
MIEI - AA/CPD

Lab 1 - Parallel and Vectorisable Code

Advanced Architectures

University of Minho

The Lab 1 focus on the development of efficient CPU code by covering the programming
principles that have a relevant impact on performance, such as cache usage, vectorisation and
scalability of multithreaded algorithms. Submit jobs to the mei queue in SeARCH to measure
code execution times, but be careful to always use the same node architecture (i.e., compute-6xx
ou compute-7xx).

This lab tutorial includes one homework assignment (HW 1.1), three exercises to be solved
during the lab class (Lab 1.x) and suggested additional exercises (Ext 1.x).

A separate compacted folder (lab1.zip) contains the template for an example code (a squared
integer matrix-matrix multiplication, and a derived sample irregular workload) and a simple
script to measure the code execution times.

To load the compiler in the environment use one of the following commands:

GNU Compiler: module load gnu/4.9.3.

Intel Compiler: module load gnu/4.7.3 && module load intel/2013.1.117.

If you want to switch compilers execute module purge before loading the compiler to use.
Remember that this must be done inside a script if you are not using the compute node
interactively.

All performance measurements for the entire session must be documented and plotted in a
spreadsheet, otherwise the exercises will be considered incomplete.

1.1 Efficient Cache Usage

Goals: to develop skills in common optimization techniques and efficient cache usage.

HW 1.1 Improve the efficiency of the sequential matrix multiplication code regularMatrixMult
using the optimizations studied in previous classes and on the provided notes. Measure and
document (on a spreadsheet) the performance of each optimization for a matrix size that fits in
the L1, L2 and L3 caches, and in RAM (by modifying the #define SIZE clause in the code).

Replicate the optimizations implemented for the remaining matrix multiplication functions
irregularMatrixMult, (ir)regularWorkloadStatic and (ir)regularWorkloadDynamic. Does
the performance scale as expected with the increase in the amount of threads for each version?

André Pereira & Alberto Proença October 2017



MIEI - AA/CPD

1.2 Vectorisation

Goals: to develop skills in vector report analysis and optimisation.

Lab 1.2 Compile the provided code with the supplied matrix-matrix multiplication function.
Use either Intel or GNU compilers (Intel is strongly recommended), with the respective vec-
torisation flags. Do not forget to add a flag to request a full report on the vectorisation results.

Complete the provided code with a new version of the matrix multiplication function, con-
taining the necessary modifications to the code and adding pragma clauses to aid the compiler
to generate vector code. Analyse the performance to assess the impact of the optimisations.

GNU Compiler: -O2 -ftree-vectorize -fopt-info-vec-all.

Intel Compiler: -O2 -vec-report3.

1.3 Performance Scalability

Goals: to comprehend the concepts restricting performance scalability of multithreaded algo-
rithms.

Lab 1.3 Consider two similar synthetic parallel algorithms, one with regular and the other
with irregular workloads. It is not necessary to analyze the algorithms or the code. As-
sess the scalability of these algorithms when using static and dynamic workload distributions
(functions (ir)regularWorkload(Static)Dynamic) for several number of threads and prob-
lem sizes. Which scheduler is best fit for each type of workload? Plot the results using a
column chart for 1, 2, 4, 8, max #cores, 1.5x max #cores, 2x max #cores, 3x max #cores and
4x max #cores.

If the environment variable DYNAMIC is set to yes (by export DYNAMIC=yes) and the code
recompiled the algorithms will use a dynamic scheduling strategy, which otherwise will be static.
To test the algorithm with the irregular workload set the environment variable IRREGULAR to
yes and recompile the code, which otherwise the workload will be regular. For instance, if you
perform export DYNAMIC=yes and export IRREGULAR=no the application will be compiled to
run the algorithm with a regular workload and a dynamic scheduling strategy.

Ext 1.3 Experiment with different chunks of data that are assigned to each thread in the
dynamic scheduler. How does it affect the performance for various matrix sizes? (to be solved
at home, after the lab session).

André Pereira & Alberto Proença October 2017


