
AtomicsandMemoryOrder

Joao Barbosa
Week 2, March 2021

From last class

Atomics and Memory Order (J. Barbosa) /

From last class

Single Source Shortest Path
Delta-stepping algorithm

▶ Use several buckets to subdivide distance
▶ Use a priority queue for each bucket
▶ Perform a parallel Djisktra (or other) for each bucket
▶ Put the active edge on the appropriate bucket
▶ When the bucket becomes empty go to next bucket

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics basis of ”Lock-free” programming
”Lock-free” means ”fast”

[
Performance: Measure, Measure, Measure]

▶ Both programs encode the same operation and get the same result
▶ Both programs are correct and with no ”wait-loops”
▶ One program uses std::mutex the other one is ”wait-free” (even better than

Lock-free)

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics basis of ”Lock-free” programming
”Lock-free” means ”fast”

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics basis of ”Lock-free” programming
”Lock-free” means ”fast”

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics basis of ”Lock-free” programming
”Lock-free” means ”fast”

Wait-free

std : : atomic< int > sum = 0;
(. . .)
for (i n t i =0; i <N; i ++)

sum += A[i]
(. . .)

Lock

std : : mutex M;
(. . .)
for (i n t i =0; i <N; i ++)

localsum += A[i]
std : : lock_guard L (M) ;
sum += localsum ;
(. . .)

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics basis of ”Lock-free” programming
”Lock-free” faster?

Atomics and Memory Order (J. Barbosa) /

Atomics

Atomics basis of ”Lock-free” programming
”Lock-free” faster?

▶ Algorithms rule supreme
▶ ”Wait-free” has nothing to do with time

▶ Refers to the number of compute ”steps”
▶ Steps don’t have to be of the same duration

▶ Atomics do not guarantee good performance
▶ There is no substitute for understanding what you are doing

Atomics and Memory Order (J. Barbosa) /

Atomic operations

Atomics and Memory Order (J. Barbosa) /

Atomic operations

What is an atomic?

▶ Atomic opereations is an operation that is guaranteed to execute as a single
transation:

▶ Other threads will see the state of the system before the operation started or
after it finished, but never in the intermediate state

▶ At the low level, atomic operations are special hardware instructions

Atomics and Memory Order (J. Barbosa) /

Atomic operations

Atomic operation example

▶ Increment is a ”read-modify-write” operation
▶ read X
▶ add 1 to X
▶ write new value of X

Atomics and Memory Order (J. Barbosa) /

Atomic operations

Atomic operation example

▶ read-modify-write operation is non atomic
▶ it is a data race, i.e., non defined behaviour

Atomics and Memory Order (J. Barbosa) /

Atomic operations

Atomic operation example

Atomics and Memory Order (J. Barbosa) /

Atomic operations

Atomic operations

▶ std::atomic

std : : atomic< int > x (0)

(. . . Ins ide thread . . .)
++x ;

Atomics and Memory Order (J. Barbosa) /

Atomic operations

Atomic operation example

Atomics and Memory Order (J. Barbosa) /

std::atomic

Atomics and Memory Order (J. Barbosa) /

std::atomic

Atomic operation

▶ What C++ types can be made atomic?
▶ What operations can be done on those types?
▶ Are all operations on atomic types atomic?
▶ How fast are atomic operations?
▶ Is atomic the same as lock-free?
▶ If atomic operations avoid locks, there is no wait, right?

Atomics and Memory Order (J. Barbosa) /

std::atomic

Atomic operation

▶ Any trivially copyable type can be made atomic
▶ What is trivially copyable?

▶ Continuous chunk of memory
▶ Copying the object means copying all bits
▶ No virtual functions

▶ Examples
▶ std::atomic<int>
▶ std::atomic<double>
▶ struct S long x; long y;; std::atomic<S>

Atomics and Memory Order (J. Barbosa) /

std::atomic

What operations can be done with std::atomic<T>

▶ Assignment reads and writes
▶ Special atomic operations
▶ Other atomic operations depends on <T>

Atomics and Memory Order (J. Barbosa) /

std::atomic

What operations can be done with std::atomic<T>

▶ Assignment reads and writes
▶ Special atomic operations
▶ Other atomic operations depends on <T>

Atomics and Memory Order (J. Barbosa) /

std::atomic

What operations can be done with std::atomic<T>

std : : atomic< int > x { 0 } ;

++x ;
x++;
x += 1;
x |= 2;
x *= 2;
i n t y = x * 2;
x = y + 1;
x = x + 1;
x = x * 2;

Atomics and Memory Order (J. Barbosa) /

std::atomic

What operations can be done with std::atomic<T>

std : : atomic< int > x { 0 } ;

++x ; / / Atomic pre−increment
x++; / / Atomic post −increment
x += 1; / / Atomic increment
x |= 2; / / Atomic b i t se t
x *= 2; / / No atomic mu l t i p l i c a t i o n
i n t y = x * 2; / / Atomic read x
x = y + 1; / / Atomic wr i t e of x
x = x + 1; / / Atomic read fo l lowed by atomic wr i t e
x = x * 2; / / Atomic read fo l lowed by atomic wr i t e

Atomics and Memory Order (J. Barbosa) /

std::atomic

std::atomic<T> and overloaded operators

▶ std::atomic provides overload operators only for atomics
▶ False (it just will not compile)

▶ any expression with atomics will not be atomic
▶ Easy to make mistakes

++x ≡ x += 1 ≡ x = x + 1,
if x is not atomic

Atomics and Memory Order (J. Barbosa) /

std::atomic

std::atomic<T> operation for type

▶ Assignment and copy for all types
▶ Increment and decrement of raw pointers
▶ Addition, subtraction, and bit logic operations for integers
▶ T=bool is valid, no special operations
▶ T=double is valid, no special operations

Atomics and Memory Order (J. Barbosa) /

std::atomic

std::atomic<T> operation for type

▶ Explicit reads and writes

std : : atomic< int > x ;

auto a = x . load () ;
(. . .)
x . store (a) ;

▶ Atomic exchange

auto z = x . exchange (a) ; / / z = x and x = y

Atomics and Memory Order (J. Barbosa) /

std::atomic

std::atomic<T> operation for type

▶ Compare and swap

bool success = x . compare_exchange_strong (y , z) ;
/ / I f x==y , make x=z and re tu rn t rue
/ / Otherwise , se t y=x and re tu rn fa l s e

▶ Compare-and-swap is the basis for lock-free algorithms

Atomics and Memory Order (J. Barbosa) /

std::atomic

std::atomic<T> operation for type

▶ Compare and swap increment

std : : atomic< int > x { 0 } ;
i n t x0 = x ;
while (! x . compare_exchange_strong (x0 , x0+1)) { }

▶ Compare-and-swap multiplication

std : : atomic< int > x { 2 } ;
i n t x0 = x ;
while (! x . compare_exchange_strong (x0 , x0*2)) { }

Atomics and Memory Order (J. Barbosa) /

std::atomic

std::atomic<T> operation for type

▶ For integers only

std : : atomic< int > x ; x . fetch_add (y) ;
i n t z = x . fetch_add (y) ;

▶ Same for fetch_sun(), fetch_and(), fetch_or(), fetch_xor()
▶ Less error prone than overload operators

Atomics and Memory Order (J. Barbosa) /

std::atomic

Is std::atomic<T> lock-free?

▶ std::atomic hides a secret

long x ;

struct A { long x ; }

struct B { long x ; long y ; } ;

struct C { long x ; long y ; long z ; } ;

Atomics and Memory Order (J. Barbosa) /

std::atomic

Is std::atomic<T> lock-free?
▶ std::atomic is not always lock-free
▶ std::atomic::is_lock_free()

long x ; / / Lock− f r ee

struct A { long x ; } / / Lock− f r ee

struct B { long x ; long y ; } ;

struct C { long x ; long y ; long z ; } ; / / Not Lock− f r ee

▶ Results are runtime and platform dependent
▶ Why not compile time? - Alignment

▶ C++ 1 add a constexpr is𝑎𝑙𝑤𝑎𝑦𝑠𝑙𝑜𝑐𝑘𝑓 𝑟𝑒𝑒()

Atomics and Memory Order (J. Barbosa) /

std::atomic

Is std::atomic<T> lock-free? X86 Example

long x ; / / Lock− f r ee − atomic move %mmx
struct A { long x ; } / / Lock− f r ee − atomic move %mmx
struct B { long x ; long y ; } ; / / Lock− f r ee − atomic move %mmx
struct C { long x ; i n t y ; } ; / / Not Lock− f r ee 12 bytes
struct E { long x ; long y ; long z ; } ; / / Not Lock− f r ee >16 bytes

Atomics and Memory Order (J. Barbosa) /

std::atomic

Is std::atomic<T> lock-free? Cache alignment

Atomics and Memory Order (J. Barbosa) /

std::atomic

Do atomic operations wait on each other?
”Lock-free” means ”fast”

Atomics and Memory Order (J. Barbosa) /

std::atomic

Do atomic operations wait on each other?
”Lock-free” faster?

▶ Algorithms rule supreme
▶ ”Wait-free” has nothing to do with time

▶ Refers to the number of compute ”steps”
▶ Steps don’t have to be of the same duration

▶ Atomic operations do wait on each other
▶ In particular, write operations do
▶ Read-only operations can scale near-perfectly

Atomics and Memory Order (J. Barbosa) /

std::atomic

Do atomic operations wait on each other?
”Lock-free” faster?

▶ Atomic operations have to wait for cache line access
▶ Price of data sharing without races
▶ Accessing different locations in the same cache line still incurs run-time

penalty (false sharing)
▶ Avoid false sharing by aligning per-thread data to separate cache lines
▶ On NUMA machines, may be even separate pages

Atomics and Memory Order (J. Barbosa) /

std::atomic

Strong and weak compare-and-swap

▶ C++ provides two versions of CAS – weak and strong

x . compare_exchange_strong (old_x , new_x) / / i f (x == old_x)
/ / { x = new_x ; re tu rn t rue ; }
/ / e l se { old_x = x ; re tu rn fa l s e ; }

▶ x.compare_exchange_weak(old_x, new_x): same thing but can “spuriously
fail” and return false even if x==old_x

▶ What is the value of old_x if this happens?

Atomics and Memory Order (J. Barbosa) /

std::atomic

Strong and weak compare-and-swap

▶ C++ provides two versions of CAS – weak and strong

x . compare_exchange_strong (old_x , new_x) / / i f (x == old_x)
/ / { x = new_x ; re tu rn t rue ; }
/ / e l se { old_x = x ; re tu rn fa l s e ; }

▶ x.compare_exchange_weak(old_x, new_x): same thing but can “spuriously
fail” and return false even if x==old_x

▶ What is the value of old_x if this happens? Must be old_x!
▶ If weak CAS correctly returns x == old_x, why would it fail?

Atomics and Memory Order (J. Barbosa) /

std::atomic

Strong and weak compare-and-swap

x . compare_exchange_strong (old_x , new_x) / / i f (x == old_x)
/ / { x = new_x ; re tu rn t rue ; }
/ / e l se { old_x = x ; re tu rn fa l s e ; }

▶ x.compare_exchange_weak(old_x, new_x): same thing but can “spuriously
fail” and return false even if x==old_x

▶ What is the value of old_x if this happens? Must be old_x!
▶ If weak CAS correctly returns x == old_x, why would it fail?

Atomics and Memory Order (J. Barbosa) /

std::atomic

Strong and weak compare-and-swap

bool compare_exchange_strong (T& old_v , T new_v) {
Lock L ; / / Get exc lus i ve access
T tmp = value ; / / Current value of the atomic
i f (tmp != old_v) { old_v = tmp ; return false ; }
value = new_v ;
return true ;

}

▶ Lock is not a real mutex but some form of exclusive access implemented in
hardware

Atomics and Memory Order (J. Barbosa) /

std::atomic

Strong and weak compare-and-swap

bool compare_exchange_strong (T& old_v , T new_v) {
T tmp = value ; / / Current value of the atomic
i f (tmp != old_v) { old_v = tmp ; return false ; }
Lock L ; / / Get exc lus i ve access
tmp = value ; / / value could have changed !
i f (tmp != olv_v) { old_v = tmp ; return false ; }
value = new_v ;
return true ;

}

▶ Double-checked locking pattern is back!

Atomics and Memory Order (J. Barbosa) /

std::atomic

Strong and weak compare-and-swap

bool compare_exchange_weak (T& old_v , T new_v) {
T tmp = value ; / / Current value of the atomic
i f (tmp != old_v) { old_v = tmp ; return false ; }
TimedLock L ; / / Get exc lus i ve access or f a i l
i f (! L . locked ()) return false ; / / old_v i s co r r ec t
tmp = value ; / / value could have changed !
i f (tmp != olv_v) { old_v = tmp ; return false ; }
value = new_v ;
return true ;

}

▶ Double-checked locking pattern is back!

Atomics and Memory Order (J. Barbosa) /

std::atomic

Atomics memory order

i n t q [N] ;
std : : atomic<s ize_t > f ron t ;
void push (i n t x) {

s i ze_ t my_slot = f ron t . fetch_add (1) ;
q [my_slot] = x ;

}

▶ Atomic variable is an index to (non-atomic) memory

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order

struct node { i n t value ; node* next ; } ;

std : : atomic<node*> head ;
void push_front (i n t x) {

node* new_n = new node ;→
new_nvalue = x ;
node* old_h = head ;
do { →new_nnext = old_h ; }
while (! head . compare_exchange_strong (old_h , new_n) ;

}

▶ Atomic variable is a pointer to (non-atomic) memory

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order

▶ Atomics are used to get exclusive access to memory or to reveal memory to
other threads

▶ But most memory is not atomic!
▶ What guarantees that other threads see this memory in the desired state

▶ For acquiring exclusive access: data may be prepared by other threads, must
be completed

▶ For releasing into shared access: data is prepared by the owner thread, must
become visible to everyone

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order

▶ C++03 as no portable memory barriers C++11 provides standard memory
barriers

▶ Memory barriers are closely related to “memory order” – they are what
ensures the memory order

▶ C++ memory barriers are modifiers on atomic operations
▶ Actual implementation may vary

std : : atomic< int > x ;
x . store (1 , std : : memory_order_release) ;

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : std::memory_order_relaxed

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : std::memory_order_acquire

▶ Acquire barrier guarantees that all memory operations scheduled after the
barrier in the program order become visible after the barrier

▶ “All operations” not “all reads” or “all writes”, i.e. both reads and writes
▶ “All operations” not just operations on the same variable that the barrier was on

▶ Reads and writes cannot be reordered from after to before the barrier
▶ Only for the thread that issued the barrier!

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : std::memory_order_acquire

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : std::memory_order_release

▶ Release barrier guarantees that all memory operations scheduled before the
barrier in the program order become visible before the barrier

▶ Reads and writes cannot be reordered from before to after the barrier
▶ Only for the thread that issued the barrier!

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : std::memory_order_release

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : Acquire / Release protocol

▶ Acquire and release barriers are often used together:
▶ Thread 1 writes atomic variable x with release barrier
▶ Thread 2 reads atomic variable x with acquire barrier
▶ All memory writes that happen in thread 1 before the barrier (in program

order) become visible in thread 2 after the barrier
▶ Thread 1 prepares data (does some writes) then releases (publishes) it by

updating atomic variable x
▶ Thread 2 acquires atomic variable x and the data is guaranteed to be visible

Atomics and Memory Order (J. Barbosa) /

std::atomic

Memory order : Acquire / Release memory barrier and SEQ consistency

▶ Acquire-Release (std::memory_order_acq_rel) combines acquire and release
barriers – no operation can move across the barrier

▶ But only if both threads use the same atomic variable!
▶ Sequential consistency (std::memory_order_seq_cst) removes that

requirement and establishes single total modification order of atomic
variables

Atomics and Memory Order (J. Barbosa) /

	From last class
	Atomics
	Atomic operations
	std::atomic

