
Nvidia Jetson TX2 and its Software
Toolset

João Fernandes
2017/2018

● Nvidia Jetson TX2: Hardware

● Nvidia Jetson TX2: Software

● Machine Learning: Neural Networks

○ Convolutional Neural Networks

● Tensorflow

● A case study

In this presentation

NVIDIA Jetson TX2

NVIDIA Jetson TX2
Developer Kit

NVIDIA Jetson TX2

● “Jetson is the world’s leading low-power embedded platform, enabling
server-class AI compute performance for edge devices everywhere”

● “Edge computing is an emerging paradigm which uses local computing to
enable analytics at the source of the data”

● “Jetson TX2 accelerates cutting-edge deep neural network (DNN) architectures
using the NVIDIA cuDNN and TensorRT libraries”

Hardware Specifications

NVIDIA Jetson TX2

CPU
ARM Cortex-A57 (quad-core) @ 2GHz +

NVIDIA Denver2 (dual-core) @ 2GHz

GPU 256-core Pascal @ 1300MHz (2 SM’s)

Memory 8GB 128-bit LPDDR4 @ 1866Mhz | 59.7 GB/s

Storage 32GB eMMC 5.1

I/O UART, SPI, I2C, I2S, GPIOs, HDMI 2.0, USB, Ethernet, CAN

Heterogeneous Multi-Processing:
Cortex-A57 vs Denver2

4xCortex - A57 2xDenver2
ARM ISA ARMv8 (32/64 bits) ARMv8 (32/64 bits)

Frequency Up to 2 GHz Up to 2 GHz

L1 Cache 48 KB (Inst) + 32 KB (Data) 128KB (Inst) + 64 KB (Data)

L2 Cache 2MB (shared between the 2 Chips) 2MB (shared between the 2 Chips)

GFLOPS(FP32) 750 437

Full coherency guaranteed across the 2 CPU Clusters

Hardware Architecture

Mode Mode Name Denver2 ARM A57 GPU Freq.

0 Max-N 2 @ 2.0 GHz 4 @ 2.0 GHz 1.30 GHz

1 Max-Q 0 4 @ 1.2 GHz 0.85 GHz

2 Max-P Core All 2 @ 1.4 GHz 4 @ 1.4 GHz 1.12 GHz

3 Max-P ARM 0 4 @ 2.0 GHz 1.12 GHz

4 Max-P Denver 2 @ 2.0 GHz 0 1.12 GHz

Performance Modes

Can be changed at run time using:
sudo nvpmodel -m <desired mode>

Max-Q vs Max-P

Max-N Max-P Max-Q

GoogLeNet

Perf 290 FPS 253 FPS 196 FPS

Power Consumption 12.8 W 8.9 W 5.9 W

Efficiency (FPS/W) 22.7 28.5 33.2

AlexNet

Perf 692 FPS 601 FPS 463 FPS

Power Consumption 12.4 W 8.6 W 5.6 W

Efficiency 55.8 69.9 82.7

● A set of software tools to ease the development for the Jetson platform:
○ Flash Jetson Developer Kit with the latest OS image
○ Install developer tools for both host PC and Developer Kit
○ Install libraries and APIs
○ Samples and documentation

● Key Software:
○ OS: L4T (Based on Ubuntu)
○ CUDA 8
○ TensorRT 2.1
○ cuDNN 6.0

The Software: NVIDIA JetPack

Requires Ubuntu 14 on the Host!

● CUDA
○ CUDA Toolkit provides a comprehensive development environment for C and C++ developers building

GPU-accelerated applications. It includes a compiler for NVIDIA GPUs, math libraries, and tools for debugging
and optimizing the performance of your applications

● cuDNN
○ CUDA Deep Neural Network library provides high-performance primitives for all deep learning frameworks. It

includes support for convolutions, activation functions and tensor transformations.

● TensorRT 2.1
○ TensorRT is a high performance deep learning inference runtime for image classification, segmentation, and

object detection neural networks. It speeds up deep learning inference as well as reducing the runtime
memory footprint for convolutional and deconv neural networks.

● Multimedia API
○ The Jetson Multimedia API package provides low level APIs for image acquisition (via camers). It enables

video decode, encode, format conversion and scaling functionality

The Software

Real World Utilization

Relative Performance (GTX 1070) Matrix-Mul FP32

● Machine learning is the science of getting the computer to perform a certain task
without explicitly programming it. Normally, this requires a sample dataset from
which the algorithm can infer the model parameters (commonly known as the
training phase).
○ Decision tree learning
○ Clustering
○ Neural Networks

Machine Learning

Neural Networks

Neural Networks: The neuron

Convolutional Neural Networks

https://docs.google.com/file/d/1q0If3aVvUCvikCfWa5_2ybUuC4zl-TCn/preview

Convolutional Neural Networks

State of the art: Object Classification (VGG16)

Others: Inception, ResNet

TensorFlow is an open source software library for numerical
computation using data flow graphs. Nodes in the graph
represent mathematical operations, while the graph edges
represent the multidimensional data arrays (tensors)
communicated between them.

Tensorflow

Computational Graph
 with tf.Session() as session:

 r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type)

 r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type)

 dot_operation = tf.matmul(r2, r1)

 start_time = time.time()

 result = session.run(dot_operation)

The Case Study

Naive Implementation
while(True):

 image = CaptureFrame()

 (boxes, scores, classes, num) = sess.run(

 [detection_boxes, detection_scores, detection_classes, num_detections],

 feed_dict={image_tensor: image_np_expanded})

 DrawBBoxes(image, boxes, scores, ...)

 ShowFrame(image)

Naive Implementation: Computational Graph

Implementation: Computational Graph

Conclusion
● Performance Engineering can look like it’s changing… But the basics are always the

same:
○ Measure/Profile
○ Identify and Understand the Bottleneck
○ Start the iterative tuning process
○ Validade
○ Be scientific

