### **Parallel Computing**



2020/21 *A.J.Proença* 

### TOP500 & MACC (online)

(most slides are borrowed)

AJProença, Parallel Computing, MiEI, UMinho, 2020/21

公

## Suggestion of homework for discussion in this session

- 1. Go to the TOP500 website and analyse & comment:
  - i. The country distribution over the past 25 years, in #systems and aggregate performance in the TOP500 list
  - ii. The evolution of the key PU chip technologies and the accelerator families in the past 25 years
  - iii. The overall impact of each processor technology and accelerator family in the past 3 years
- 2. EuroHPC is funding 8 supercomputing centres selected in June 2019: 3 pre-exascale & 5 petascale
  - i. Find & identify these 8 supercomputing centres
  - ii. Characterize the architecture of Deucalion in MACC
- 3. Chracterize the microarchitecture of the Apple A14 Bionic chip (in the new iPhone 12)

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

XX

### Country distribution over the past 20 years: # systems

500

The List

TOP



#### Country distribution over the past 8 years: TOP aggregate performance The List 100 Show all Europe 13.46% 90 80 70 Japan 23.92% 60 50 China 40 25.64% 30 20 **USA** 28.18% 10 AJP 4 2012 2013 2014 2015 2016 2017 2018 2019



### Country distribution in Jun'20: #systems & performance





### Chip technology from 1993 to 2018



**Nov'17** 







### Processor generations Nov'17 & Nov'18

**Nov'18** 





### **Processor generations** Jun'20





### Accelerator families from 2006 to 2018























| [+] None                         | [+] NVIDIA Volta     |                             |                                      |
|----------------------------------|----------------------|-----------------------------|--------------------------------------|
| Supercomputer Fugaku, A64FX 48C  |                      | IBM Power System            | PRIMERGY NVID                        |
|                                  |                      |                             |                                      |
|                                  |                      |                             | Bul Ap                               |
|                                  |                      |                             |                                      |
|                                  |                      |                             | IBM Pow                              |
|                                  | Relevant Cr Fu       |                             |                                      |
|                                  |                      |                             | Apol Bu                              |
|                                  |                      |                             |                                      |
|                                  | Le Le Cr Len         | IBM Power System            | PowerEdg NVID                        |
|                                  |                      |                             |                                      |
|                                  |                      |                             |                                      |
| Sunway MPP, Su                   |                      |                             |                                      |
| Cr                               | Po SGI Cr            |                             |                                      |
| Cra Thi Power                    | E Bul Cray C Bull    |                             | PRIM                                 |
|                                  |                      | ┝╾╂╼╉╼┲╂╼┨┝╼╾╉╼╼┰┶╴         |                                      |
|                                  |                      | NVIDIA Pascal NVIDIA Kepler | [+] Matrix-2000                      |
| Bull Se HPE CINECA SGI Th Cray X | (C Bul H ThinkSy Int |                             | TH-IVB-FEP Clus                      |
| SGI Cra Bu                       |                      |                             |                                      |
|                                  |                      |                             |                                      |
|                                  |                      | Proli SGI [+] I             | Ampere [+] N/A                       |
| Bu Bul Cra HPE Cra Cra           | Cra Cra Fuj Thi      |                             | DGX A100 PRI<br>Powered by ZingChart |



Cray XK T-P iDa Clu

Cra Cra

Gene/O. Po

ver BOC 1

AJProença,

Bull Se Bul

ray X Cra

#1

K computer, SPARC64

BUC I POW ATT R COMPUTER, SPARCO4 E BX9 HP Cra Cra Cra Cra BX9 LUT ACCC F

Bullx B

Powe Sun Cray

### **Accelerator families** evolution 2012 - 2020



Blue HPE Cray XC





## Suggestion of homework for discussion in this session

- $\sim$
- 1. Go to the TOP500 website and analyse & comment:
  - i. The country distribution over the past 25 years, in #systems and aggregate performance in the TOP500 list
  - ii. The evolution of the key PU chip technologies and the accelerator families in the past 25 years
  - iii. The overall impact of each processor technology and accelerator family in the past 3 years
- 2. EuroHPC is funding 8 supercomputing centres selected in June 2019: 3 pre-exascale & 5 petascale
  - i. Find & identify these 8 supercomputing centres
  - ii. Characterize the architecture of Deucalion in MACC
- 3. Chracterize the microarchitecture of the Apple A14 Bionic chip (in the new iPhone 12)



**EuroHPC supercomputers** 

200 peak PFLOPS

200 peak PFLOPS

current #2 in TOP500

**15.2** peak PFLOPS

**10** peak PFLOPS

4 peak PFLOPS

6.8 peak PFLOPS

 $\sim$ 

EuroHPC selected 8 supercomputer centres for funding

- **3 exascale** supercomputers:
  - MareNostrum 5 (BSC, Spain): 200 peak PFLOPS
  - Leonardo (CINECA, Italy):
  - LUMI (CSC, Finland):
- **5 petascale** supercomputers:
  - Meluxina (LuxConnect, Luxembourg): 18 peak PFLOPS
  - EURO IT4I (IT4 Innov. Nat. Superc. Center, Czech Rep.:

current #29 in TOP500

- **Deucalion** (MACC, Portugal):
- Vega (IZUM, Slovenia):
- **PetaSC** (Sofiatech, Bulgaria):

## Advanced Computing Portugal 2030 (1)



## **Advanced Computing** Portugal 2030: **Progress** achieved and new challenges

From the Declaration of Rome, 2017, to the installation of the petasacle machine Deucalion, 2021

> Entramos em direto em breve





#### 23rd October 2020

11am – 1pm Venue: University of Minho – Guimarães

## Advanced Computing Portugal 2030 (2)



## Advanced Computing Portugal 2030 (3)



## Advanced Computing Portugal 2030 (4)



## Advanced Computing Portugal 2030 (5)



### Advanced Computing Portugal 2030 (6)



## Advanced Computing Portugal 2030 (7)

X

### **DEUCALION OVERALL ARCHITECTURE**



## Advanced Computing Portugal 2030 (8)



## Suggestion of homework for discussion in this session

- 1. Go to the TOP500 website and analyse & comment:
  - i. The country distribution over the past 25 years, in #systems and aggregate performance in the TOP500 list
  - ii. The evolution of the key PU chip technologies and the accelerator families in the past 25 years
  - iii. The overall impact of each processor technology and accelerator family in the past 3 years
- 2. EuroHPC is funding 8 supercomputing centres selected in June 2019: 3 pre-exascale & 5 petascale
  - i. Find & identify these 8 supercomputing centres
  - ii. Characterize the architecture of Deucalion in MACC
- 3. Chracterize the microarchitecture of the Apple A14 Bionic chip (in the new iPhone 12)

AJProença, Parallel Computing, MiEl, UMinho, 2020/21

公



https://en.wikipedia.org/wiki/Apple-designed\_processors



### **Apple A14 Bionic SoC**





### **Apple A14 Bionic SoC**

公



powerful image recognition, natural language learning, motion analysis, ...



## Apple A14 Bionic SoC





### Unsubstantiated claims for A14 Bionic

Oct 15, 2020, 03:22pm EDT

# Apple Claims The IPhone 12's A14 Bionic 'Challenges Laptops' But Gives No Details



Patrick Moorhead Senior Contributor ()

Cloud I write about disruptive companies, technologies and usage models.



. . .

I always liked Apple's "think different" claim, but when it comes to undocumented and unsubstantiated processor performance claims, I wish it would be more open and forthright.

"Apple Silicon" (A14?) for MacBook

Bloomberg **Technology** 

#### $\sim$

## Apple to Launch MacBooks With Own Chips Next Week

By <u>Mark Gurman</u> and <u>Debby Wu</u> November 2, 2020, 5:28 PM GMT *Updated on November 3, 2020, 1:17 AM GMT* 

• Company readies MacBook Pros, MacBook Air with in-house chips

Smaller Mac Pro and iMac with Apple chips also in development

- - -

The first Mac processors from Apple will be based on the A14 chip found in the latest iPhones and iPad Air, and tests inside Apple indicate improved power efficiency over the Intel parts they are replacing. The new machines will also have Apple-designed graphics and machine-learning processors.



Please join us for a special Apple Event from Apple Park. Watch it online at apple.com.

November 10, 2020 10:00 a.m. PST