensor Processing Unit, TPU (April'17)

\sim

- The Matrix Unit: 65,536 (256x256) 8-bit multiply-accumulate units
- 700 MHz clock rate
- Peak: 92T operations/second
 - o 65,536 * 2 * 700M
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
- 24 MiB of on-chip Unified Buffer, (activation memory)
- 3.5X as much on-chip memory vs GPU
- Two 2133MHz DDR3 DRAM channels
- 8 GiB of off-chip weight DRAM memory

TPU: High-level Chip Architecture

NVidia competitors with neural net features: Google Tensor Processing Unit, TPU (April'17)

by Google, namely in RankBrain, StreetView & Google Translate

NVidia competitors with neural net features: Google TPUv2 (September'17)

TPUv2 Chip

- 16 GB of HBM
- 600 GB/s mem BW
- Scalar unit: 32b float
- MXU: 32b float accumulation but reduced precision for multipliers
- 45 TFLOPS

Beyond Vector/SIMD architectures

仌入

• Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- PU (Processing Unit) cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL
- other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures, code compiled to silica: FPGA
- focus on SIMT/SIMD to hide memory latency: GPU-type approach
- focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores

- <u>x86</u> multicore coupled with SIMT/SIMD cores: Intel i5/i7
- <u>ARMv8</u> cores coupled with SIMT/SIMD cores: **NVidia** Tegra

Intel multicore coupled with GPU-cores

NVidia Tegra: SoC partnership with ARM (1)

\sim

Tegra 3

- Tegra 2 in Android (2010) ...
- Tegra 3 in Audi infotainment (2012) ...

The World's First Mobile Quad Core, with 5th Companion Core for Low Power

CPU	Quad Core, with 5 th Companion Core — Up to 1.4GHz Single Core, 1.3GHz Quad Core
GPU	Up to 3x Higher GPU Performance — 12 Core GeForce GPU
VIDEO	Blu-Ray Quality Video — 1080p High Profile @ 40Mbps
POWER	Lower Power than Tegra 2 — Variable Symmetric Multiprocessing (vSMP)
MEMORY	Up to 3x Higher Memory Bandwidth — DDR3L-1500, LPDDR2-1066
IMAGING	Up to 2x Faster ISP (Image Signal Processor)
AUDIO	HD Audio, 7.1 channel surround
STORAGE	2-6x Faster — <i>e.MMC 4.41, SD3.0, SATA-II</i>

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

Tegra 4 May'2013

67

NVidia Tegra: SoC partnership with ARM (2)

NVidia Tegra: SoC partnership with ARM (2)

NVidia Tegra: SoC partnership with ARM (3)

 Replace the 5x 32-bit ARM by 2x4 32-bit Cortex (A57 & A53) and the 192 Kepler CUDA cores by 256 Maxwell => Tegra X1

公

TEGRA X1 CPU CONFIGURATION

- 4 HIGH PERFORMANCE A57 BIG CORES
- 2MB L2 cache
- 48KB L1 instruction cache
- 32KB L1 data cache

4 HIGH EFFICIENCY A53 LITTLE CORES

- 512KB L2 cache
- 32KB L1 instruction cache
- 32KB L1 data cache

NVidia Tegra: pathway towards ARM-64 (1)

公

 Upgrade 32-bit ARM to 64-bit ARM (*Denver 2 & A57*) and replace Maxwell cores by Pascal ones => Parker Aug'2016

"PARKER" CPU COMPLEX

- 2x Denver2 + 4x Cortex-A57
- Fully Coherent HMP system
 - Proprietary Coherent Interconnect

ARM V8 64-bit

- Highest performance ARM CPU
 - 2nd generation Denver core
 - Significant Perf/W improvements

Dynamic Code Optimization

- OoO execution without the power
- Optimize once, use many times
- 7-wide superscalar
- Low power retention states

7 💿 nvidia

NVidia Tegra: pathway towards ARM-64 (2)

公

 Increment ARMv8-cores (8-core Carmel) and replace Pascal cores by Volta (8 tensor-cores/SM) => Xavier Jun'2018

Beyond Vector/SIMD architectures

\sim

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - PU (Processing Unit) cores with wider vector units
 - <u>x86</u> many-core: Intel MIC / Xeon KNL
 - other many-core: IBM Power BlueGene/Q Compute, ShenWay 260
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
 - ISA-free architectures, code compiled to silica: FPGA
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores

- <u>x86</u> multicore coupled with SIMT/SIMD cores: **Intel** i5/i7
- <u>ARMv8</u> cores coupled with SIMT/SIMD cores: **NVidia** Tegra

Chip technology in the past 25 years

Processor generations Nov'17 & Nov'18

Nov'17

公

Accelerator families in the past 25 years

AJProença, Parallel Computing, MiEl, UMinho, 2019/20

