Parallel Computing

Master Informatics Eng.

2020/21

A.J.Proença

Data Parallelism with GPUs (online)

(most slides are borrowed)

Graphics Processing Units

SIMD Parallelism

M<

- Vector architectures
- SIMD & extensions
- Graphics Processor Units (GPUs)

Copyright @ 2012, Elsevier Inc. All rights reserved

- Question to GPU architects:
 - Given the hardware invested to do graphics well, how can we supplement it to improve the performance of a wider range of applications?

Key ideas:

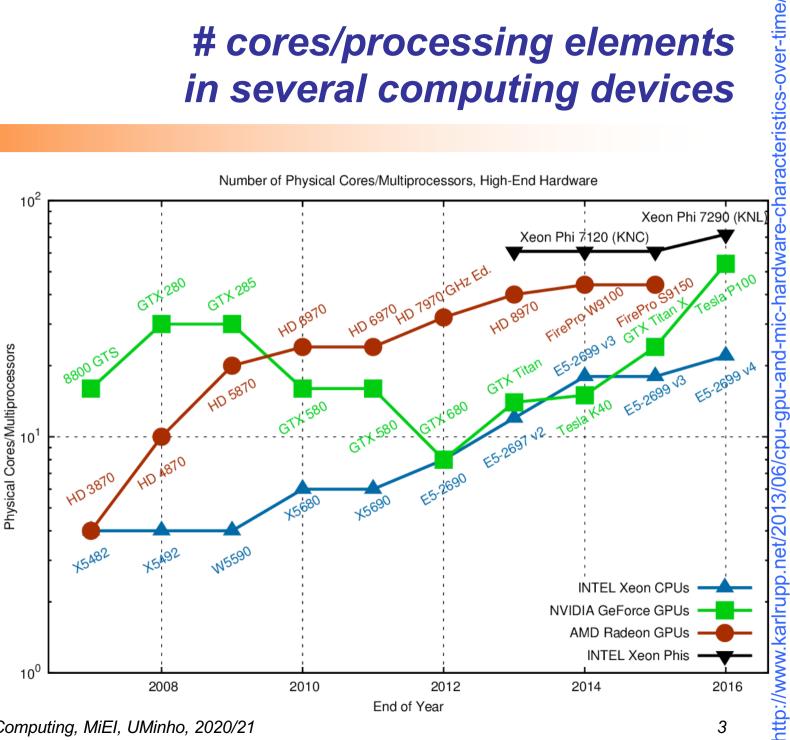
- Heterogeneous execution model
 - CPU is the host, GPU is the device
- Develop a C-like programming language for GPU
- Unify all forms of GPU parallelism as CUDA_threads
- Programming model follows SIMT:
 "Single Instruction Multiple Thread"

cores/processing elements in several computing devices

人入

Key question: what is a core?

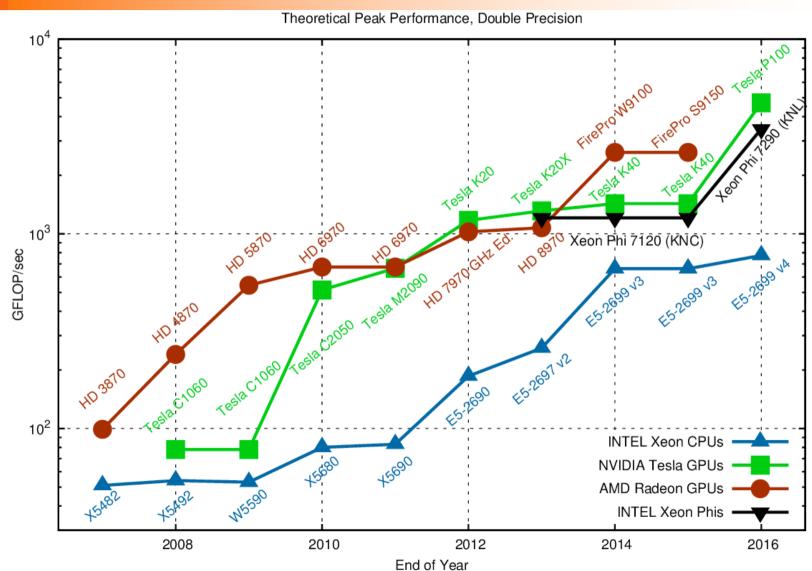
- IU+FPU? GPU-type...
- b) A SIMD


 processor?

 CPU-type...

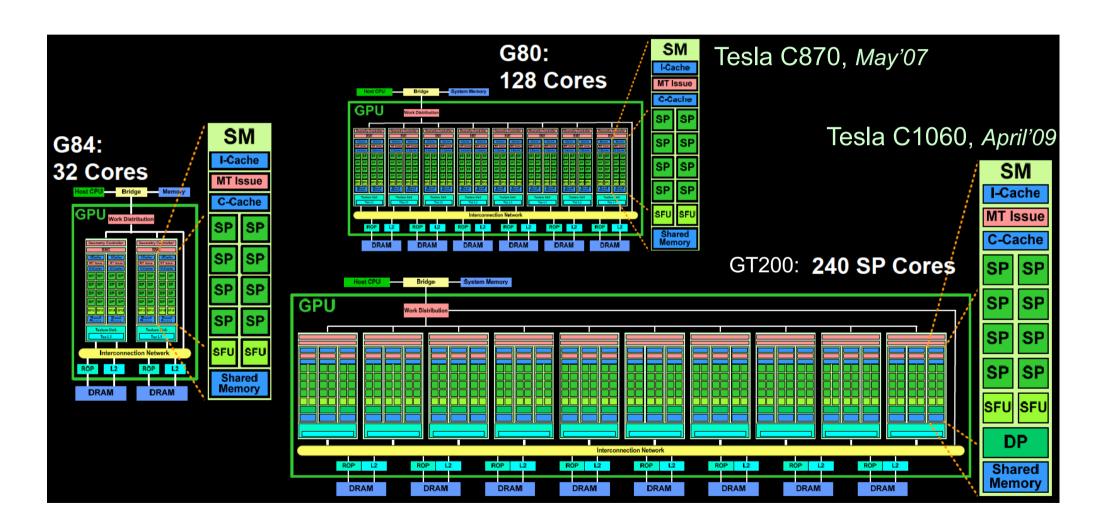
 This updated slide

and in this course: - b)


Note: the web link with these plots was updated in Aug'16

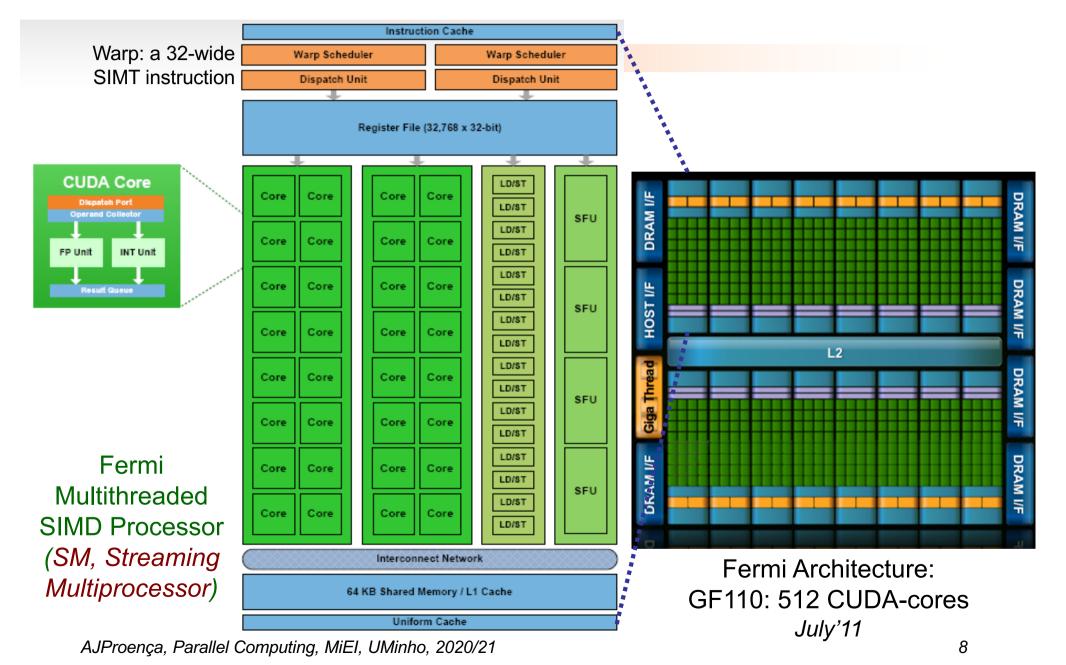
3

Theoretical peak performance in several computing devices (DP)


NVIDIA GPU Architecture

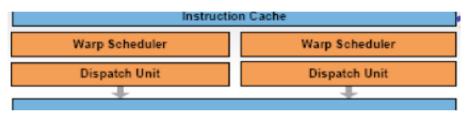
- Similarities to vector machines:
 - Works well with data-level parallel problems
 - Scatter-gather transfers
 - Mask registers
 - Large register files
- Differences:
 - No scalar processor
 - Uses multithreading to hide memory latency
 - Has many functional units, as opposed to a few deeply pipelined units like a vector processor

Early NVidia GPU Computing Modules



NVIDIA GPU Memory Structures

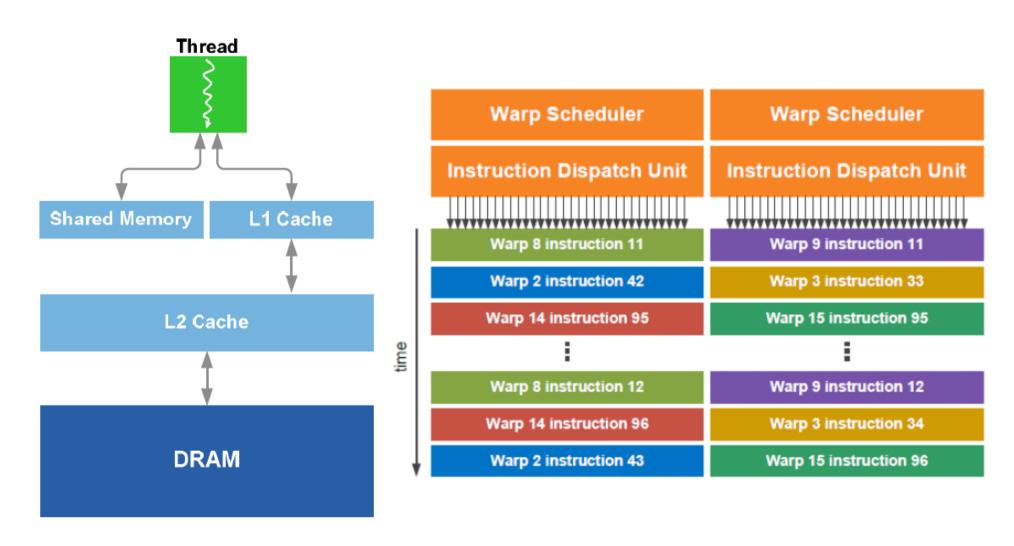
- Each SIMD Lane has private section of off-chip DRAM
 - "Private memory" (Local Memory)
 - Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor (SM) also has local memory (Shared Memory)
 - Shared by SIMD lanes / threads within a block
- Memory shared by SIMD processors (SM) is GPU Memory, off-chip DRAM (Global Memory)
 - Host can read and write GPU memory



The NVidia Fermi architecture

Fermi Architecture Innovations

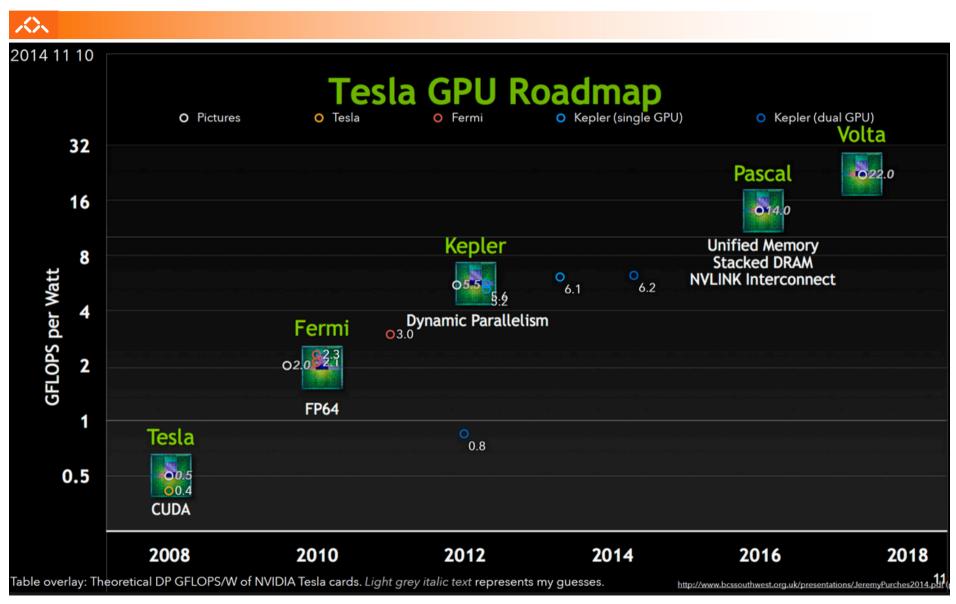
- Each SIMD processor has
 - Two SIMD thread schedulers, two instruction dispatch units
 - 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
 - Thus, two threads of SIMD instructions are scheduled every two clock cycles



- Fast double precision
- Caches for GPU memory (16/64KiB_L1/SM and global 768KiB_L2)
- 64-bit addressing and unified address space
- Error correcting codes
- Faster context switching
- Faster atomic instructions

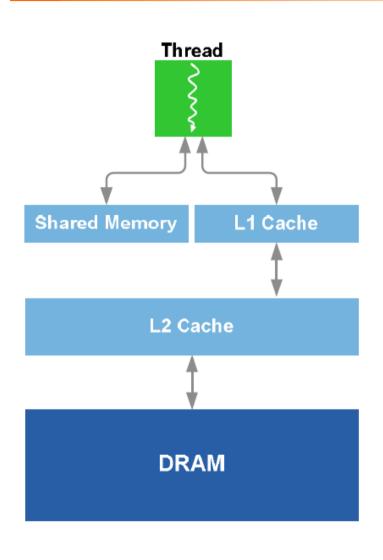
Fermi: Multithreading and Memory Hierarchy

TOP500 list in November 2010: 3 systems in the top4 use Fermi GPUs

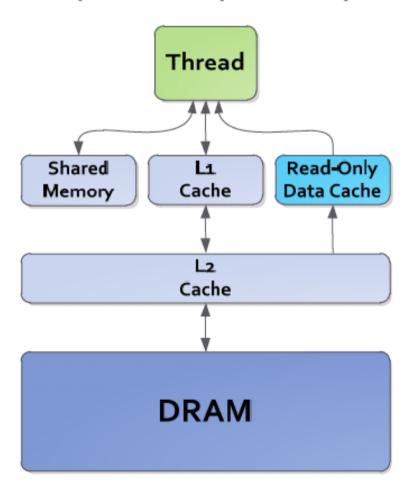


HIGHLIGHTS: NOVEMBER 2010

- The Chinese Tianhe-1A system is the new No. 1 on the TOP500 and clearly in the lead with 2.57 petaflop/s
 performance.
- No. 3 is also a Chinese system called Nebulae, built from a Dawning TC3600 Blade system with Intel X5650 processors and NVIDIA Tesla C2050 GPUs
- There are seven petaflop/s systems in the TOP10
- The U.S. is tops in petaflop/s with three systems performing at the petaflop/s level
- The two Chinese systems and the new Japanese Tsubame 2.0 system at No. 4 are all using NVIDIA GPUs to
 accelerate computation and a total of 28 systems on the list are using GPU technology.


Families in NVidia Tesla GPUs

(up to 2018)



From Fermi into Kepler: the Memory Hierarchy

Kepler Memory Hierarchy

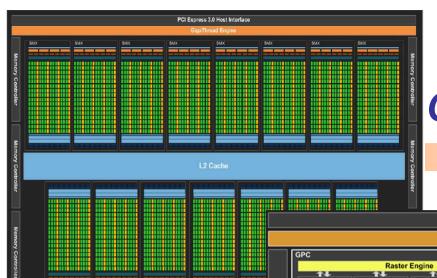
DRAM I/F DRAM I/F DRAM I/F

From the GF110 to the GK110 Kepler Architecture

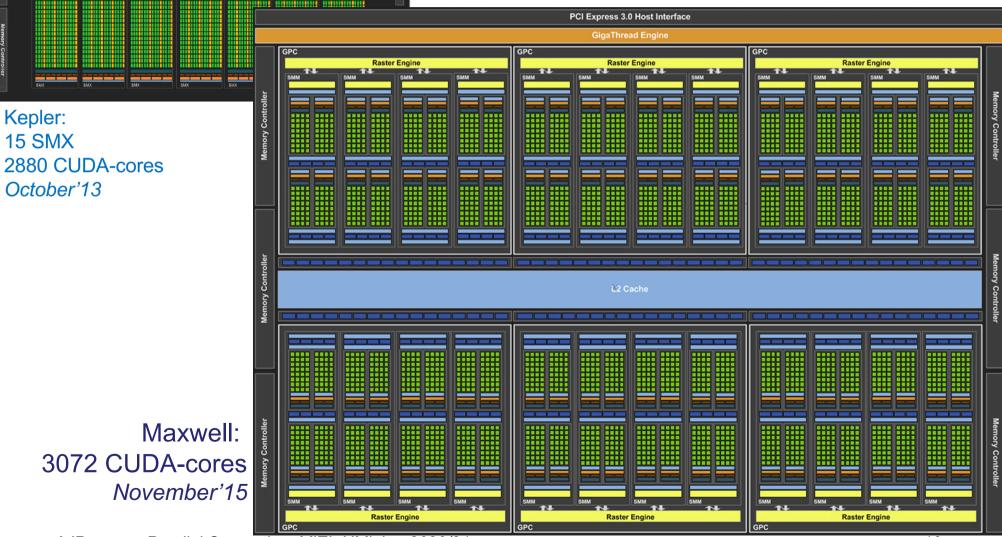
Fermi: 16 SM 512 CUDA-cores *July'11*

> Kepler: 15 SMX 2880 CUDA-cores October'13

SM Instruction Cache Warp Scheduler Warp Scheduler Dispatch Unit Dispatch Unit Register File (32,768 x 32-bit) LD/ST Core Core Core Core LD/ST SFU LD/ST Core Core Core Core LD/ST LD/ST Core Core Core Core LD/ST SFU LD/ST Core Core Core Core LD/ST LD/ST Core Core Core Core LD/ST LD/ST Core Core Core LD/ST LD/ST Core Core Core Core LD/ST SFU LD/ST Core Core Core Core LD/ST Interconnect Network 64 KB Shared Memory / L1 Cache Uniform Cache Fermi SM SMX:

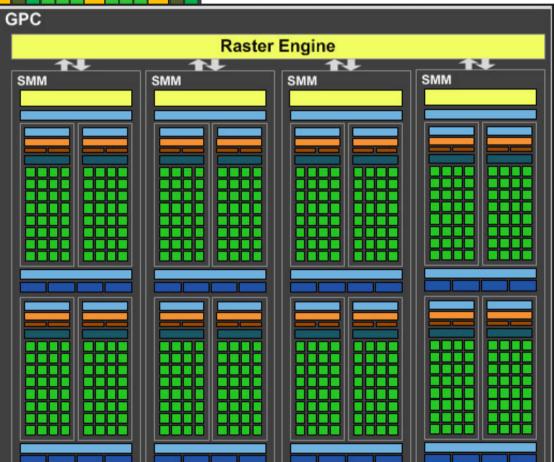

192 CUDA-cores

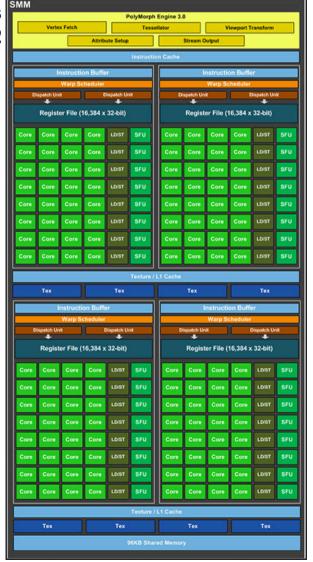
Ratio **DP**unit : **SP**unit -> 1 : 3

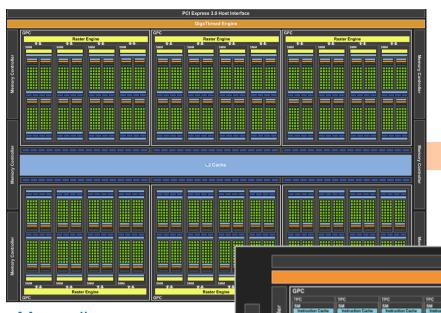

AJProenca, Parallel Computing, MiEI, UMinho, 20

From Fermi to Kepler core: SM and the SMX Architecture

From the GK110 to the GM200 Maxwell Architecture

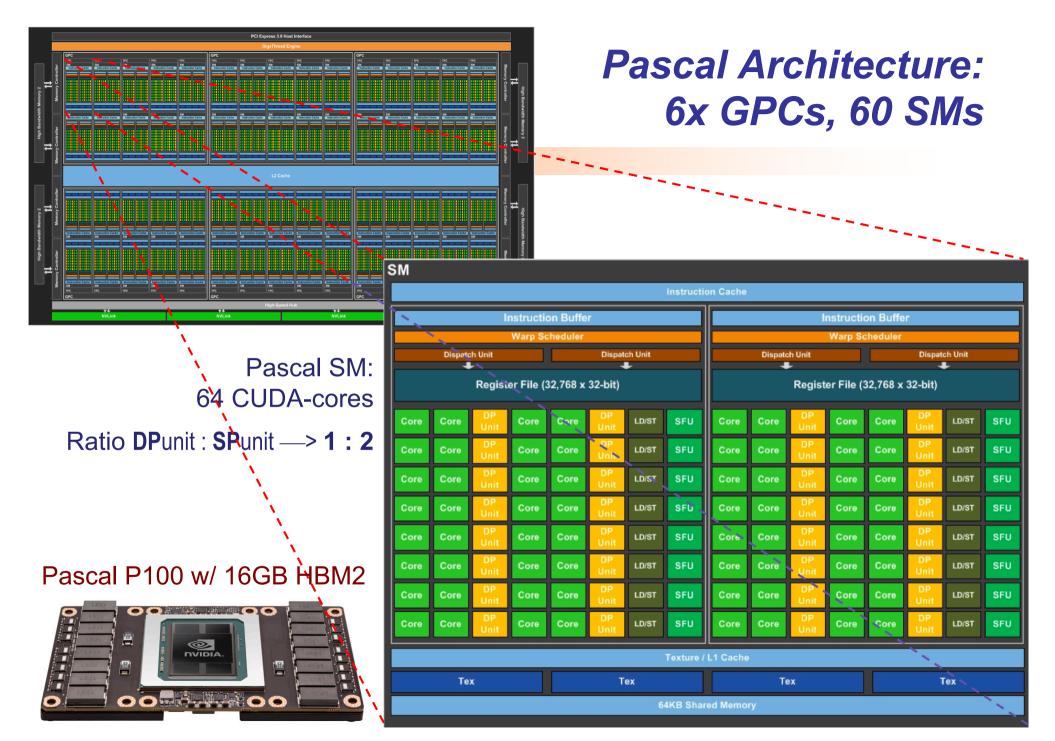


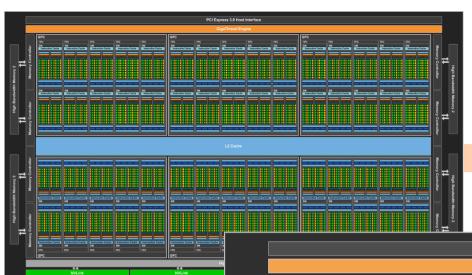



Kepler SMX

The move from Kepler to Maxwell: from 15 SMXs to 48 SMMs in 6 GPCs

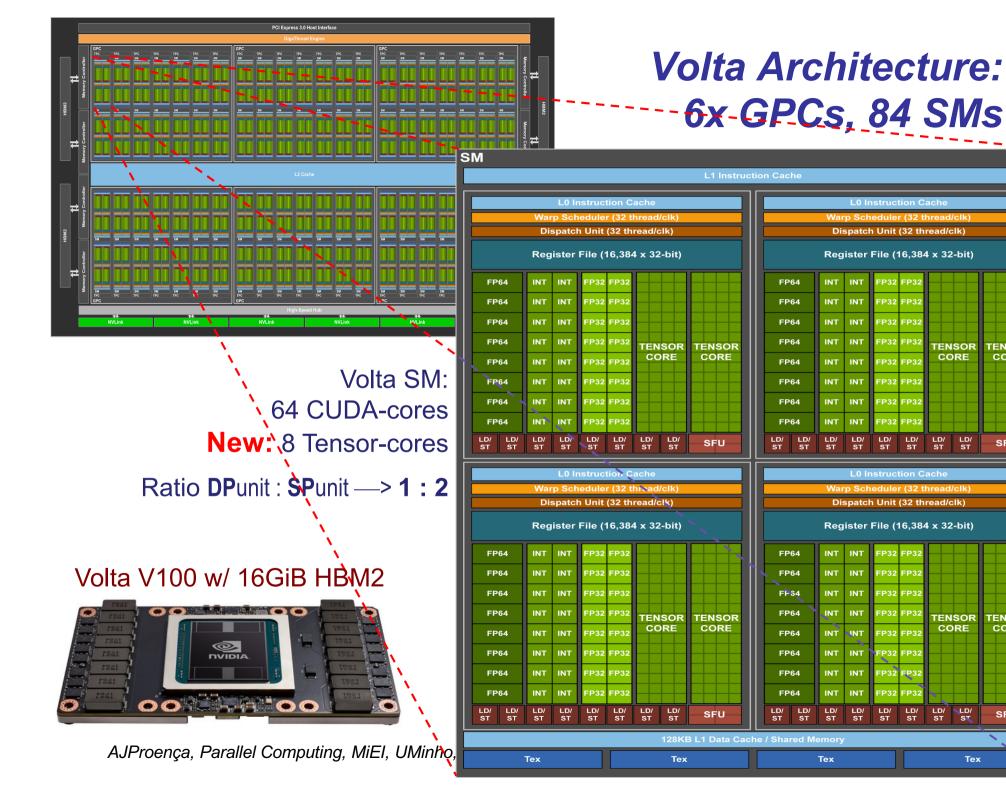
SMM: 128 CUDA-cores
Ratio **DP**unit : **SP**unit -> 1 : 32


From the M200 to the GP100 Pascal Architecture


Maxwell: 48 SMM 3072 CUDA-cores *November'15*

Pascal: 60 SM 3840 CUDA-cores 4 HBM on-package September'16

PCI Express 3.0 Host Interface



From the GP100 to the GV100 Volta Architecture

Pascal: 60 SM 3840 CUDA-cores *November'15*

Volta: 84 SM 5120 CUDA-cores HBM on-package June'17

TENSOR

SFU

TENSOR

CORE

SFU

From GV 100 to Ampere: up to 8 GPC, 128 SMs total

Ampere: NVidia GA100 8192 FP32 CUDA Cores 512 3rd generation Tensor Cores 6 HBM2, 12 <u>512-bit</u> mem controllers *May'20*

Volta: 84 SM 3584 CUDA-cores November'15

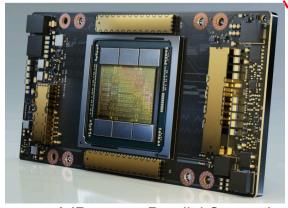
Ampere:

<u>GA100</u>
for graphics
w/ 8 GPC

A100 for HPC & AI w/ 7 GPC

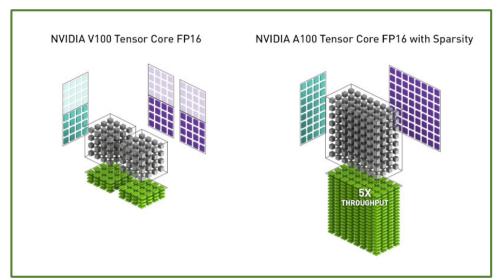
-Ampere Architecture

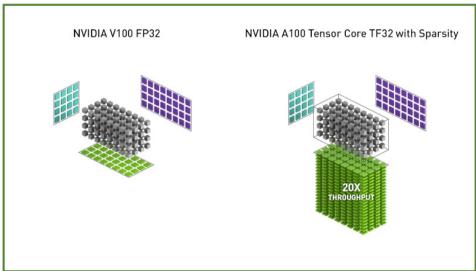
L1 Instruction Cache

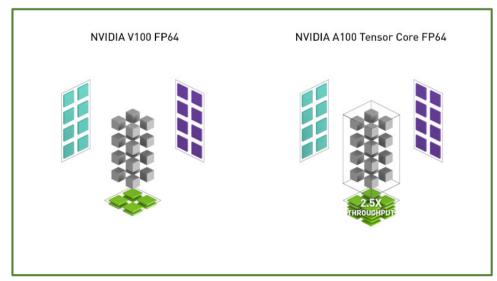


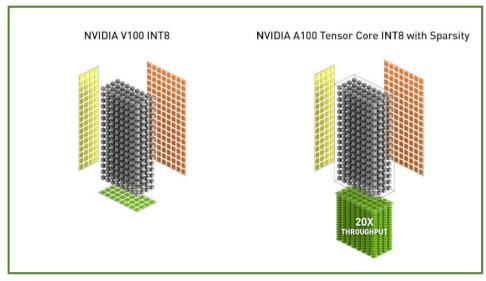
Tex

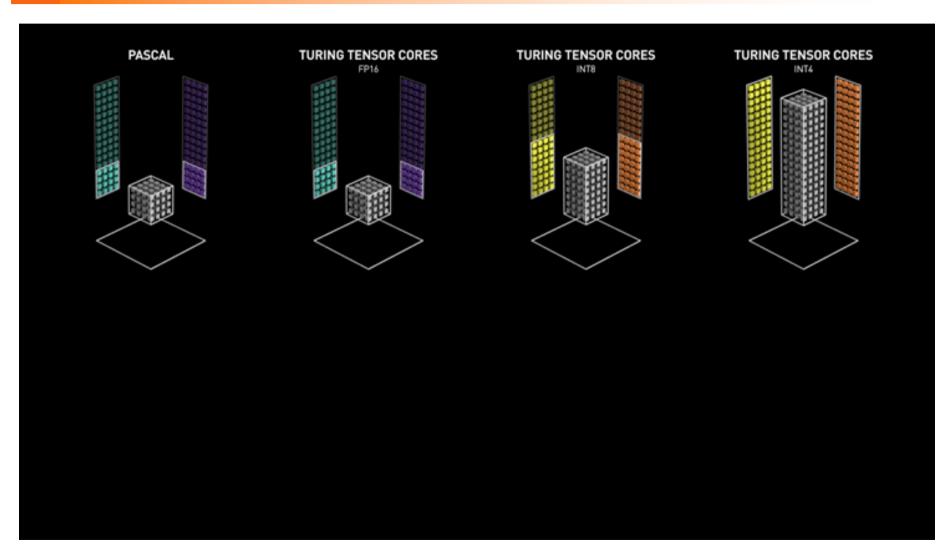
Ampere SM:
64x FP32 CUDA Cores/SM
32x FP64 CUDA Cores/SM
4x 3rd generation Tensor Cores


Tensor Cores support FP64, FP32, TF32, FP16, BF16, INT8...
1024 dense FP16/FP32 FMA op's/cycle




AJProença, Parallel Computing, MiEI, UMinho,


Tensor cores in Ampere



Pascal vs. Turing tensor cores (animation)

Tesla Product		Tesla K40	Tesla M40	Tesla P100	Tesla V100
	GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
Ita/	SMs	15	24	56	80
9-VC	TPCs	15	24	28	40
Sid	FP32 Cores / SM	192	128	64	64
a	FP32 Cores / GPU	2880	3072	3584	5120
<u>torial</u>	FP64 Cores / SM	64	4	32	32
<u>a</u>	FP64 Cores / GPU	960	96	1792	2560
γpa	Tensor Cores / SM	NA	NA	NA	8
200	Tensor Cores / GPU	NA	NA	NA	640
da.	GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
	Peak FP32 TFLOP/s*	5.04	6.8	10.6	15.7
go	Peak FP64 TFLOP/s*	1.68	.21	5.3	7.8
nttps://devblogs.nvidia.com/parallelforall/inside-volta	Peak Tensor Core TFLOP/s*	NA	NA	NA	125
ttps	Texture Units	240	192	224	320
_	Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
	Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
	L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
	Shared Memory Size /	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
	Register File Size / SM	256 KB	256 KB	256 KB	256KB
	Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
	TDP	235 Watts	250 Watts	300 Watts	300 Watts
	Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
	GPU Die Size	551 mm²	601 mm²	610 mm²	815 mm²
	Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

Tesla accelerators: evolution

Ampere SYSTEM SPECIFICATIONS (PEAK PERFORMANCE)

	NVIDIA A100 for NVIDIA HGX™	NVIDIA A100 for PCle		
GPU Architecture	NVIDIA Ampere			
Double-Precision Performance	FP64: 9.7 TFLOPS FP64 Tensor Core: 19.5 TFLOPS			
Single-Precision Performance	FP32: 19.5 TFL0PS Tensor Float 32 (TF32): 156 TFL0PS 312 TFL0PS*			
Half-Precision Performance	312 TFLOPS 624 TFLOPS*			
Bfloat16	312 TFLOPS 624 TFLOPS*			
Integer Performance	INT8: 624 TOPS 1,248 TOPS* INT4: 1,248 TOPS 2,496 TOPS*			
GPU Memory	40 GB	НВМ2		
Memory Bandwidth	1.6 TB/sec			

_
Œ
تئد
$\overline{}$
Q
all/inside-ve
Φ
$\overline{\mathbf{c}}$
. <u> </u>
ഗ
<u>.</u> =
=
$\overline{\mathbf{x}}$
ĮŪ.
\succeq
Ü
elfor
(D)
_
兩
٤٥
ℼ
Jara
્
i.com/pa
_
$\overline{}$
\mathcal{C}
\circ
w
=
.⊆
-
_
'n
*
\mathbf{Q}_{j}
\mathbf{O}
ologs.nvid
>
Φ
$\overline{\mathbf{O}}$
\prec
\sim
iń
\approx
4
#

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100	
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)	la evolution
SMs	15	24	56	80 TES	ia evolution
TPCs	15	24	28	40	(1)
FP32 Cores / SM	192	128	64	64	
FP32 Cores / GPU	2880	3072	3584	5120	
FP64 Cores / SM	64	4	32	32	
FP64 Cores / GPU	960	96	1792	2560	ta/
Tensor Cores / SM	NA	NA	NA	8	-vo
Tensor Cores / GPU	NA	NA	NA	640	side Side
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz	/ins
Peak FP32 TFLOP/s*	5.04	6.8	10.6	15.7	fora
Peak FP64 TFLOP/s*	1.68	.21	5.3	7.8	alleit
Peak Tensor Core TFLOP/s	NA	NA	NA	125	m/para
Texture Units	240	192	224	320	<u>8</u>
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2	https://devblogs.nvidia.com/parallelforall/inside-volta
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB	sbo
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB	evb
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB	tps://d
Register File Size / SM	256 KB	256 KB	256 KB	256KB) t
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB	27

Tesla evolution (2)

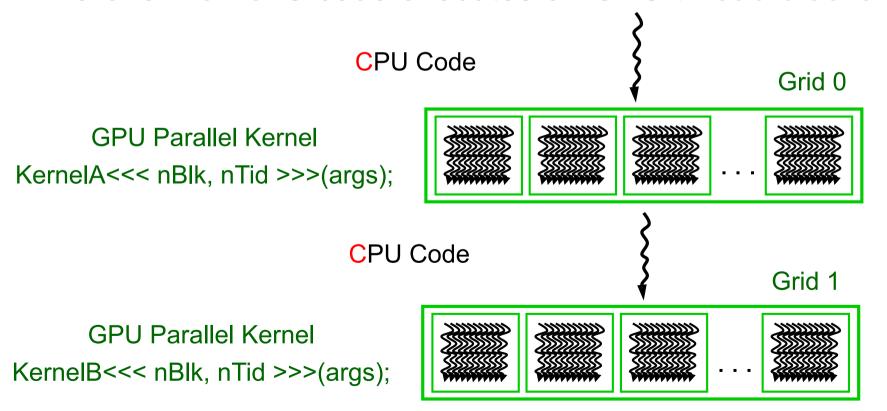
Nvidia Datacenter GPU	Nvidia Tesla V100	Nvidia A100
GPU codename	GV100	GA100
GPU architecture	Volta	Ampere
Launch date	May 2017	May 2020
GPU process	TSMC 12nm	TSMC 7nm
Die size	815mm2	826mm2
Transistor Count	21.1 billion	54 billion
FP64 CUDA cores	2,560	3,456
FP32 CUDA cores	5,120	6,912
Tensor Cores	640	432
Streaming Multiprocessors	80	108
Peak FP64	7.8 teraflops	9.7 teraflops
Peak FP64 Tensor Core	_	19.5 teraflops
Peak FP32	15.7 teraflops	19.5 teraflops
Peak FP32 Tensor Core	-	156 teraflops/312 teraflops*
Peak BFLOAT16 Tensor Core	-	312 teraflops/624 teraflops*
Peak FP16 Tensor Core	-	312 teraflops/624 teraflops*
Peak INT8 Tensor Core	.=.	624 teraflops/1,248 TOPS*
Peak INT4 Tensor Core	-	1,248 TOPS/2,496 TOPS*
Mixed-precision Tensor Core	125 teraflops	312 teraflops/624 teraflops*
Max TDP	300 watts	400 watts

The CUDA programming model

人〉、

- Compute Unified Device Architecture
- CUDA is a recent programming model, designed for
 - a multicore CPU host coupled to a many-core device, where
 - devices have wide SIMD/SIMT parallelism, and
 - the host and the device do not share memory
- CUDA provides:
 - a thread abstraction to deal with SIMD
 - synchr. & data sharing between small groups of threads
- CUDA programs are written in C with extensions
- OpenCL inspired by CUDA, but hw & sw vendor neutral
 - programming model essentially identical

CUDA Devices and Threads


人入

- A compute device
 - is a coprocessor to the CPU or host
 - has its own DRAM (device memory)
 - runs many threads in parallel
 - is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads - SIMT
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - very little creation overhead, requires LARGE register bank
 - GPU needs 1000s of threads for full efficiency
 - multi-core CPU needs only a few

CUDA basic model: Single-Program Multiple-Data (SPMD)

人入

- CUDA integrated CPU + GPU application C program
 - Serial C code executes on CPU
 - Parallel Kernel C code executes on GPU thread blocks

Programming Model: SPMD + SIMT/SIMD

人入

- Hierarchy
 - Device => Grids
 - Grid => Blocks
 - Block => Warps
 - Warp => Threads
- Single kernel runs on multiple blocks (SPMD)
- Threads within a warp are executed in a lock-step way called singleinstruction multiple-thread (SIMT)
- Single instruction are executed on multiple threads (SIMD)
 - Warp size defines SIMD granularity (32 threads)
- Synchronization within a block uses shared memory

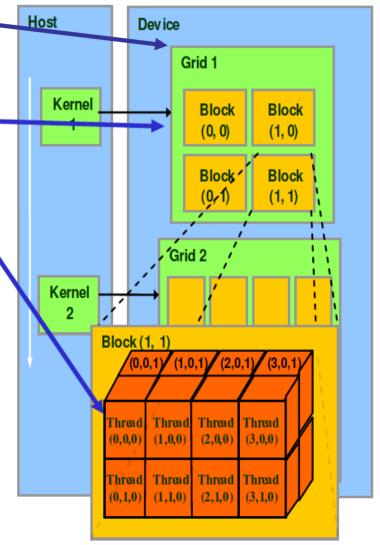
CPU **GPU** Serial Code Grid 1 Kernel Block Block Block (1, 0)(2, 0)(0, 0)**Block** Block Block-(0, 1) (1, 1)(2, 1)Serial Code Grid 2 Kernel Block (1, 1) Thread Thread Thread Thread Thread (0, 0)(1, 0)(2, 0)(3, 0)(4, 0)Thread Thread Thread Thread Thread (3, 1)(0,1)(1, 1)(2, 1)(4, 1)Courtesy NVIDIA Thread Thread Thread Thread Thread (0, 2)(1, 2)(2, 2)(3, 2)(4, 2)

The Computational Grid: Block IDs and Thread IDs

人入

 A kernel runs on a computational grid of thread blocks

Threads share global memory


 Each thread uses IDs to decide what data to work on

- Block ID: 1D or 2D

- Thread ID: 1D, 2D, or 3D

 A thread block is a batch of threads that can cooperate by:

- Sync their execution w/ barrier
- Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

C with CUDA Extensions: C with a few keywords

```
void saxpy_serial(int n, float a, float *x, float *y)
        for (int i = 0; i < n; ++i)
            y[i] = a*x[i] + y[i];
                                                             Standard C Code
    // Invoke serial SAXPY kernel
    saxpy_serial(n, 2.0, x, y);
    __global__ void saxpy_parallel(int n, float a, float *x, float *y)
        int i = blockIdx.x*blockDim.x + threadIdx.x:
        if (i < n) y[i] = a*x[i] + y[i];
                                                               Parallel C Code
    // Invoke parallel SAXPY kernel with 256 threads/block
    int nblocks = (n + 255) / 256;
    saxpy_parallel << nblocks, 256>>> (n, 2.0, x, y);
NVIDIA Confidential
```

Terminology (and in NVidia)

人〉、

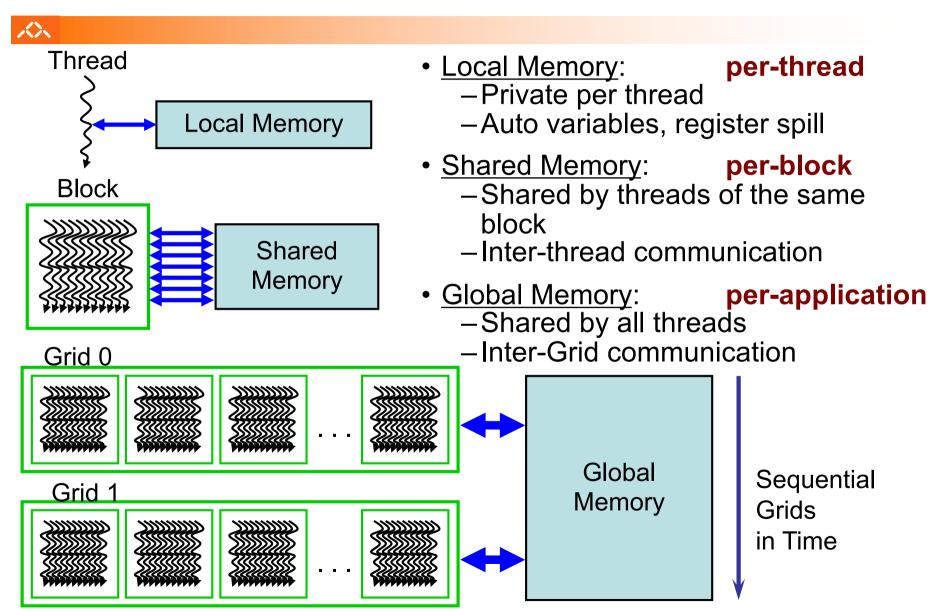
- Threads of SIMD instructions (warps)
 - Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
 - Thread scheduler uses scoreboard to dispatch
 - No data dependencies between threads!
 - Threads are organized into blocks & executed in groups of 32 threads (thread block)
 - Blocks are organized into a grid
- The <u>thread block scheduler</u> schedules blocks to SIMD processors (<u>Streaming Multiprocessors</u>)
- Within each SIMD processor:
 - 32 SIMD lanes (thread processors)
 - Wide and shallow compared to vector processors

CUDA Thread Block

众入

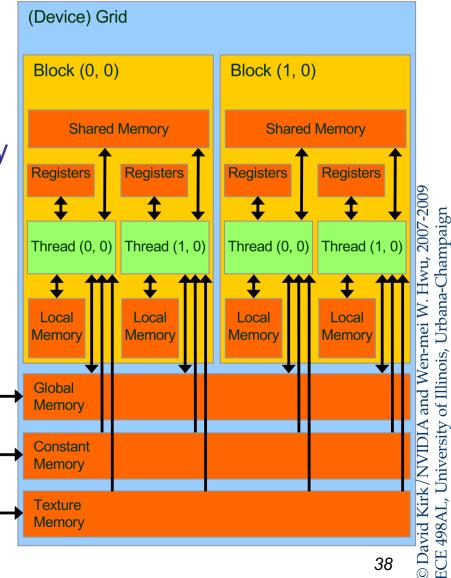

- Programmer declares (Thread) Block:
 - Block size 1 to 512 concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- All threads in a Block execute the same thread program
- Threads share data and synchronize while doing their share of the work
- Threads have thread id numbers within Block
- Thread program uses thread id to select work and address shared data

CUDA Thread Block


threadID 0 1 2 3 4 5 6 7

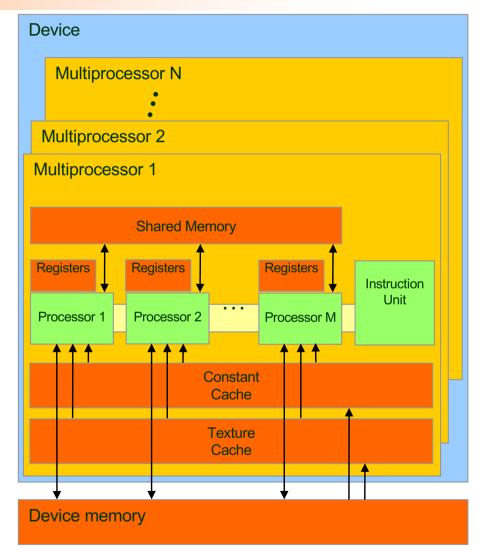
float x = input[threadID];
float y = func(x);
output[threadID] = y;

Parallel Memory Sharing


CUDA Memory Model Overview

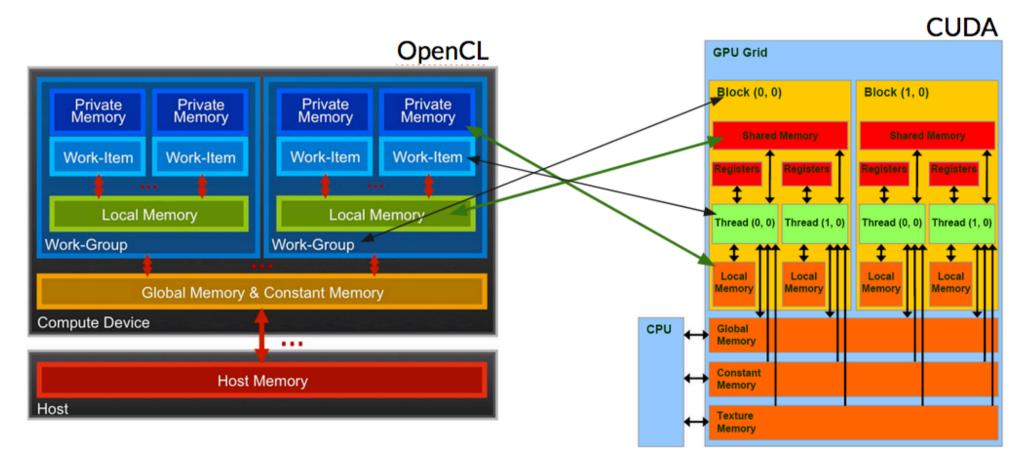
- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory

Host


- R/W per-grid global memory
- Read only per-grid constant memory
- Read only per-grid texture memory
- The host can R/W global, constant, and texture memories

Hardware Implementation: Memory Architecture

人入


- Device memory (DRAM)
 - Slow (2~300 cycles)
 - Local, global, constant, and texture memory
- On-chip memory
 - Fast (1 cycle)
 - Registers,
 shared memory,
 constant/texture cache

Terminology: CUDA and OpenCL

CUDA and OpenCL

