
AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 1

Advanced Architectures

Master Informatics Eng.

2020/21

A.J.Proença

Vector computing & SIMD extensions
(most slides are borrowed)

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 2

Key issues for parallelism in a single-core

• Currently under discussion:
– pipelining:

reviewed in the combine example

– superscalar:
idem, but some more now

– data parallelism:
vector computers &
vector extensions to scalar processors

– multithreading:
alternative approaches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

Instruction and Data Streams
§

7.6 SISD
, M

IM
D

, SIM
D

, SPM
D

, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n SPMD: Single Program Multiple Data
n A parallel program on a MIMD computer
n Conditional code for different processors

Flynn’s Taxonomy of Computers *

* Mike Flynn, “Very High-Speed Computing Systems,”Proc. of IEEE, 1966

Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

n SIMD architectures can exploit significant data-
level parallelism for:
n matrix-oriented scientific computing
n media-oriented image and sound processing

n SIMD is more energy efficient than MIMD
n only needs to fetch one instruction per data operation
n makes SIMD attractive for personal mobile devices

n SIMD allows programmers to continue to think
sequentially

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

n Vector architectures
n Read sets of data elements (gather from memory)

into “vector registers”
n Operate on those registers
n Store/scatter the results back into memory

n SIMD & extensions on scalar processors

n Graphics Processor Units (GPUs)
(next set of slides)

Introduction

6Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

n Basic idea:
n Read sets of data elements (gather from

memory) into “vector registers”
n Operate on those registers
n Store/scatter the results back into memory

n Registers are controlled by the compiler
n Used to hide memory latency
n Leverage memory bandwidth

Vector Architectures

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 7

8

Crossbar switches

Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS
n Example architecture: VMIPS

n Loosely based on Cray-1 (next slide)
n Vector registers

n Each register holds a 64-element,
64 bits/element vector

n Register file has 16 read ports and
8 write ports

n Vector functional units
n Fully pipelined, new op each clock-cycle
n Data & control hazards are detected

n Vector load-store unit
n Fully pipelined
n 1 word/clock-cycle after initial latency

n Scalar registers
n 32 general-purpose registers
n 32 floating-point registers

Vector Architectures

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 9

Cray-1 Supercomputer
(1976)

10Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS Instructions
n ADDVV.D: add two vectors
n ADDVS.D: add vector to a scalar
n LV/SV: vector load and vector store from address

n Example: DAXPY (Double-precision A x X Plus Y)

L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

n Requires the execution of 6 instructions versus almost 600 for MIPS
(assuming DAXPY is operating on a vector with 64 elements)

Vector Architectures

11Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Execution Time

n Execution time depends on three factors:
n Length of operand vectors
n Structural hazards
n Data dependencies

n VMIPS functional units consume one element
per clock cycle
n Execution time is approximately the vector length

n Convoy
n Set of vector instructions that could potentially

execute together in one unit of time, chime

Vector Architectures

12Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges
n Start up time

n Latency of vector functional unit
n Assume the same as Cray-1

n Floating-point add => 6 clock cycles
n Floating-point multiply => 7 clock cycles
n Floating-point divide => 20 clock cycles
n Vector load => 12 clock cycles

n Improvements:
n > 1 element per clock cycle (1)
n Non-64 wide vectors (2)
n IF statements in vector code (3)
n Memory system optimizations to support vector processors (4)
n Multiple dimensional matrices (5)
n Sparse matrices (6)
n Programming a vector computer (7)

Vector Architectures

13Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Lanes (1)

n Element n of vector register A is “hardwired” to
element n of vector register B
n Allows for multiple hardware lanes

Vector Architectures

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 14

No FMA!

15Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Length Register (2)

n Handling vector length not known at compile time
n Use Vector Length Register (VLR)
n Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/
}

Vector Architectures

16Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers (3)

n Handling IF statements in Vector Loops:
for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

n Use vector mask register to “disable” elements:
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

n GFLOPS rate decreases!

Vector Architectures

17Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Banks (4)

n Memory system must be designed to support high
bandwidth for vector loads and stores

n Spread accesses across multiple banks
n Control bank addresses independently
n Load or store non sequential words
n Support multiple vector processors sharing the same memory

n Example (Cray T932, 1996; Ford acquired 1 out of 13, $39M):
n 32 processors, each generating 4 loads and 2 stores per cycle
n Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
n How many memory banks needed?

Vector Architectures

18Copyright © 2012, Elsevier Inc. All rights reserved.

Stride (5)

n Handling multidimensional arrays in Vector Architectures:
for (i = 0; i < 100; i=i+1) {

for (j = 0; j < 100; j=j+1) {
A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];
}

}

n Must vectorize multiplication of rows of B with columns of D
n Use non-unit stride (in VMIPS: load/store vector with stride)
n Bank conflict (stall) occurs when the same bank is hit faster

than bank busy time:
n #banks / Least_Common_Multiple (stride, #banks) < bank busy time

Vector Architectures

19Copyright © 2012, Elsevier Inc. All rights reserved.

Scatter-Gather (6)

n Handling sparse matrices in Vector Architectures:
for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

n Use index vector:
LV Vk, Rk ;load K
LVI Va, (Ra+Vk) ;load A[K[]]
LV Vm, Rm ;load M
LVI Vc, (Rc+Vm) ;load C[M[]]
ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]]

Vector Architectures

20Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Programming (7)

n Compilers are a key element to give hints on whether a
code section will vectorize or not

n Check if loop iterations have data dependencies,
otherwise vectorization is compromised

n Vector Architectures have a too high cost, but simpler
variants are currently available on off-the-shelf devices;
however:
n most do not support non-unit stride => care must be taken in the

design of data structures
n same applies for gather-scatter...

Vector Architectures

21

n Media applications operate on data types narrower than
the native word size
n Intel SIMD Ext

started with 64-bit
wide vectors and
grew to wider vectors
and more capabilities

n Current
AVX generation
is 512-bit wide

n Limitations, compared to vector architectures (before AVX...):
n Number of data operands encoded into op code
n No sophisticated addressing modes (strided, scatter-gather)
n No mask registers

Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions
SIM

D
 Instruction Set Extensions for M

ultim
edia

22Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations
n Intel implementations:

n MMX (1996)
n Eight 8-bit integer ops or four 16-bit integer ops

n Streaming SIMD Extensions (SSE) (1999)
n Eight 16-bit integer ops
n Four 32-bit integer/fp ops or two 64-bit integer/fp ops

n Advanced Vector eXtensions (AVX) (2010...)
n Eight 32-bit fp ops or Four 64-bit fp ops (integers in AVX-2)
n 512-bits wide in AVX-512 (and also in Larrabee & Phi-KNC)

n Operands must / should be in consecutive and
aligned memory locations

n AMD Zen/Epyc (Opteron follow-up): with AVX-2

n ARM v8 (64-bit) implementations (next...)

SIM
D

 Instruction Set Extensions for M
ultim

edia

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 23

Reading suggestions (from CAQA 5th Ed)

• Vector architecture: 4.2
• SIMD instruction set extensions for multimedia: 4.3

For the slides on GPU (later)

• Graphic processing units: 4.4
• Detecting and enhancing loop-level parallelism: 4.5

