Advanced Architectures

N\
ININ\

Master Informatics Eng.

2020/21
A.J.Proenca

Vector computing & SIMD extensions

(most slides are borrowed)

AJProenca, Advanced Architectures, MIiEl, UMinho, 2020/21 1

N\
ININ\

e Currently under discussion:

Key issues for parallelism in a single-core

— pipelini

reviewdd in the combi exampV
— supersdalar:

[o[<YanTMa

vector extensions to scalar progessors

— multithreading:

alternative approaches

| Superscalar |

AJProencga, Advanced Architectures, MiEl, UMinho, 2020/21

Instruction and Data Streams
—_—

Flynn’s Taxonomy of Computers *

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

* Mike Flynn, “Very High-Speed Computing Systems,”Proc. of IEEE, 1966

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

I Introduction

SIMD architectures can exploit significant data-
level parallelism for:

matrix-oriented scientific computing

media-oriented image and sound processing

SIMD is more energy efficient than MIMD
only needs to fetch one instruction per data operation
makes SIMD attractive for personal mobile devices

SIMD allows programmers to continue to think
sequentially

uoIoNPOIU|

Copyright © 2012, Elsevier Inc. All rights reserved.

| SIMD Parallelism

s Vector architectures

» Read sets of data elements (gather from memory)
into “vector registers”

= Operate on those reqisters
» Store/scatter the results back into memory

uo1PNPOU|

s SIMD & extensions on scalar processors

s Graphics Processor Units (GPUs)

(next set of slides)

l Vector Architectures

s Basic idea:

» Read sets of data elements (gather from
memory) into “vector registers”

= Operate on those registers
» Store/scatter the results back into memory

S81N108)IY24y J0JOSA

m Registers are controlled by the compiler
» Used to hide memory latency
» Leverage memory bandwidth

I"#" Weetor Instruction Parallelism NN

g \
Can overlap execution of multiple vector instructions
- Consider machine with 32 elements per vector register and 8 lanes:
Load Unit Multiply Unit Add Unit
0 IO
oeooood™ ATTaTalala
\time oooje/e[e/e/blajajaa[a/ladd fmTmm[mm[m[m]m
20000 AAAAA HEEEEEED
AlAlAA A EEEEEEED
—/|A|A|A|A|A HEEEEEERDE
Dlaalalala|ladd AT R0 B 0 0 0]
SlojalAlalAlAlAlAlAlm/mmimmenm
|AAAAAAAA|IIIIIIII
HEEDEEEERD
Instruction
issue
Comglete 24 operations/cycle while issuing 1 short instruction/cycle
8/19/2009 John Kubiatowicz Parallel Architecture: 35

VMIPS

s Example architecture: VMIPS
s Loosely based on Cray-1 (next slide)

= Vector registers Main memory

= Each register holds a 64-element,
64 bits/element vector

= Register file has 16 read ports and

8 write pOI’tS Vector | FP add/subtract '—>
. . load/store
s Vector functional units o _
] . N FP multiply
= Fully pipelined, new op each clock-cycle —.

= Data & control hazards are detected — FP divide '—»_
= Vector load-store unit Vector — 1 —
registers >

= Fully pipelined =

= 1 word/clock-cycle after initial latency g Logical .—'

S81N108)IY24y J0JOSA

A A

= Scalar registers
. Scalar
= 32 general-purpose registers registers \

= 32 floating-point registers Crossbar switches

” D
_ Cray-1 Supercomputer

(1976)

- .\Wﬂ(«Wk

AJProenca, Advanced Architectures, MIiEl, UMinho, 2020/21

VMIPS Instructions

m ADDVV.D: add two vectors

L.D FO,a ;
LV V1,Rx ;

MULVS.D V2,V1,FO0O ;

LV V3, Ry ;
ADDVV v4,V2,V3 ;
SV Ry, V4 ;

ADDVS.D: add vector to a scalar
LV/SV: vector load and vector store from address

S81N108)IY24y J0JOSA

Example: DAXPY (Double-precision A x X Plus Y)

load scalar a

load wvector X
vector-scalar multiply
load wvector Y

add

store the result

s Requires the execution of 6 instructions versus almost 600 for MIPS
(assuming DAXPY is operating on a vector with 64 elements)

l Vector Execution Time

s Execution time depends on three factors:
= Length of operand vectors
s Structural hazards
= Data dependencies

S81N108)IY24y J0JOSA

s VMIPS functional units consume one element
per clock cycle

s Execution time is approximately the vector length

= Convoy

s Set of vector instructions that could potentially
execute together in one unit of time, chime

Challenges

s Start up time

= Assume the same as Cray-1

Latency of vector functional unit

S81N108)IY24y J0JOSA

= Floating-point add => 6 clock cycles

= Floating-point multiply => 7 clock cycles
= Floating-point divide => 20 clock cycles
= Vector load => 12 clock cycles

= Improvements:

> 1 element per clock cycle (1)

Non-64 wide vectors (2)

IF statements in vector code (3)

Memory system optimizations to support vector processors (4)
Multiple dimensional matrices (5)

Sparse matrices (6)

Programming a vector computer (7)

Multiple Lanes (7

= Element n of vector register A is “hardwired” to
element n of vector register B
= Allows for multiple hardware lanes

S81N108)IY24y J0JOSA

Lane O Lane 1 Lane 2 Lane 3
a9 [sr9) i Y Y N ™
a8 |B(8)
FP add FP add FP add FP add
a7 |B(7) pipe 0 pipe 1 pipe 2 pipe 3
A[6]] (B8] [[[
! A
ars]| |B(5)
Vector Vector Vector Vector
arel| |sr4) registers: registers: registers: registers:
elements elements elements elements
a3y |z 0,4.8, ... 1,59, ... 2,6,10, ... 3,711, ...
b) [H)
Al2]| [3(2) A[8)| |BrE]| [A[9) B(9) : | \
A1)l 1301 ALGN|BOAT (REST) BOSTL(ALSY)(BISTALTY) (BET) FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3
/ \ \ / / Y Y \ \ /
\T/ \r/._---.\—;{.\‘;/ L)N I A)

i \
cr0) ' cro) cri] cr2) cray g \ \
\ s .
- - - - b L LD LD LLLLL L L - Vector load-store unit

() (b)

MORGAN KAUFMANN

I"#" Wector Instruction Parallelism NN

.

Can overlap execution of multiple vector instructior
- Consider machine wit er vector register anc
| Load Unltl Multiply Unit No FMA!Add Unit

AlAlA[A[A
\time AlAlalala 00000000
AlAla|a|a]a 101010010010
m Alalajalala 0101010101010
A[A|A[A[A 000000c
|Dlalalalalalladd fa(e e (n(nn =] =]
O]lalalalAlAlaA|AlAm/mmmmnmE
|AAAAAAAA|IIIIIIII
000000c

Instruction

issue

Comglete 24 operations/cycle while issuing 1 short instruction/cycle
8/19/2009 John Kubiatowicz Parallel Architecture: 35

Vector Length Register (2

= Handling vector length not known at compile time
s Use Vector Length Register (VLR)
= Use strip mining for vectors over the maximum length:

low = 0;

S81N108)IY24y J0JOSA

VL = (n % MVL); /*find odd-size piece using modulo op % */
for (7 = 0; 7 <= (n/MVL); J=j+1) { /*outer loop*/
for (i = low; i < (low+VL); 1i=i+1l) /*runs for length VL*/
Y[i] = a * X[1i] + Y[i] ; /*main operation*/
low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

Value of 0 1 2 3 can . n'MVL
Range of i 0 m (m+MVL) (m+2xMVL) ... ce (n-MVL)
(m-1) (m-1) (m-1) (m-1) (n-1)

+MVL +2xMVL +3xMVL

Vector Mask Registers (3

= Handling |IF statements in Vector Loops:
for (1 = 0; 1 < 064; 1=1+1)
if (X[i] != 0)

S81N108)IY24y J0JOSA

= Use vector mask register to “disable” elements:

LV V1, Rx ;load vector X into V1

LV V2, Ry ; load vector Y

L.D FO, #0 ;load FP zero into FO

SNEVS.D V1, FO ;sets VM(1) to 1 1f V1(i)!=FO
SUBVV.D v1l,Vv1l,V2 ; subtract under vector mask
SV Rx, V1 ;store the result in X

s GFLOPS rate decreases!

| Memory Banks (4

= Memory system must be designed to support high
bandwidth for vector loads and stores

S81N108)IY24y J0JOSA

s Spread accesses across multiple banks
= Control bank addresses independently
= Load or store non sequential words
= Support multiple vector processors sharing the same memory

s Example (Cray T932, 1996; Ford acquired 1 out of 13, $39M):
s 32 processors, each generating 4 loads and 2 stores per cycle
s Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
= How many memory banks needed?

. <
l Stride (5 8
>
5
= Handling multidimensional arrays in Vector Architectures: =
for (i = 0; i < 100; i=i+1) | &
for (§ = 0; § < 100; d=9+1) f{ &
Al1][3] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][J] = A[1]1([J] + B[i]l[k] * D[k]lI[JI;

}
}

s Must vectorize multiplication of rows of B with columns of D
m Use non-unit stride (in VMIPS: load/store vector with stride)

= Bank conflict (stall) occurs when the same bank is hit faster
than bank busy time:

» #banks / Least Common_Multiple (stride, #banks) < bank busy time

Scatter-Gather (s

= Handling sparse matrices in Vector Architectures:

for (1 = 0; 1 < n; 1=1+1)
A[K[1]] = A[K[1]] + C[M[1]];

S81N108)IY24y J0JOSA

s Use index vector:

LV Vk, Rk ; load K
LVI Va, (Ra+Vk) ;load A[KI[]]
LV Vm, Rm ;load M
LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]]

Vector Programming (7

s Compilers are a key element to give hints on whether a
code section will vectorize or not

S81N108)IY24y J0JOSA

s Check if loop iterations have data dependencies,
otherwise vectorization is compromised

s Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices;
however:

= most do not support non-unit stride => care must be taken in the
design of data structures

= same applies for gather-scatter...

SIMD Extensions

= Media applications operate on data types narrower than
the native word size

double *x, *vy, *z:

n Intel SIMD Ext for (i=0; i<n; i++) 2[i] = x[i] + ylil
started with 64-bit N — A
wide vectors and A as . - o .
grew to wider vectors + +
and more capabilities Y /_J_l_&_m
= Current T XY Gt . CNECAERNET
AV X generation
iS 51 2-b|t W|de Figure 1 Scalar and vectorized loop versions with Intel® SSE, AVX and AVX-512.

eipawli}njy J0J SUOoISualX3 1S uolonJisu] diIs

» Limitations, compared to vector architectures (before AVX...):
= Number of data operands encoded into op code
= No sophisticated addressing modes (strided, scatter-gather)
= No mask registers

SIMD Implementations

= Intel implementations:

= MMX (1996)
« Eight 8-bit integer ops or four 16-bit integer ops

s Streaming SIMD Extensions (SSE) (1999)
« Eight 16-bit integer ops
« Four 32-bit integer/fp ops or two 64-bit integer/fp ops

= Advanced Vector eXtensions (AVX) (2010...)
« Eight 32-bit fp ops or Four 64-bit fp ops (integers in AVX-2)
» 512-bits wide in AVX-512 (and also in Larrabee & Phi-KNC)
= Operands must / should be in consecutive and
aligned memory locations

elpswijjnjy 410} Suoisualx3y oS uoljonJisul gNIs

x AMD Zen/Epyc (Opteron follow-up): with AVX-2

s ARM v8 (64-bit) implementations (next...)

Reading suggestions (from CAQA 5" Ed)

 Vector architecture: 4.2
« SIMD instruction set extensions for multimedia: 4.3

For the slides on GPU (later)

« Graphic processing units: 4.4
« Detecting and enhancing loop-level parallelism: 4.5

AJProenca, Advanced Architectures, MIiEl, UMinho, 2020/21 23

