Parallel Computing

Master Informatics Eng.

2020/21 *A.J.Proença*

From ILP to Multithreading & Data Parallelism (online)

(most slides are borrowed)

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

Key issues for parallelism in a single-core

Pipelining & superscalarity: a review

- The analysed pipelines were only in the P6 **Execution Unit**, \bullet assuming that the Instruction Control Unit issues at each clock cycle all the required instructions for parallel execution
- The image suggests (i) a 3-way superscalar engine and (ii) an execution engine with 6 functional units

AJProença, Parallel Computing, MiEI, UMinho, 2020/21

公

Intel Sunny Cove microarchitecture: 30 functional units

Comments to the slides on performance evaluation (1)

Assembly version for combine4

- data type: integer ; operation: multiplication

. L24 :		# Loop:
imull	(%eax,%edx,4),%ecx	# t *= data[i]
incl	%edx	# i++
cmpl	%esi,%edx	<pre># i:length</pre>
jl	.L24	# if < goto Loop

• Translating 1st iteration into RISC-like instructions

load	(%eax,%edx.0,4)	→	t.1
imull	t.1, %ecx.0	→	%ecx.1
incl	%edx.0	→	%edx.1
cmpl	<pre>%esi, %edx.1</pre>	→	cc.1
jl	-taken cc.1		

3+miss penalty?		
+4		
+1	Expected duration:	
+1	10+ clock cycles	
+1	per vector element	

Timings in clock cycles

AJProença, Parallel Computing, MiEI, UMinho, 2020/21

Comments to the slides on performance evaluation (2)

\sim

Features that lead to CPE=2:

in the hardware

- pipelined execution units with 1 clock-cycle/issue
- more temporary registers
- mem hierarchy with cache
- out-of-order execution
- at least 5-way superscalar
- more 1 arithm & 1 load units
- speculative jump

at the code level

- loop unroll 2x
- 2-way parallelism

EDC

EDC

公

公

AJProença, Parallel Computing, MiEl, UMinho,

Package Top side view

Package bottom side view

\sim

AJProença, Parallel Computing, Mil

--- = SATA capable on lower 8 lanes

= DIE

\sim

Ampere[™] Altra[™] processor complex

ARM

80 64-bit Arm CPU cores @ 3.0 GHz Turbo

- 4-Wide superscalar aggressive out-of-order execution
- Single threaded cores for performance and security isolation

Ampere Altra: 80 cores

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

\sim

China

Sunway SW 26010: 256+4 cores (in #1 TOP500, June 2016)

What is needed to increase the #cores in a chip?

\sim

What is needed to increase the #cores in a chip?

Using the same microelectronics technology, **<u>remove</u>** parts from the core

Which parts?

- L3 cache
- AVX-512

. . .

- reduce L2 cache
- in-order exec
- less functional units

AJProença, Parallel Computing, MiE

SMT in architectures designed by other companies

$\langle \rangle$

For each manufacturer identify the max hw support for SMT at each core (how many ways):

- Intel Xeon
- AMD Epyc
- Fujitsu Arm64FX
- IBM Power 9
- Sunway SW2610
- Apple A14

\sim

- 1. Is AVX-512 so much better than AVX2, why AMD does not plan to support AVX-512?
- 2. Each core in the Xeon Phi KNL (presented in next slides) has two AVX-512 units, but later chips designed by Intel did not follow the same path. Why?
- 3. Fujitsu used the ARM64 design to build the A64FX chip and took advantage of the SVE approach, which could operate on vectors up to 2048 bits; however, it opted to support only 512-bits long vectors. Why?

Suggestion for questions 2 & 3:

- compute the required bandwidth to access RAM when <u>all cores</u> perform a vector operation at each clock cycle and
- compare this value with the max bandwith of the embedded RAM.

Intel MIC: Many Integrated Core

~~

Intel evolution, from:

• Larrabee (80-core GPU)

<u>S</u>ingle-chip

Computer,

Cloud

24x

to MIC:

- Knights Ferry (pre-production, Stampede)
- Knights Corner

Xeon Phi <u>co</u>-processor up to 61 Pentium cores

Knights Landing (<u>& Knights Mill...</u>)

Xeon Phi full processor up to 36x dual-core Atom tiles

Launched in June 2016 Discontinued in July 2018

INTRODUCTION TO THE INTEL[®] XEON PHI[™] PROCESSOR (codename "knights landing")

Dr. Harald Servat - HPC Software Engineer Data Center Group – Innovation Performing and Architecture Group

> Summer School in Advanced Scientific Computing 2016 February 21st, 2016 – Braga, Portugal June

INTEL® XEON PHI[™] PROCESSOR FAMILY ARCHITECTURE OVERVIEW

Codenamed "Knights Landing" or KNL

Intel[®] Xeon[®] Processor E5 v4 Product Family HCC

QPI QPI Link Link X16 X16 X8

Evolution of on-chip Intel interconnect

http://www.tomshardware.com/news/intel-mesh-architecture-skylake-x-hedt,34806.html

KNL PROCESSOR TILE

Tile

- 2 cores, each with 2 vector processing units (VPU)
- 1 MB L2-cache shared between the cores

Core

- Binary compatible with Xeon
- Enhanced Silvermont (Atom)-based for HPC w/ 4 threads
- Out-of-order core
- 2-wide decode, 6-wide execute (2 int, 2 fp, 2 mem), 2-wide retire

2 VPU

- 512-bit SIMD (AVX512) 32SP/16DP per unit
- Legacy X87, SSE, AVX and AVX2 support

OpenMP

From Wikipedia, the free encyclopedia

Thread affinity [edit]

Some vendors recommend setting the processor affinity on OpenMP threads to associate them with particular processor cores. ^{[33][34][35]} This minimizes thread migration and context-switching cost among cores. It also improves the data locality and reduces the cache-coherency traffic among the cores (or processors).

TAKING BENEFIT OF THE CORE

Threading

- Ensure that thread affinities are set.
- Understand affinity and how it affects your application (i.e. which threads share data?).
- Understand how threads share core resources.
 - An individual thread has the highest performance when running alone in a core.
 - Running 2 or 4 threads in a core may result in higher per core performance but lower per thread performance.
 - Due to resource partitioning, 3 thread configuration will have fewer aggregative resources than 1, 2 or 4 threads per core. 3 threads in a core is unlikely to perform better than 2 or 4 threads.

Vectorization

- Prefer AVX512 instructions and avoid mixing SSE, AVX and AVX512 instructions.
- Avoid cache-line splits; align data structures to 64 bytes.
- Avoid gathers/scatters; replace with shuffles/permutes for known sequences.
- Use hardware trascendentals (fast-math) whenever possible.
- AVX512 achieves best performance when not using masking
- KNC intrinsic code is unlikely to generate optimal KNL code, recompile from HL language.

DATA LOCALITY: NESTED PARALLELISM

- Recall that KNL cores are grouped into tiles, with two cores sharing an L2.
- Effective capacity depends on locality:
 - 2 cores sharing no data => 2 x 512 KB
 - 2 cores sharing all data => 1 x 1 MB
- Ensuring good locality (e.g. through blocking or nested parallelism) is likely to improve performance.

```
#pragma omp parallel for num_threads(ntiles)
for (int i = 0; i < N; ++i)
{
    #pragma omp parallel for num_threads(8)
    for (int j = 0; j < M; ++j)
    {
        ...
    }
}</pre>
```

2 VPU	HUB	VPU
Core	1MB L2	Core

KNL PROCESSOR UNTILE

Comprises a mesh connecting the tiles (in red) with the MCDRAM and DDR memories.

Also with I/O controllers and other agents

Caching Home Agent (CHA) holds portion of the distributed tag directory and serves as connection point between tile and mesh

• No L3 cache as in Xeon

Cache coherence uses MESIF protocol (Modified, Exclusive, Shared, Invalid, Forward)

IMC (integrated memory controller)

IIO (integrated I/O controller)

KNL MESH INTERCONNECT

Mesh of Rings

- Every row and column is a ring
- YX routing: Go in Y \rightarrow Turn \rightarrow Go in X
 - 1 cycle to go in Y, 2 cycles to go in X
- Messages arbitrate at injection and on turn

Mesh at fixed frequency of 1.7 GHz Distributed Directory Coherence protocol

KNL supports Three Cluster Modes

- 1) All-to-all
- 2) Quadrant
- 3) Sub-NUMA Clustering

Selection done at boot time.

CLUSTER MODE: ALL-TO-ALL

Address uniformly hashed across all distributed directories

No affinity between Tile, Directory and Memory

Lower performance mode, compared to other modes. Mainly for fall-back

Typical Read L2 miss

- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

CLUSTER MODE: QUADRANT

Chip divided into four Quadrants

Affinity between the Directory and Memory

Lower latency and higher BW than all-toall

SW Transparent

Typical Read L2 miss

- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

CLUSTER MODE: SUB-NUMA CLUSTERING (SNC4)

Each Quadrant (Cluster) exposed as a separate NUMA domain to OS

Analogous to 4-socket Xeon

SW Visible

Typical Read L2 miss

- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

KNL HARDWARE INSTRUCTION SET

2. Xeon Phi = Intel[®] Xeon Phi[™] processor

GUIDELINES FOR WRITING VECTORIZABLE CODE

Prefer simple "for" or "DO" loops

Write straight line code. Try to avoid:

- function calls (unless inlined or SIMD-enabled functions)
- branches that can't be treated as masked assignments.

Avoid dependencies between loop iterations

Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers

- Without help, the compiler often cannot tell whether it is safe to vectorize code containing pointers.
- Try to use the loop index directly in array subscripts, instead of incrementing a separate counter for use as an array address.
- Disambiguate function arguments, e.g. -fargument-noalias

Use efficient memory accesses

- Favor inner loops with unit stride
- Minimize indirect addressing a[i] = b[ind[i]]
- Align your data consistently where possible (to 16, 32 or 64 byte boundaries)

INTEL[®] XEON PHI[™] X200 PROCESSOR OVERVIEW

MCDRAM MODES

Cache mode

- Direct mapped cache
- Inclusive cache
- Misses have higher latency
 - Needs MCDRAM access + DDR access
- No source changes needed to use, automatically managed by hw as if LLC

Flat mode

- MCDRAM mapped to physical address space
- Exposed as a NUMA node
 - Use numactl --hardware, lscpu to display configuration

Core 0

L2

L3

Memory

Inclusive cache

organization

L2

L1

L1

DI

Accessed through memkind library or numactl

Hybrid

- Combination of the above two
 - E.g., 8 GB in cache + 8 GB in Flat Mode

TAKE AWAY MESSAGE: CACHE VS FLAT MODE

BAYNCORE

Intel[®] Knights Landing die

Notes:

- 38 tiles, 76 cores
- max announced: 36 tiles
- max on sale: 34 tiles

Beyond vector extensions

\sim

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of vector/SIMD-extended architectures
 - computing accelerators optimized for number crunching (GPU)
 - add support for matrix <u>multiply + accumulate</u> operations; why?
 - most <u>scientific, engineering, AI & finance</u> applications use matrix computations, namely the dot product: multiply and accumulate the elements in a row of a matrix by the elements in a column from another matrix
 - manufacturers typically call these extension **Tensor Processing Unit** (TPU)
 - support for half-precision FP & 8-bit integer; why?
 - machine learning using neural nets is becoming very popular; to compute the model parameter during training phase, intensive matrix products are used and with very low precision (is adequate!)

Machine learning w/ neural nets & deep learning...

Key algorithms to train & classify use matrix dot products, but require lower precision numbers!

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

Required hardware operations & data types to train & classify neural nets

NVidia Volta Architecture: the new Tensor Cores

Figure 8. Tensor Core 4x4 Matrix Multiply and Accumulate

公

For each SM: 8x 64 FMA ops/cycle 1k FLOPS/cycle!

Figure 9. Mixed Precision Multiply and Accumulate in Tensor Core

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

TF32: same <u>range</u> as **FP32** and <u>same</u> <u>precision</u> as **FP16** The FP multiplier scales with the square of the mantissa width (8²/11²≈0.5)

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

Tensor Cores: Volta vs. Ampere

AJProença, Parallel Computing, MiEI, UMinho, 2020/21

NVidia competitors with neural net features: Intel with Nervana & later Habana

History

<u>/></u>

- Intel buys Nervana Engine (Aug 2016)
- Intel launches Nervana NNP (Neural Net Processor) (Oct 2017)
- Key features: matrix multiplication & convolution (for neural nets)
- Intel discontinues Nervana NNP (Jan 2020...)
- Intel buys the Israel chipmaker Habana Labs (Dec 2019)
 - -Habana training chip Gaudi, with support to FP32, INT32, BF16, INT16, INT8, UINT32, UINT16, UINT8
 - -Habana inference chip Goya, with support to FP32, INT32, INT16, INT8, UINT32, UINT16, UINT8

Habana chips

GEMM Engine					
ТРС	трс	ТРС	трс		
Local Memory	Local Memory	Local Memory	Local Memory		
TPC	TPC	трс	TPC		
Local Memory	Local Memory	Local Memory	Local Memory		
Shared Memory					
DMA					
D	DR4	PCIe 4.0			

TSMC – 16nm

• •

TSMC – 16nm

Google Tensor Processing Unit, TPU (May'16)

\sim

- The Matrix Unit: 65,536 (256x256) 8-bit multiply-accumulate units
- 700 MHz clock rate
- Peak: 92T operations/second
 - o 65,536 * 2 * 700M
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
- 24 MiB of on-chip Unified Buffer (activation memory)
- 3.5X as much on-chip memory vs GPU
- Two 2133MHz DDR3 DRAM channels
- 8 GiB of off-chip weight DRAM memory

TPU: High-level Chip Architecture

Google Tensor Processing Unit, TPU (May'16)

by Google, namely in Google Photos, RankBrain, StreetView & Google Translate 47

公入

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Google TPUv2 (May'17)

 \sim

TPUv2 Chip

- 16 GB of HBM
- 600 GB/s mem BW
- Scalar unit: 32b float
- MXU: 32b float accumulation but reduced precision for multipliers
- 45 TFLOPS

bfloat

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

Google TPUv3 (May'18)

TPUv4 released Jun 2020 but no data available yet...

TPU v2 - 4 chips, 2 cores per chip

TPU v3 - 4 chips, 2 cores per chip

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

AJProença, Parallel Computing, MiEI, UMinho, 2020/21

The Neural Processing Unit in FSD

AJProença, Parallel Computing, MiEI, UMinho, 2020/21