HOWJ'S YOUR
QUANTUM COMPUTER
PROTOTYPE COMING
ALONG?

THE PROJECT EXISTS
IN A STMULTANEOUS f CAN I THAT'S
STATE OF BEING BOTH OBSERVE A TRICKY
TOTALLY SUCCESSFUL IT? QUESTION.

AND NOT EVEN :| :
STARTED.
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* “Nature isn’t classic want to make a simulation of

Nature, you'd better make it quantum mechanical, and by golly it's a wonderful

problem, because it doesn’t look so easy.’

2

[Richard Feynman, 1981]




for factorization

®* In 1996 Grover proposed a search algorithm on unstructured databases with
complexity O(\/N) , quadratically better than classical searches ( O(N) )




I Adiabatic quantum compu

qubits (D-Wave 2000Q System), but operate bqsed
on the simulated annealing algorithm and the
adiabatic theorem, requiring the modelling of
optimization problems as physical Hamiltonians
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ra'do-irecuency
control and readout lines

superconducting

qubits coupling between cryostat
qubits via resonators

temperature
0.014 K

“Demonstration of a quantum error detection code using a square lattice of four superconducting qubits”, A.D. Cércoles et al., Nat. Comm., 6:6979 (2015)



®* Quantum computers can represent an exponentially large number of states due to

\\é QUANTUM CIRCUIT MODEL

O quantum parallelism

®* The quantum circuit model generalizes the binary logic gates model used in classical

computers: quantum gates operate on quantum states
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antum operation on

the qubi ope

® A qubit can behave like a classical bit by setting one of the weights o, to 1 and the

quantum machine can behave as a classical computer )




1\\5 IBM Q EXPERIENCE - QUBIT
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perates over all 2"




to be rethought)

directly, i.e., they cannot be measured




1\\5 IBM Q EXPERIENCE - MEASUREMENT

Statevector Statevector

)
=

=
=
2

E

<T

Amplitude

11



a1|01> + C(2|10) + a3|11)

( 1 0 Of]%o
_lo 1 0 of|a

0 0 1||2z

0 1 01143

12




L]
S O O O OO O

© O O OO OO

> O O O O - OO

) © © © 1 O O O

O O OO OO

O 1 O © O O O

©C O OO oo

©C O OO oo

=
O
Z
O
2
=
=
2




1/2| _1 []00) + |01) + |10) + [11)]

)® ﬁll _11] 8 ~ 12| 2
0 1/2




v

_[5}

4 executions are required to
iterate over the 4 possible
candidates
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1 execution is enough to encode
the solution in |q, q5 y>, but ...
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1\\5 IBM Q EXPERIENCE — QUANTUM PARALLELISM
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® This irreversibl ough the computation

evolves on an exponentia - e space, we only have access to a very

limited portion of it
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'variables) is thus




o be the

® Loac 1ses require a number

of gates (computa ber of gates necessary to execute

(X the intended algorithm, offseting the quantum advantage
@




MEASUREMENTS ON A SIMULATOR
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\\; MEASUREMENTS ON A REAL SYSTEM

Histogram

38.086%

Measurement probability (%)

5.566% 9
. 5.176% 4.102%
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