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Key issues for parallelism in a single-core
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Currently under discussion:

pipelining:

reviewed in the combl exampV
superscalar:

| Superscalar |

iIdem, but some more now

data parallelism:

vector computers &
vector extensions to scalar progessors

multithreading:

alternative approaches
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Pipelining & superscalarity: a review
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Topic addressed in e o[Regoar ||, JInstrs
the underg rad P — OK:_, Operations

course

through the
combine example

A 4

Operation Results Addr Addr
Execution Engine &) J [pata | Pata

J

Execution Unit

 The analysed pipelines were only in the P6 Execution Unit,
assuming that the Instruction Control Unit issues at each
clock cycle all the required instructions for parallel execution

 The image suggests (i) a 3-way superscalar engine and

(ii) an execution engine with 6 functional units
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Intel Sunny Cove microarchitecture: 30 functional units

I-TLB + 32KB I-cache
~ Microcode decode
l 4 pops l S5 pops
Hop Queue

RS RS RS RS
PortO Port1 Port5 Port6é P4 P9 P2 P8 P3 P7

AVX-512
AJProenca, —




Comments to the slides on performance evaluation (1)
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 Assembly version for combine4
— data type: integer ; operation: multiplication

.L24.: # Loop:
imull (%eax,%edx,4) ,%ecx # t *= datal[i]
incl $%edx # i++
cmpl %esi,%edx # i:length
jl .L24 # if < goto Loop

« Translating 15! iteration into RISC-like instructions

load (%eax,%edx.0,4) = t.1 3+miss penalty?

imull t.1, %ecx.0 = %ecx.1 +4

incl %edx.0 = %edx.1 Expected duration:
cmpl %esi, %edx.1 = cc.1 10+ clock cycles
j1 -taken cc.1 per vector element

Timings in clock cycles
AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 5



Comments to the slides on performance evaluation (2

Features that lead to CPE=2: ,
« in the hardware z
— pipelined execution units e
with 1 clock-cycle/issue 5
—more temporary registers o
— mem hierarchy with cache [ S

— out-of-order execution me
Iteration 1
— at least 5-way superscalar
10 Cycle
—more 1 arithm & 1 load units |,

— speculative jump R e ey e
~ Iteration 2
- at the code level joad (veax,vedx 0/4)
— loop unroll 2x incl %edx.0 N
) cmpl %esi, %edx.1l
— 2-way parallelism j1  -taken cc.1 ——
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Previous questions: max number of physical cores?

Xeon Phi™

Processor

1, UMinho, 2020/21

Intel

Xeon Phi package:
up to 72 cores
(discontinued in 2018)

ESEE rc.

Gen 3 Q

Tile

36 tiles
connected by

2D mesh
interconnect

misc




Previous questions: max number of physical cores?
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2-Socket S9200WK Node

9200 CPU 9200 CPU I ntel

g Xeon Platinum 9282 package:
DR 56 cores
120 9_socket node: 112 cores

8

DDR4
12 DIMMs

8

UPI
(10.4GTs)

AJProenca, Parallel Computing, MiEl, UMinho,
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Previous questions: max number of physical cores?

AMD

SOC ARCHITECTURE

ROME/MILAN 9 DIE MCM

Zen2/Rome

Memory / 10 Die Zen3/Milan

i =B B B
u 32+ MB n-

L3
Bl Ex

GMmI-2
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Previous questions: max number of physical cores?
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Ampere Altra: 80 cores

Ampere™ Altra™ processor complex

80 64-bit Arm CPU cores @ 3.0 GHz Turbo

* 4-\Wide superscalar aggressive out-of-order execution

* Single threaded cores for performance and security isolation Au’ﬁne

10




Previous questions: max number of physical cores?
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ARM

Fujitsu A64FX Arm Chip:

48+4 cores
(in #1 TOP500, June 2020)

Tofu 110
28Gbps 2 lanes 10 ports PCle Gen3 16 lanes

CMG specification
13 cores
L2$ 8MiB
Mem 8GiB, 256GB/s

B Tofu PCle |
controller controller |
O 5

Vm S
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Previous questions: max number of physical cores?

PEZY-SC2: 2048 cores
+ 8x MIPS cores (2017)

PEZY-SC3: 8192 cores
(due in 2019, but...)

PEZY-SC4: 16384 cores
(due in 2020, but...)
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Village (4x PE)

PE

PE

L1d$(2KB)

Japan
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Custom TCI Link

(0.5 TB/s)

Custom TCI Link

(0.5 TB/s)

LLC (40 MiB)

Custom TCI Link

(0.5 TB/s)

Custom TCI Link

(0.5 TB/s)

DDR4-3200

(64bit 25.6 GB/s)

DDR4-3200

(64bit 25.6 GB/s)

DDR4-3200
(64bit 25.6 GB/s)

DDR4-3200
(64bit 25.6 GB/s)

Host I/F
&
Processor I/F

MIPS54 || MIPS54

P6600 P6G00

MIPS54 || MIPS54
P6600 PG600

MIPS54 || MIPS54
P6600 P&E600

MIPS54 || MIPS54
P6600 P6600
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Previous questions: max number of physical cores?

China

Sunway SW 26010:

256+4 cores
(in #1 TOP500, June 2016)

JMan memory lMaIn memaory \
o ) |

[WIIW;W:MIIMPEI lelvxw:mllml

e coren
e e

i g ¢ g
N ° 2y




Previous questions: max number of physical cores?

Cerebras Wafer Scale Engine (WSE): Worldwide
the largest chip ever built)

chip

56x larger than the biggest GPU ever made

/oraare cores

on-chip SRAM

3000x more on-chip memory

interconnect
33,000x more bandwidth

AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 ‘




What is needed to increase the #cores in a chip?
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8

2-Socket S9200WK Node
9200 CPU 9200 CPU

DDR4 DDR4 Layout of one core
12 DIMMs 12 DIMMs
g UPI
(10.4GTs)
DG 1SR Server AVX-512

AT -

oupl| <16 pCie

138 _g44*

<20 UP| %20 UP|

iR

L_fiLL_J

DDRPHY (3 channels)
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HE 37T MB35

What is needed to increase
the #cores in a chip?

Server AVX;S_12 EHADadEma DN TAR IR NN

125 & Cil

i E)%tggl?éed § Using the same microelectronics

Skyléke Core Bhscoms  technology, remove parts from the core

ST (B ABPILENR E Powerdd—
Vector Execution. |
| Engine(ZMM) | - 0 T, - LR R R 5o S

(1 .‘375MB)

Which parts?

EVVect"oﬂr : l
L3 cache

AVX-512

reduce L2 cache pe—
in-order exec - Execution Ports
less functional units LR

sskeia

0ut Of- Order =

Engme i
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SMT in architectures designed by other companies

For each manufacturer identify the max hw support
for SMT at each core (how many ways):

* Intel Xeon
 AMD Epyc

* Fujitsu Arm64FX
* |IBM Power 9

« Sunway SW2610
Apple A14

AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 17
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e Currently under discussion:

Key issues for parallelism in a single-core

— pipelini

reviewdd in the combi exampV
— supersdalar:

[o[<YanTMa

vector extensions to scalar progessors

— multithreading:

alternative approaches

| Superscalar |

AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21
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Some questions...

1. Is AVX-512 so much better than AVX2, why AMD does
not plan to support AVX-5127

2. Each core in the Xeon Phi KNL (presented in next slides)
has two AVX-512 units, but later chips designed by Intel
did not follow the same path. Why?

3. Fujitsu used the ARM64 design to build the A64FX chip
and took advantage of the SVE approach, which could
operate on vectors up to 2048 bits; however, it opted to
support only 512-bits long vectors. Why?

Suggestion for questions 2 & 3:
compute the required bandwidth to access RAM when all cores

perform a vector operation at each clock cycle and
compare this value with the max bandwith of the embedded RAM.

AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 19



Intel MIC: Many Integrated Core

Intel evolution, from: Inside the SCC
Dual-core SCC Tile
¢ La rra bee (80-C0re GPU) & SCC ' . ] « 24 Dual-core tiles (48 IA cores)
- . * Mesh ::r\:/ork with 256 GB/s
_§ M'\';\Iltiiézhsrleﬁged ' P ] Ml“"lltitzhreﬁged § S I ng I e'Ch I p . : Ilsr:ztce‘;?;\tgzng;f;?y controllers
2 s s ‘ £ =
szl 1z Cloud
8 X 2 8
c | L2 Cache = S Computer,
g s 24x
s =

dual-core tiles

Multi-Threaded Multi-Threaded
Wide SIMD Wide SIMD

5 DS | s DS |

to MIC:

* Knights Ferry (pre-production, Stampede)
» Knights Corner
Xeon Phi co-processor up to 61 Pentium cores

» Knights Landing (& Knrights-Mil-)

Xeon Phi full processor up to 36x dual-core Atom tiles

System Interface

=
=]
=]
|}
&
=
x
o
[

>
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/') Launched in June 2016
intel) Discontinued in July 2018
wehxapt"esr:s\;cdee

INTRODUCTION TO THE

INTEL" XEON PHI™ PROCESSOR

(CODENAME “KNIGHTS LANDING")

Dr. Harald Servat - HPC Software Engineer
Data Center Group - Innovation Performing and Architecture Group

Summer School in Advanced Scientific Computing 2016

I"'l.

: = war y 215t, 2016 - Braga, Portugal
June




INTEL" XEON PHI™ PROCESSOR FAMILY ARCHITECTURE OVERVIEW

Codenamed “Knights Landing” or KNL

Comprises 38 physical tiles, at which at most 36 active KNL

« Remaining for yield recovery Package

-------------------------------------

\

O
S
z
£
()
O
S
z

Introduces new 2D cache-coherent mesh interconnect
(Untile)

* Tiles

* Memory controllers

)
: |

1
1
|
)
I
I
1
I
I
I
1
1
I
I
I
1
1
1
/

* |/O controllers

* Otheragents

2vpu  HUB  oypy
 1MB

Core L2 ] Core

DDR4

Enhanced Intel® Atom™ cores based on
Silvermont Microarchitecture

DDR4

TS
moss e o
e |

B
£ - — =~ -

_______________________________________

. Tile - EDC (embedded DRAM controller) - IMC (integrated memory controller) - IO (integrated 1/0 controller)




Intel® Xeon® Processor E5 v4 Product Family HCC  Eyolution of on-chip
Intel interconnect

-

Home Agent
DDR DDR

Mem Ctir

Inter-Socket
Link

Memory
Controller

Controller

Intel 18-core Skylake-X
(follows KNL)

AJProenca, Parallel Computing, MiIEl, UM
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KNL PROCESSOR TILE

Tile
« 2 cores, each with 2 vector processing units (VPU)

* 1 MB L2-cache shared between the cores

Core

* Binary compatible with Xeon

* Enhanced Silvermont (Atom)-based for HPC w/ 4 threads

* Out-of-order core

« 2-wide decode, 6-wide execute (2 int, 2 fp, 2 mem), 2-wide retire

2 VPU
* 512-bit SIMD (AVX512) 32SP/16DP per unit
 Legacy X87, SSE, AVX and AVX2 support

intel)




OpenMP

From Wikipedia, the free encyclopedia

Thread affinity |edit;

Some vendors recommend setting the processor affinity on

T AKING BEN EFIT UF THE cuRE OpenMP threads to associate them with particular processor cores.
[33](34]135] This minimizes thread migration and context-switching
cost among cores. It also improves the data locality and reduces
the cache-coherency traffic among the cores (or processors).

Threading
* Ensure that thread affinities are set.
* Understand affinity and how it affects your application (i.e. which threads share data?).
* Understand how threads share core resources.
* Anindividual thread has the highest performance when running alone in a core.

* Running 2 or 4 threads in a core may result in higher per core performance but lower per
thread performance.

» Due to resource partitioning, 3 thread configuration will have fewer aggregative
resources than 1, 2 or 4 threads per core. 3 threads in a core is unlikely to perform better
than 2 or 4 threads.

Vectorization
» Prefer AVX512 instructions and avoid mixing SSE, AVX and AVX512 instructions.
» Avoid cache-line splits; align data structures to 64 bytes.
» Avoid gathers/scatters; replace with shuffles/permutes for known sequences.
» Use hardware trascendentals (fast-math) whenever possible.
* AVX512 achieves best performance when not using masking
* KNCintrinsic code is unlikely to generate optimal KNL code, recompile from HL language.

in@




DATA LOCALITY: NESTED PARALLELISM

» Recall that KNL cores are grouped into tiles, with two cores sharing an L2.

 Effective capacity depends on locality:
» 2 cores sharing nodata => 2 x 512 KB
* 2coressharingalldata=>1x1MB

* Ensuring good locality (e.g. through blocking or nested parallelism)
is likely to improve performance.

#pragma omp parallel for num_threads(ntiles)
for (int i = 0; i < N; ++i)
{
#pragma omp parallel for num_threads(8)
for (int j = 0; j < M; ++j)
{

}




KNL PROCESSOR UNTILE

Comprises a mesh connecting the tiles (in red)
with the MCDRAM and DDR memories.

* Also with I/O controllers and other agents

distributed tag directory and serves as

Caching Home Agent (CHA) holds portion of the I
connection point between tile and mesh \
* No L3 cache asin Xeon ;

Cache coherence uses MESIF protocol
(Modified, Exclusive, Shared, Invalid, Forward)

ﬁ%i

! Tile - EDC (embedded DRAM controller) - IMC (integrated memory controller)

. 110 (integrated |/O controller)




KNL MESH INTERCONNECT ~  icch ot rings

* Every row and columnis aring

|°P'§ | |°"; | [ree ] |°"§ | [°"§ | * YXrouting:GoinY = Turn = Go in X

EoC €oc eoc aDc * TcycletogoinY,2cyclestogoinX

Tile

* Messages arbitrate at injection and on turn

Tile

Tile

Tile

Mesh at fixed frequency of 1.7 GHz

oo Distributed Directory Coherence protocol

Tile

Tile

KNL supports Three Cluster Modes
1) All-to-all

£oc 2) Quadrant

3) Sub-NUMA Clustering

Tile

EDC EDC

|OPIO | IOPIO | IOPIO | [omo }

Selection done at boot time.




CLUSTER MODE: ALL-TO-ALL

|op.§ | |om§ | [pcie | |om<¢: | [om: | distributed directories

EDC EDC EDC EDC

-

Tile

No affinity between Tile, Directory and
Memory

Tile

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered
2. Send request to the distributed directory

3. Miss in the directory. Forward to memory
[oro | [opo | [opo | [oro | 4. Memory sends the data to the requestor




CLUSTER MODE: QUADRANT

OPIO OPIO PCle OPIO ‘ OPIO
| ; | | : | l : | | ; |

EDC

Chip divided into four Quadrants

EDC

Affinity between the Directory and
Memory

Tile

Tile

| : Lﬁwer latency and higher BW than all-to-
Tile e ] " a

SW Transparent

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory
3. Miss in the directory. Forward to memory

[opo | [oro | [oro ] [oro | 4. Memory sends the data to the requestor




CLUSTER MODE: SUB-NUMA CLUSTERING (SNC4)

[opo | [opo | pote | [oro | [omo ] Each Quadrant (Cluster) exposed as a

eoc t eoc : t |eoc : separate NUMA domain to OS

Tile Tile

Analogous to 4-socket Xeon

Tile Tile

Tile Tile

SW Visible

Tile

DDR DDR ‘

Tile

Typical Read L2 miss

Tile

Tile Tile

1. L2 miss encountered

EDC EDC

Eoc eoc 2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

lOPIO l IOPIO ] lOPIO J [OPIO

4. Memory sends the data to the requestor




KNL HARDWARE INSTRUCTION SET

E5-2600 E5-2600v3 . _ _
(SNBY)  (HSW?) KNL implements all legacy instructions

T | | / » Legacy binary runs w/o recompilation

 KNC binary requires recompilation
— e g

KNL introduces AVX-512 Extensions
« 512-bit FP/Integer Vectors

» 32 registers & 8 mask registers

» Gather/Scatter

LEGACY

No TSX. Under

separate CPUID bit Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch
Exponential and Reciprocal Instructions

1. Previous Code name Intel® Xeon® processors
2. Xeon Phi = Intel® Xeon Phi™ processor




GUIDELINES FOR WRITING VECTORIZABLE CODE

Prefer simple “for” or “DO" loops

Write straight line code. Try to avoid:
» function calls (unless inlined or SIMD-enabled functions)
* branches that can't be treated as masked assignments.

Avoid dependencies between loop iterations
* Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers
* Without help, the compiler often cannot tell whether it is safe to vectorize code containing pointers.
* Tryto use the loop index directly in array subscripts, instead of incrementing a separate counter for use as an
array address.
* Disambiguate function arguments, e.g. -fargument-noalias

Use efficient memory accesses
* Favor inner loops with unit stride
* Minimize indirect addressing  ali] = b[ind[i]]
« Align your data consistently where possible (to 16, 32 or 64 byte boundaries)




INTEL" XEON PHI™ X200 PROCESSOR OVERVIEW

Platform Memory
Upto 384 GB DDR4

Knights
Landing

upto 72 Cores

Integrated Fabric

Compute

- = Intel® Xeon® Processor Binary-Compatible

= 3+ TFLOPS, 3X ST (single-thread) per.vs knc
= 2D Mesh Architecture
» Qut-of-Order Cores

On-Package Memory (MCDRAM)
= Up to 16 GB at launch
= Over 5X STREAM vs. DDR4 at launch




MCORAMMODES ==

CaChe mOde direct-mapped
* Direct mapped cache

. R Inclusive cache &7
* Misses have higher latency organzaton

* Needs MCDRAM access + DDR access
* No source changes needed to use,
automatically managed by hw as if LLC

8GB/ 16GB
MCDRAM

Flat mode
« MCDRAM mapped to physical address space

* Exposed as a NUMA node
* Use numactl --hardware, lscpu to display configuration

» Accessed through memkind library or numactl

Physical Address

8 or 12GB
MCDRAM

Split Options:
25/75% or 50/50%

Hybrid

* Combination of the above two
« E.g.,8GBincache + 8 GBin Flat Mode




TAKE AWAY MESSAGE: CACHE VS FLAT MODE

Recommended

\
[ |
DDR MCDRAM | MCDRAM Flat DDR + Hvbrid
Only as Cache Only MCDRAM y

Software , Change allocations for
NOERIE G bandwidth-critical data.

performance.
( A J

| |
_ Limited Optimal HW
Bandwidth versus latency based on memory type - .
memory utilization +
capacity opportunity for
new algorithms

7N\
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Latency

Bandwidth
ddr

- === mcdram
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BAYNCORE

Intel® Knights Landing die

Notes:

- 38 tiles, 76 cores
- max announced;:
36 tiles

== - max on sale:



Beyond vector extensions
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* Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

* Evolution of vector/SIMD-extended architectures

— computing accelerators optimized for number crunching (GPU)

— add support for matrix multiply + accumulate operations; why?

» most scientific, engineering, Al & finance applications use matrix
computations, namely the dot product: multiply and accumulate the elements
in a row of a matrix by the elements in a column from another matrix

« manufacturers typically call these extension Tensor Processing Unit (TPU)

— support for half-precision FP & 8-bit integer; why?

* machine learning using neural nets is becoming very popular; to compute
the model parameter during training phase, intensive matrix products are
used and with very low precision (is adequate!)

AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 38



Machine learning w/ neural nets & deep learning...

TRAINING INFERENCE

Learning a new capability Applying this capability
from existing data to new data

I—A—|

Untrained Deep Learning TRAINING Trained Model App or Service
Neural Network Framework DATASET New Capability Featuring Capability
Model

Trained Model
Optimized for
Performance

Key algorithms to train & classify use matrix dot products,
but require lower precision numbers!
AJProenca, Parallel Computing, MIiEI, UMinho, 2020/21 39



Required hardware operations & data types
to train & classify neural nets
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Compute SNEEEEEN  SEEN $z SESEEEES , SEEE EEEEEEES , AEEE
. EEEEEEEE * EEEE EEEEEEEE * EEEE EEEEEEEE * EEEE
primitives EEEEEEEE EEEE EEEEEEEE EEEE EEEEEEEE EEEE

scalar vector tensor

Sign Range Precision

AN AN
Data type _ Qi

TF32 Range \
TENSOR FLOAT 32 (TF32) _ IEEE 754

_/' / NEW!

Google Brain Team Fp16

AJProenca, Parall 40




NVidia Volta Architecture:
the new Tensor Cores

D =

FP16 or FP32 FP16 FP16 FP16 or FP32
Figure 8. Tensor Core 4x4 Matrix Multiply and Accumulate For each SM:
8x 64 FMA ops/cycle
Sum with 1k FLOPS/cycle!
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

- 2L
-

Figure 9. Mixed Precision Multiply and Accumulate in Tensor Core
AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 41
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Tensor Cores in NVidia Ampere
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FP32 FP32
matrix matrix
« Range Precision
':1. exponent mantissa
Format to TF32
£P32 BmIﬂIDes UIU]]]I[[U]]]IU]]]DmB and multiply
e8 m10
TF32 BE[I]]]]]JS [[[mm FP32 accumulate
e m
FP16 B—{IIIDIIIIIIII e
e8 m7

BF16 BT«

TF32: same range as FP32 and same precision as FP16
The FP multiplier scales with the square of the mantissa width (82/11%=0.5)
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Tensor Cores: Volta vs. Ampere
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NVIDIA V100 Tensor Cd @ NVIDIA A100 Tensor Cofe FP16 with Sparsity NVIDIAV @ NVIDIA A100 Tensor Co @

NVIDIA V NVIDIA A100 Tensor Core FP64 NVIDIA V1 @ NVIDIA A100 Tensor Co

e INT8 with Sparsity

A L\

A AL L L
VULLLRALRRRRRR AR
MeBERBRRRBRBE \
MOBRRRRBRRBRRBRT
O A S
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NVidia competitors with neural net features:
Intel with Nervana & later Habana

5~ 4 W AT« = . 2 WS S

History

ntel buys Nervana Engine (Aug 2016)
ntel launches Nervana NNP (Neural Net Processor) (Oct 2017)
Key features: matrix multiplication & convolution (for neural nets)

ntel discontinues Nervana NNP (Jan 2020...)

* Intel buys the Israel chipmaker Habana Labs (Dec 2019)

—Habana training chip Gaudi, with support to FP32, INT32, BF16,
INT16, INT8, UINT32, UINT16, UINT8

—Habana inference chip Goya, with support to FP32, INT32,
INT16, INT8, UINT32, UINT16, UINTS8
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Habana chips

GAUDI" &7 GOYA

Al Inference Processor

Al Training Processor

GEMM Engine

TPC TPC
] Loca! 5 i Local
Merrory Memory

Shared Memory
10 x 100Gb Eth
with ROMA PCle 4.0 x 16

TSMC-16nm N TSMC - 16nm



AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21

Google Tensor Processing Unit, TPU (May’16)

The Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units
700 MHz clock rate
Peak: 92T operations/second

o 65536*2*700M
>25X as many MACs vs GPU

>100X as many MACs vs CPU
4 MiB of on-chip Accumulator

memory

24 MiB of on-chip Unified Buffer,
(activation memory)

3.5X as much on-chip memory
vs GPU

Two 2133MHz DDR3 DRAM
channels

8 GiB of off-chip weight DRAM
memory

14 GiB/s

‘=

PCle Gen3 x16
Interface

—

14 GiB/s

<~

D Off-Chip /O
[[] pata Butfer

D Computation

[ control

Not to Scale

Host Interface

Architecture

14 GiB/s ' i 30 GiB/s
DDR3 [
Interfaces

10 GiB/s

=)
L

J

=

DDR3 DRAM Chips

-

R 4

Unified
Buffer
(Local
Activation
Storage)

Data
Setup

'\

Systolic

167
GiB/s|

J

& 167 GiB/s

-—

TPU: High-level Chip

Weight FIFO |

(Weight Fetcher)

G 30 GIBIs

Matrix Multiply
Unit
(64K per cycle)

[

Accumulators ]

[

Activation ]

[ Normalize / Pool ]
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Google Tensor Processing Unit, TPU (May’16)

Chip floor plan | | 3

Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24% _ .
29% of chip Tensor Processing Umt_é&
D | Host Accumulators RD
A Interf. 2% (4Kx256x32b = 4 MiB) 6% | »
M. | IRESRESIZEN | Activation Pipeii .
pot “ ‘ AGIVRON EIpeINIe 6% port TPUs are intensively used
r | V——
PCle = 3% le, namely in
% b Interface 3% | . : ‘ Misc. I/O 1% ] (] — by Google, namely
' : Google Photos,
RankBrain, StreetView
& Google Translate
AJProenca, Parallel Computing, MIEIl, UMinho, 2020/21 47

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu



Google TPUv2 (May’17)
TPUv2 Chip

- HEM - core | core ﬂ il
6960 | 8 GB 6CB
scalar unit scalar unit
99999 |
4 v vt
e 16 GB of HBM <> EEEEEEEE <+ SEEEEEEE <—>
e 600 GB/s mem BW EEEEmEEE | EessEEEE
o Scala?r unit: 32b float EEEEEEEE
e MXU: 32b .ﬂoat 1 ,
accumulation but
reduced precision for MXU MXU
multipliers 128x128 128x128
e 45 TFLOPS ‘
bfloat
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i Google TPUv3 (May’18)

|
-.,T—-‘T oy — —— ‘»-—4 —

TPUV4 released Jun 2020
but no data available yet...

Core Core Core Core
scalar/ vector scalar/ vector scalar/ scalar/
units units vector units vector units
Ooo0oOoOoooo Ooo0oooooo AENEEEEEER EEEEEREN | AEEEEEEE
HEM i o o O0o000oooo HBM AENEEEEEN HEEEEEEEN | EEEEEEEN HBM
aGB DEEEEEED DEEEEEEE 8GB EEEEEEEE || TSN | I EEEEEEE 16GB
DEDEEEED DENEEEED EEEEEEEE ||| TSN | I AN AN
DEDDEEED DEEEEEED EEEEEEEE ||| A EEEEEE | EEEEEEN
Ooo0o0ooooo Ooo0o0o0oooo EEEREEER AIEEEEEN | EEEEEEEE
0 o 0 o o AENEEREEN ENEEEEEN | EEEEEEEN
Oo0o0o0ooooo 0 o o o o o [ EEEEEEEN AIEEEEEN | EEEEEEEE
MXU MXU MXU MXU MXU
128x128 128x128 128x128 128x128 128x128
TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip
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UBQO1BO
S832YNA
H1834

1 =50

(24-bit)

Tesla Full Self-Driving chip (FSD)

Camera I/F

LPDDR4-4266

(64-bit)

Video

GPU
1 GHz
(600 GFLOPS)

Encode
(H.265)

NoC

Quad-Core
CortexA72
2.2 GHz

NPU
2 GHz

(36.86 TOPS)

NPU
2 GHz
(36.86 TOPS)

Quad-Core
CortexA72
2.2 GHz

(319-%79)
992V-vdddd]
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Mt The Neural Processing Unit in FSD
UBQO1BO
. . 6832 ‘~ o

14
L ! |
- 4

odo-

' Bl
. >

:

: Write Buffer
“4 Pooling }
f h Activations ]

9,216 MACs Write Buffer
(96x96 array)
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