
AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 1

Advanced Architectures

Master Informatics Eng.

2020/21

A.J.Proença

Programming GPUs with CUDA
(most slides are borrowed)

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 2

The CUDA programming model

• Compute Unified Device Architecture
• CUDA is a programming model, designed for

– a multicore CPU host coupled to a many-core device, where
– devices have wide SIMD/SIMT parallelism, and
– the host and the device do not share memory

• CUDA provides:
– a thread abstraction to deal with SIMD
– synchronization & data sharing between small groups of threads

• CUDA programs are written in C with extensions

• OpenCL inspired by CUDA, but hw & sw vendor neutral
– programming model essentially identical

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 3

CUDA Devices and Threads

• A compute device
– is a coprocessor to the CPU or host
– has its own DRAM (device memory)
– runs many threads in parallel
– is typically a GPU but can also be another type of parallel

processing device

• Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• very little creation overhead, requires LARGE register bank
– GPU needs 1000s of threads for full efficiency

• multi-core CPU needs only a few

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 4

CUDA basic model:
Single-Program Multiple-Data (SPMD)

• CUDA integrates CPU+GPU code in a C program
– Serial C code executes on CPU
– Parallel Kernel C code executes on GPU thread blocks

CPU Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 5

Programming Model: SPMD + SIMT/SIMD

• Hierarchy
– Device => Grids
– Grid => Blocks
– Block => Warps
– Warp => Threads

• Single kernel runs on multiple blocks
(SPMD)

• Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

• Single instruction are executed on
multiple threads (SIMD)
– Warp size defines SIMD granularity

(32 threads)
• Synchronization within a block uses

shared memory
Courtesy NVIDIA

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 6

The Computational Grid:
Block IDs and Thread IDs

• A kernel runs on a computational
grid of thread blocks

– Threads share global memory
• Each thread uses IDs to decide

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• A thread block is a batch of
threads that can cooperate by:

– Sync their execution w/ barrier
– Efficiently sharing data through a

low latency shared memory
– Two threads from two different

blocks cannot cooperate

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 7

Example

• Multiply two vectors of length 8192
– Code that works over all elements is the grid
– Thread blocks break this down into manageable sizes

• 512 threads per block
– SIMD instruction executes 32 elements at a time
– Thus, grid size = 16 blocks
– Block is analogous to a strip-mined vector loop with

vector length of 32
– Block is assigned to a multithreaded SIMD processor by

the thread block scheduler

– Current-generation NVidia GPU (GA100 Ampere) has
128 multithreaded SIMD processors

G
raphical Processing U

nits

}SM in NVidia terminology…}
… or simply a CPU-type core

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 8 ht
tp
://
ph
ys
ic
s.
uj
ep
.c
z/
~z
m
or
av
ec
/p
rg
a/
m
ai
n_
fo
r/m
er
ge
dP
ro
je
ct
s/
op
ta
ps
_f
or
/c
om
m
on
/o
pt
ap
s_
ve
c_
m
in
e.
ht
m

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 9

Generations of NVidia GPUs

Fermi:
16 SM
Jul’11

Kepler:
15 SMX
Oct’13

Pascal:
60 SM
Nov’15

Volta:
84 SM
Jun’17Each block is

assigned to a SM
Ampere:
128 SM
May’20

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 10

C with CUDA extensions

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 11

Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology (and in NVidia)

• Threads of SIMD instructions (warps)
– Each has its own IP (up to 48/64 per SIMD processor, Fermi/after-Kepler)
– Thread scheduler uses scoreboard to dispatch
– No data dependencies between threads!
– Threads are organized into blocks & executed in groups of 32

threads (thread block)
• Blocks are organized into a grid

• The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors, SM)

• Within each SIMD processor:
– 32 SIMD lanes (thread processors)
– Wide and shallow compared to vector processors

G
raphical Processing U

nits

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 12

CUDA Thread Block

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent

threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the
same thread program

• Threads share data and synchronize
while doing their share of the work

• Threads have thread id numbers
within Block

• Thread program uses thread id to
select work and address shared data

CUDA Thread Block

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 13

Parallel Memory Sharing

• Local Memory: per-thread
–Private per thread
–Auto variables, register spill

• Shared Memory: per-block
–Shared by threads of the same

block
– Inter-thread communication

• Global Memory: per-application
–Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1 Sequential
Grids
in Time

Block

Shared
Memory

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 14

CUDA Memory Model Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host• The host can R/W
global, constant, and
texture memories

©
 D

av
id

 K
irk

/N
V

ID
IA

 a
nd

 W
en

-m
ei

 W
. H

w
u,

 2
00

7-
20

09
EC

E
49

8A
L,

 U
ni

ve
rs

ity
 o

f I
lli

no
is,

 U
rb

an
a-

Ch
am

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 15

Terminology: CUDA and OpenCL

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 16

Hardware Implementation:
Memory Architecture

• Device memory (DRAM)
– Slow (2~300 cycles)
– Local, global, constant,

and texture memory

• On-chip memory
– Fast (1 cycle)
– Registers,

shared memory,
constant/texture cache

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Courtesy NVIDIA

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 17
Copyright © 2012, Elsevier Inc. All rights reserved.

Example
G

raphical Processing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 18

Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Processor versus CUDA core
G

raphical Processing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 19
Copyright © 2012, Elsevier Inc. All rights reserved.

Conditional Branching

• Like vector architectures, GPU branch hardware uses internal
masks

• Also uses
– Branch synchronization stack

• entries consist of masks for each SIMD lane
• i.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple
execution paths

• push on divergent branch
– …and when paths converge

• act as barriers
• pops stack

• Per-thread-lane 1-bit predicate register, specified by
programmer

G
raphical Processing U

nits

AJProença, Advanced Architectures, MiEI, UMinho, 2020/21 20

cuDNN: CUDA for Deep Neural Nets

cuDNN: a GPU-accelerated library
of primitives for deep neural networks

cuDNN contains:
• common training and inference routines,
• tensor utility routines,
• routines for CNN for training and inference time,
• …

Recommended textbook (2)

1. Introduction
2. Data parallel computing
3. Scalable parallel execution
4. Memory and data locality
5. Performance considerations
6. Numerical considerations
7. Parallel patterns: Convolution
8. Parallel patterns: Prefix Sum
9. Parallel patterns : Parallel Histogram Computation
10. Parallel patterns: Sparse Matrix Computation
11. Parallel patterns: Merge Sort
12. Parallel patterns: Graph Searches
13. CUDA dynamic parallelism
14. Application case study—non-Cartesian magnetic …
15. Application case study—molecular visualization …
16. Application case study—machine learning
17. Parallel programming and computational thinking
18. Programming a heterogeneous computing cluster
19. Parallel programming with OpenACC
20. More on CUDA and graphics processing computing
21. Conclusion and outlook

Appendix A. An introduction to OpenCL
Appendix B. THRUST: a productivity-oriented library for

CUDA

