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Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vector units

• x86 many-core: Intel MIC / Xeon KNL
• IBM Power cores with SIMD extensions: BlueGene/Q Compute
• other many-core: ShenWay 260

– coprocessors (require a host scalar processor)
• on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
• ISA-free architectures, code compiled to silica: FPGA
• focus on SIMT/SIMD to hide memory latency: GPU-type approach
• ...

– heterogeneous processors (multicore with GPU-cores, SoC)
• ...
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Intel evolution, from: 
• Larrabee (80-core GPU)      &   SCC

to MIC:
• Knights Ferry (pre-production, Stampede)

• Knights Corner
Xeon Phi co-processor up to 61 Pentium cores

• Knights Landing
Xeon Phi full processor, 
36x dual-core tiles with 64-bit Atoms

Intel MIC: Many Integrated Core

Single-chip 
Cloud 
Computer, 
24x 
dual-core tiles
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Intel Knights Corner architecture
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Intel Knights Landing architecture
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Intel: Many Integrated Core
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IBM Power BlueGene/Q Compute (Sequoia)

Jun’12: #1
Nov’12: #2
Jun’13: #3
Nov’13: #3
Jun’14: #3
Nov’14: #3
Jun’15: #3
Nov’15: #3
Jun’16: #4
Nov’16: #4
Jun’17: #5
Nov’17: #6
Jun’18: #8

Nov’18: #10
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Top 10 HPC systems
Nov’17 TOP500
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#1 from June’16 TOP500:
Sunway TaihuLight 
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Overview of the Sunway TaihuLight System
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#1 from June’16 TOP500:
Sunway TaihuLight 
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One cabinet
with 4 Supernodes

One Supernode 
with 32 boards

One board with 4 cards,
2 up & 2 down
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#1 from June’16 TOP500:
Sunway TaihuLight 
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SW26010: the 4x64-core 64-bit RISC processor (with SIMD extensions)

One card with two nodes 
(two SW26010 chips)
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Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vector units

• x86 many-core: Intel MIC / Xeon KNL
• IBM Power cores with SIMD extensions: BlueGene/Q Compute
• other many-core: ShenWay 260

– coprocessors (require a host scalar processor): accelerator devices
• on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
• ISA-free architectures, code compiled to silica: FPGA
• focus on SIMT/SIMD to hide memory latency: GPU-type approach
• ...

– heterogeneous processors (multicore with GPU-cores, SoC)
• ...
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Graphical Processing Units

• Question to GPU architects:
– Given the hardware invested to do graphics well, 

how can we supplement it to improve the performance of a 
wider range of applications?

• Key ideas:
– Heterogeneous execution model

• CPU is the host, GPU is the device
– Develop a C-like programming language for GPU
– Unify all forms of GPU parallelism as CUDA_threads
– Programming model follows SIMT:
“Single Instruction Multiple Thread ”

G
raphical Processing U

nits
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#cores/processing element
in several devices 
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Key question:
what is a core?

a) IU+FPU?
GPU-type...

b) A SIMD
processor?
CPU-type..

This updated slide
and in this course:

- b)

Note: the web link
with these plots was
updated in Aug’16
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Theoretical peak performance in
several computing devices (DP)
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Theoretical peak FP Op’s per clock cycle in
several computing devices (DP)
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Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Architecture

• Similarities to vector machines:
– Works well with data-level parallel problems
– Scatter-gather transfers
– Mask registers
– Large register files

• Differences:
– No scalar processor
– Uses multithreading to hide memory latency
– Has many functional units, as opposed to a few deeply pipelined 

units like a vector processor

G
raphical Processing U

nits
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Early NVidia GPU Computing Modules

GT200:

Tesla C870, May’07

Tesla C1060, April’09
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NVIDIA GPU Memory Structures

• Each SIMD Lane has private section of 
off-chip DRAM
– “Private memory” (Local Memory)
– Contains stack frame, spilling registers, and 

private variables

• Each multithreaded SIMD processor (SM) 
also has local memory (Shared Memory)
– Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors (SM) is GPU 
Memory, off-chip DRAM (Global Memory)
– Host can read and write GPU memory

G
raphical Processing U

nits
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The NVidia Fermi architecture

Fermi 
Multithreaded 

SIMD Processor
(SM, Streaming 
Multiprocessor)

Fermi Architecture:
GF110: 512 CUDA-cores

July’11

Warp: a 32-wide
SIMT instruction
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Fermi Architecture Innovations

• Each SIMD processor has
– Two SIMD thread schedulers, two instruction dispatch units
– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 

4 special function units
– Thus, two threads of SIMD 

instructions are scheduled 
every two clock cycles

• Fast double precision
• Caches for GPU memory (16/64KiB_L1/SM and global 768KiB_L2)
• 64-bit addressing and unified address space
• Error correcting codes
• Faster context switching
• Faster atomic instructions

G
raphical Processing U

nits
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Fermi:
Multithreading and Memory Hierarchy
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TOP500 list in November 2010:
3 systems in the top4 use Fermi GPUs
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Families in NVidia Tesla GPUs
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From Fermi into Kepler:
The Memory Hierarchy
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From the GF110 to the
GK110 Kepler Architecture

Kepler: 
2880 CUDA-cores

October’13

Fermi: 
512 CUDA-cores

July’11
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From Fermi to Kepler core:
SM and the SMX Architecture

SM

SMX:
192 CUDA-cores

Ratio DPunit : SPunit  —> 1 : 3
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From the GK110 to the
GM200 Maxwell Architecture

Maxwell: 
3072 CUDA-cores

November’15

Kepler: 
2880 CUDA-cores

October’13
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The move from Kepler to Maxwell :
from 15 SMXs to 48 SMMs in 6 GPCs 

SMM: 128 CUDA-cores
Ratio DPunit : SPunit  —> 1 : 32
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From the M200 to the
GP100 Pascal Architecture

Pascal: 
3584 CUDA-cores
HBM on-package

September’16

Maxwell: 
3072 CUDA-cores

November’15
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Pascal Architecture:
6x GPCs, 60 SMs

Pascal SM: 
64 CUDA-cores

Ratio DPunit : SPunit —> 1 : 2

Pascal P100 w/ 16GiB HBM2
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From the GP100 to the
GV100 Volta Architecture

Volta: 
5120 CUDA-cores
HBM on-package

June’17

Pascal: 
3584 CUDA-cores

November’15
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Volta Architecture:
6x GPCs, 80 SMs

Volta SM: 
64 CUDA-cores

New: 8 Tensor-cores

Ratio DPunit : SPunit —> 1 : 2

Volta V100 w/ 16GB HBM2
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Tesla accelerators:
the Volta evolution

https://devblogs.nvidia.com/parallelforall/inside-volta/
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Top 10 HPC systems
Nov’18 TOP500
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IBM POWER9 Summit (Nov’18 #1 TOP500)



AJProença, Parallel Computing, MiEI, UMinho, 2019/20 38

22-core IBM POWER9
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IBM POWER9 + NVidia V100



AJProença, Parallel Computing, MiEI, UMinho, 2019/20 40

Summit node architecture
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Current top 10 greener-HPC systems
Nov’17 Green500
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NVidia DGX-1 SaturnV

$149,000
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Top systems
Nov’18 Green500



AJProença, Parallel Computing, MiEI, UMinho, 2019/20 44

The CUDA programming model

• Compute Unified Device Architecture
• CUDA is a recent programming model, designed for

– a multicore CPU host coupled to a many-core device, where

– devices have wide SIMD/SIMT parallelism, and
– the host and the device do not share memory

• CUDA provides:
– a thread abstraction to deal with SIMD
– synchr. & data sharing between small groups of threads

• CUDA programs are written in C with extensions
• OpenCL inspired by CUDA, but hw & sw vendor neutral

– programming model essentially identical
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CUDA Devices and Threads

• A compute device
– is a coprocessor to the CPU or host
– has its own DRAM (device memory)
– runs many threads in parallel
– is typically a GPU but can also be another type of  parallel 

processing device 

• Data-parallel portions of an application are expressed as 
device kernels which run on many threads - SIMT

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• very little creation overhead, requires LARGE register bank
– GPU needs 1000s of threads for full efficiency

• multi-core CPU needs only a few
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CUDA basic model:
Single-Program Multiple-Data (SPMD)

• CUDA integrated CPU + GPU application C program
– Serial C code executes on CPU
– Parallel Kernel C code executes on GPU thread 

blocks
CPU Code

Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Code

GPU Parallel Kernel 
KernelB<<< nBlk, nTid >>>(args);
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Programming Model: SPMD + SIMT/SIMD 

• Hierarchy
– Device => Grids
– Grid => Blocks
– Block => Warps
– Warp => Threads

• Single kernel runs on multiple blocks 
(SPMD)

• Threads within a warp are executed 
in a lock-step way called single-
instruction multiple-thread (SIMT)

• Single instruction are executed on 
multiple threads (SIMD)
– Warp size defines SIMD granularity 

(32 threads)
• Synchronization within a block uses 

shared memory
Courtesy NVIDIA
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The Computational Grid:
Block IDs and Thread IDs

• A kernel runs on a computational
grid of thread blocks

– Threads share global memory
• Each thread uses IDs to decide 

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• A thread block is a batch of 
threads that can cooperate by:

– Sync their execution w/ barrier
– Efficiently sharing data through a 

low latency shared memory
– Two threads from two different 

blocks cannot cooperate
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Example

• Multiply two vectors of length 8192
– Code that works over all elements is the grid
– Thread blocks break this down into manageable sizes

• 512 threads per block
– SIMD instruction executes 32 elements at a time
– Thus grid size = 16 blocks
– Block is analogous to a strip-mined vector loop with 

vector length of 32
– Block is assigned to a multithreaded SIMD processor by 

the thread block scheduler
– Current-generation GPUs (Fermi) have 7-16 

multithreaded SIMD processors

G
raphical Processing U

nits
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Terminology (and in NVidia)

• Threads of SIMD instructions (warps)
– Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
– Thread scheduler uses scoreboard to dispatch
– No data dependencies between threads!
– Threads are organized into blocks & executed in groups of 

32 threads (thread block)
• Blocks are organized into a grid

• The thread block scheduler schedules blocks to SIMD 
processors (Streaming Multiprocessors)

• Within each SIMD processor:
– 32 SIMD lanes (thread processors)
– Wide and shallow compared to vector processors

G
raphical Processing U

nits
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CUDA Thread Block

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent 

threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the 
same thread program

• Threads share data and synchronize 
while doing their share of the work

• Threads have thread id numbers 
within Block

• Thread program uses thread id to 
select work and address shared data

CUDA Thread Block

76543210

…
float x = input[threadID];

float y = func(x);
output[threadID] = y;

…

threadID

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E 
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n



AJProença, Parallel Computing, MiEI, UMinho, 2019/20 53

Parallel Memory Sharing

• Local Memory:   per-thread
–Private per thread
–Auto variables, register spill

• Shared Memory: per-block
–Shared by threads of the same 

block
– Inter-thread communication

• Global Memory:   per-application
–Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1 Sequential
Grids

in Time

Block

Shared
Memory

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E 
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n



AJProença, Parallel Computing, MiEI, UMinho, 2019/20 54

CUDA Memory Model Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant 

memory
– Read only per-grid texture 

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host• The host can R/W global, 
constant, and texture 

memories
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Hardware Implementation:
Memory Architecture

• Device memory (DRAM)
– Slow (2~300 cycles)
– Local, global, constant, 

and texture memory

• On-chip memory
– Fast (1 cycle)
– Registers, 

shared memory,
constant/texture cache 

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Courtesy NVIDIA
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Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of Vector/SIMD-extended architectures
– PU (Processing Unit) cores with wider vector units

• x86 many-core: Intel MIC / Xeon KNL
• other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

– coprocessors (require a host scalar processor): accelerator devices
• on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
• ISA-free architectures, code compiled to silica: FPGA
• focus on SIMT/SIMD to hide memory latency: GPU-type approach
• focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

– heterogeneous PUs in a SoC: multicore PUs with GPU-cores
• …
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Machine learning w/ neural nets & deep learning...

Key algorithms to train & classify use matrix products, 
but require lower precision numbers!
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NVidia Volta Architecture:
the new Tensor Cores
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NVidia competitors with neural net features:
IBM TrueNorth chip array (August’2014)

TrueNorth Chip:
• 4096 neurosynaptic cores

Each core:
• 256 inputs (axons)

• 256 outputs (neurons)
• RAM w/ data for each neuron

• router (any neuron to any axon)
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NVidia competitors with neural net features:
the IBM TrueNorth architecture
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NVidia competitors with neural net features:
Intel Nervana Neural Network Processor, NNP 

History
• Nervana Engine announced in May 2016
• Key features:

• ASIC chip, focused on matrix multiplication,convolutions,... (for neural nets)
• HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w
• no h/w managed cache hierarchy (saves die area, higher compute density)
• built-in networking (6 bi-directional high-b/w links)
• separate pipelines for computation and data management
• proprietary numeric format Flexpoint

in-between floating point and fixed point precision

• Nervana acquired by Intel in August 2016
• renamed the project to “Lake Crest”
• later to Nervana NNP, launched in October’17
• Loihi test chip w/ self-learning capabilities

announced in Sept’17, to be launched in 2018

Loihi
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NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (April’17)
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NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (April’17)

Chip floor plan
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TPUs are intensively used
by Google, namely in 

RankBrain, StreetView
& Google Translate
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NVidia competitors with neural net features:
Google TPUv2 (September’17)
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Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of Vector/SIMD-extended architectures
– PU (Processing Unit) cores with wider vector units

• x86 many-core: Intel MIC / Xeon KNL
• other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

– coprocessors (require a host scalar processor): accelerator devices
• on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
• ISA-free architectures, code compiled to silica: FPGA
• focus on SIMT/SIMD to hide memory latency: GPU-type approach
• focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

– heterogeneous PUs in a SoC: multicore PUs with GPU-cores
• x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
• ARMv8 cores coupled with SIMT/SIMD cores: NVidia Tegra
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Intel multicore coupled with GPU-cores

Skylake

Haswell
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NVidia Tegra: SoC partnership with ARM (1)

• Tegra 2 in Android (2010) ...
• Tegra 3 in Audi infotainment (2012) ...

Tegra 4:
replace the 32-bit ARM 

Cortex A9 by 
Cortex A15, and add 

72 CUDA-cores

Tegra 4

A15

A15A15

A15A15

A9

A9 A9

A9A9

Tegra 3 Nov’2011
May’2013
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Replace the GPU block by 192 GPU-cores (from Kepler) and 
offer either 32/64-bit CPU cores => Tegra K1

NVidia Tegra: SoC partnership with ARM (2)

Apr’2014
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Replace the GPU block by 192 GPU-cores (from Kepler) and 
offer either 32/64-bit CPU cores => Tegra K1

NVidia Tegra: SoC partnership with ARM (2)

Apr’2014

+1 (battery saver)
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• Replace the 5x 32-bit ARM by 2x4 32-bit Cortex (A57 & A53)
and the 192 Kepler CUDA cores by 256 Maxwell => Tegra X1

A15

NVidia Tegra: SoC partnership with ARM (3)

May’2015
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NVidia Tegra: pathway towards ARM-64 (1)

• Upgrade 32-bit ARM to 64-bit ARM (Denver 2 & A57) and 
replace Maxwell cores by Pascal ones => Parker Aug’2016
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NVidia Tegra: pathway towards ARM-64 (2)

• Increment ARMv8-cores (8-core Carmel) and replace Pascal 
cores by Volta (8 tensor-cores/SM) => Xavier Jun’2018
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Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
– highly pipelined approach to reduce memory access penalty
– tightly-closed access to shared memory: lower latency

• Evolution of Vector/SIMD-extended architectures
– PU (Processing Unit) cores with wider vector units

• x86 many-core: Intel MIC / Xeon KNL
• other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

– coprocessors (require a host scalar processor): accelerator devices
• on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
• ISA-free architectures, code compiled to silica: FPGA
• focus on SIMT/SIMD to hide memory latency: GPU-type approach
• focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

– heterogeneous PUs in a SoC: multicore PUs with GPU-cores
• x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
• ARMv8 cores coupled with SIMT/SIMD cores: NVidia Tegra
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Chip technology in the past 25 years
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Xeon E5
(Sandy
Bridge)

Xeon E5
(Ivy 

Bridge)

Fujitsu
Sparc64

AMD
Opteron

Xeon 
Gold

Processor generations
Nov’17 & Nov’18

Intel Xeon E5
(Broadwell)

Xeon E5
(Haswell)

Xeon Phi
(KNL)

Xeon E5
(Ivy Bridge)

AMD
Opteron

Power
BQC

Nov’17 Nov’18 



AJProença, Parallel Computing, MiEI, UMinho, 2019/20 76

Accelerator families in the past 25 years
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Accelerators
Nov’11 - Nov’18


