Advanced Architectures

Master Informatics Eng.

2017/18
A.J.Proenca

Introduction to CUDA programming
(most slides are borrowed)

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 1

L X
500 Accelerator family distribution over all systems
25 e TJ?’JL: center 23127769 1

o B 18M cell 0 | Hybrid 3 || ATIRadeon 1 [nvidia Fermi 6
Eqna 410 [l clearspeed o [l nvidia Pascal 22 [l 1ntel Xeon Phi 13
M Pezv-sc 2 Nvidia Kepler 43

80

70

PEZY-SC 2 (2.22%)
50 Intel Xeon Phi 13 (14.44%)

40

Nvidia Pascal 22 (24.44%)

30

20

Clearspeed 0 (09%)

Nvidia Fermi 6 (6.67%)

ATI Radeon 1 (1.119%5)

Hybrid 3 (3,33%) |4

10

. .
2012 2013 2014 2015 2016 m

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 2

Why this interest for GPUs?

» Scatter-gather transfers
» Mask registers
» Large register files

As seen before — i o
©—1| NVIDIA GPU Architecture §

and stressed in | 2
previous slide, = Similarities to vector machines: ;c";
but... = Works well with data-level parallel problems &
<

=

To be successful,

GPUs requ"e a » Differences:
user-friendly = No scalar processor
(fOF sSW engineers) = Uses muItithreaFiing to hide memory latency

» Has many functional units, as opposed to a few
development deeply pipelined units like a vector processor
environment:
CUDA

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 3

The CUDA programming model

* Compute Unified Device Architecture

CUDA is a programming model designed for

— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and

— the host and the device do not share memory

CUDA provides:

— a thread abstraction to deal with SIMD

— synchroniz. & data sharing between small groups of threads
CUDA programs are written in C with extensions
OpenCL inspired by CUDA, but hw & sw vendor neutral

— programming model essentially identical

AJProencga, Advanced Architectures, MiEl, UMinho, 2017/18 4

CUDA Devices and Threads

N\
ININ

A compute device
— is a coprocessor to the CPU (the host)
— has its own DRAM (device memory])
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

« Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

 Differences between GPU and CPU threads

— GPU threads are extremely lightweight
» very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA basic model:
Single-Program Multiple-Data (SPMD)

« CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU

— Parallel Kernel C code executes on GPU thread blocks

CPU Code _
Grid 0
GPU Parallel Kernel SRR D || S Y
KernelA<<< nBIk, nTid >>>(args): s || BHR || 55 ek
CPU Code
Grid 1
GPU Parallel Kernel 55 55 55 5

KernelB<<< nBIk, nTid >>>(args);

AJProencga, Advanced Architectures, MiEl, UMinho, 2017/18

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

»

Programming Model: SPMD + SIMT/SIMD

. CPU GPU
« Hierarchy Sorial
— Device => Grids e
— Grid => Blocks f
— Block => Warps l Grid 1
— Warp => Threads Kernel Block Block Block
, : T = 00 (1,0 (20
« Single kernel runs on multiple blocks « , '
(SPMD) l Block Block Block
o Serial oA @ @)
« Threads within a warp are executed Code)
In a lock-step way called single- l " Grid2
instruction multiple-thread (SIMT) .1
ernel -
- Single instructions are executed on 2 ’
multiple threads (SIMD) z
Block (1, 1)

— Warp size defines SIMD granularity
(32 threads)

« Synchronization within a block uses

shared memory
Courtesy NVIDIA

AJProencga, Advanced Architectures, MiEl, UMinho, 2017/18

The Computational Grid:

Block IDs and Thread IDs
» A kernel runs on a computational
grid of thread blocks " T
— Threads share global memory -
- Each thread uses IDs to decide it == | ol e
what data to work on soes | Bk
—Block ID: 1D or 2D oY || an |
— Thread ID: 1D, 2D, or 3D P ST
« A thread block is a batch of ot L TP a
threads that can cooperate by: 2 |t ' Ot
— Sync their execution w/ barrier
— Efficiently sharing data through a
low latency shared memory
— Two threads from two different

blocks cannot cooperate

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—Champaign

Example
= Multiply two vectors of length 8192

» Code that works over all elements is the grid

= Thread blocks break this down into manageable sizes
= 512 threads per block

» SIMD instruction executes 32 elements at a time
» Thus grid size = 16 blocks

= Block is analogous to a strip-mined vector loop with
vector length of 32

suun buissasold |eaiydels

» Block is assigned to a multithreaded SIMD processor
by the thread block scheduler

s Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Terminology (and in NVidia)

s [Threads of SIMD instructions (warps)
= Each has its own |IP (up to 48/64 per SIMD processor, Fermi/Kepler)
= [hread scheduler uses scoreboard to dispatch
= No data dependencies between threads!

= Threads are organized into blocks & executed in groups
of 32 threads (thread block)

« Blocks are organized into a grid
s [he thread block scheduler schedules blocks to

suun buissasold |eaiydels

SIMD processors (Streaming Multiprocessors)

= Within each SIMD processor:
= 32 SIMD lanes (thread processors)
= Wide and shallow compared to vector processors

CUDA Thread Block

* Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block
— Block shape 1D, 2D, or 3D

— Block dimensions in threads

threadID 0|1|12(3|4|5|6]|7

» All threads in a Block execute the
same thread program

* Threads share data and synchronize Cloat x - input [threadiD];
while doing their share of the work float y = func(x);

output [threadID]

 Threads have thread id numbers
within Block

* Thread program uses thread id to
select work and address shared data

AJProencga, Advanced Architectures, MiEl, UMinho, 2017/18

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

Example of Host & Device code

C with CUDA Extensions: C with a few keywords

/" void saxpy_serial(int n, float a, float *x, float *y)
i1
| for (int i = 0; i < n; ++i)

} y[i] = a*x[i] + y[i]; Standard C Code

\ saxpy_serial(n, 2.0, x, y);

J // Invoke serjal SAXPY kernel |

—alobal__ void saxpy_parallel(int n, float a, float *x, float *y)
{
int i1 = blockIdx.x*blockDim.x + threadIidx.x:
if (1 <n) y[i] = a*x[1] + y[il; Parallel C Code
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2,0, x, ¥);

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 12

Parallel Memory sharing

* Local Memory:

— Private per thread

per-thread

— Auto variables, register spill

e Shared Memory:

per-block

— Shared by threads of the same block
— Inter-thread communication

* Global Memory:

— Shared by all threads

per-application

— Inter-Grid communication

Thread
Local Memory
Block
Shared
Memory
Grid 0
QD> | | D> || LR 2D
Grid 1
QR | | SRR | | 0D B R
% || R KL | [=P

Global
Memory

AJProencga, Advanced Architectures, MiEl, UMinho, 2017/18

Sequential
Grids
in Time

-
w

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Memory Model overview

N\
ININ

« Each thread can:

The host can R/W
global, constant, and
texture memories

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant

memory

Read only per-grid texture

memory

(Device) Grid

Block (0, 0)

e

Block (1, 0)

ey

Thread (0, 0) Thread (1, 0)

Thread (0, 0)| Thread (1, 0)

Host

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

-
£

N\
ININ

Memory Hierarchies in NVidia GPUs

Kepler Memory Hierarchy

SM-0 SM-1 SM-N
Registers Registers — Registers
s 3 ¢d : 1 td ! 3 m@_d in P |
L1 SMEM :::V L1 SMEM ::y u SMEM only NeW In asca
r 3 3
12 Pasca{ Unified Memory

Global Memory (DRAM)
Pascal

!
CUDA 8 launched .
for Pascal architecture

(Limited to System Memory Size)

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 15

Hardware Implementation:

Memory Architecture
Device
* Device memory (DRAM) S —
— Slow (2~300 cycles)]

Multiprocessor 2

— Local, global, constant,
and texture memory

Multiprocessor 1

* On-Chip memory - Instruction

Unit
_ F a St (1 CyCI e) Processor 1 = Processor 2 Processor M

— Registers,
shared memory,
constant/texture cache

A

v \ 4 \ 4

Courtesy NVIDIA
AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 16

NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and private
variables

suun buissasold |eaiydels

s Each multithreaded SIMD processor also has
local memory (Shared Memory)

= Shared by SIMD lanes / threads within a block

= Memory shared by SIMD processors is
GPU memory (Global Memory)

=« Host can read and write GPU memory

Memory Hierarchy: CPU vs. GPU

Where is my Memory?

Intel® 8 core Sandy Bridge CPU

4kB registers: 5TB/s

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18

NVIDIA® GK110 GPU

13 TB/s

1TB/s

500 GB/s

18

@
=k
Q)
Example g
=3
0
L
Warp scheduler Scoreboard -
_ Warp No. | Address | SIMD instructions Operands? 8
Instruction . 1 42 Id.global.f64 Ready O
cache 1 43 mul.f64 No Qo
3 95 shl.s32 Ready 23
‘ 3 96 add.s32 No >
8 11 Id.global.f64 Ready Q@
8 12 d.global.f64 Ready g
|
: —
{ (7))

Instruction register

| |
I T T T 2 DR DR D DR R D D S A A

N % e e e e e R R g e

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters

1Kx32 [1Kx32 [1Kx32 | 1Kx32 | 1Kx32 [1Kx32 [1Kx32 | 1Kx32 | 1K= 32 [1Kx32 [1K= 32 | 1Kx32 | 1IKx32 | 1K= 32 | 1Kx32 | 1K= 32

Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

t | ¢ [¢ ¢ [¢ [¢ ¢ ¢ ¢+ [+ [+]+t [t

Y A

[Address coalescing unit | | Interconnection network]
¥ Y
To Global
Local Memory
64KB WSOty

MK

MORGAN KAUFMANN

Vector Processor versus CUDA core

suun buissasold |eaiydels

PC SIMD Thread Scheduler
Instruction PC Instruction |
PCH4 cache PC cache Dispatch unit
PC v
Instruction register Instruction register
:-------: ------- ". E ----------------- v'.. ".
o] il ATl al'al'al gl
processer V f I) l’
| 1w | 2 |IA 7

0 1 2 3 0 0 0 0

e 4 5 6 7 1 1 1 1

"(Z; - - - . e . . - .

o 2
Q . . . k7]
b~ 8
- T
§ 60 61 62 63 1023 1023 1023 1023
v4 v4 v4 v4 v v4 v4 v4
Vector load/store unit SIMD Load/store unit
L 7 S Z S Z S .
Address coalescing unit
: vt
Memorz':::terface Memory interface unit
2 2

MK

MORGAN KAUFMANN

Conditional Branching

m Like vector architectures, GPU branch hardware uses
Internal masks

s AlSo uses

= Branch synchronization stack
= Entries consist of masks for each SIMD lane
= |.e. which threads commit their results (all threads execute)
= Instruction markers to manage when a branch diverges into
multiple execution paths
= Push on divergent branch
= ...and when paths converge
« Act as barriers

suun buissasold |eaiydels

= Pops stack

s Per-thread-lane 1-bit predicate register, specified by
programmer

Example of conditional code execution

Up to Pascal
Volta supports finer thread scheduling

if (threadidx.x < 4) {
Aj
B;
} else {
X3
Y;

)
on
b
)
>
=
o)
O
)
—

¥
Z

AJProenca, Advanced Architectures, MiEl, UMinho, 2017/18 22

