Advanced Architectures

N\
ININ

Master Informatics Eng.

2017/18
A.J.Proenca

Memory Hierarchy

(most slides are borrowed)

AJProenga, Advanced Architectures, MiEIl, UMinho, 2017/18

Introduction

uonoONPOJIU|

s Programmers want unlimited amounts of memory with
low latency

s Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory

= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the

processor
m Temporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the illusion of a large, fast memory being presented to the
processor

Memory Performance Gap

uoNoNPOIU|

100,000
10,000 —eeeeeeneenestnmree ittt s g s -9
(0]
[0}
£
2
o
10 e s eens s aeite ey 2 ss/sls e sa als e ls /e n e s s el leln e S e e ialsle's B ale(ele sle o ' Slels/eielels & = S /eieleleie/es = nle e s s/t /e na R A e s sl m e s(a e s s e m e s 4
1 I 1 1 I 1
1980 1985 1990 1995 2000 2005 2010
Year

Memory Hierarchy Design

=1
=
o
Q
c
o
=3
o
5

= Memory hierarchy design becomes more crucial
with recent multi-core processors:

= Aggregate peak bandwidth grows with # cores:
» Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
» 25.6 billion* 64-bit data references/second +

» 12.8 billion* 128-bit instruction references
= =409.6 GB/s!

= DRAM bandwidth is only 6% of this (25 GB/s)

= Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

* US billion = 10°

The Memory Hierarchy

Common principles apply at all levels of
the memory hierarchy

Based on notions of caching

At each level in the hierarchy
Block placement
Finding a block
Replacement on a miss
Write policy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Direct Mapped Cache

Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

OOOOOOOO
OOOOOOOO
OOOOOOOO

1 #Blocks is a
>< power of 2

Use low-order
‘ / \ N address bits

00001 00101 01001 01101 10001 10101 11001 11101
Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Associative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries

Block number determines which set
(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

How Much Associativity

Increased associativity decreases miss
rate
But with diminishing returns
Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Block Placement

Determined by associativity

Direct mapped (1-way associative)
One choice for placement

n-way set associative
n choices within a set

Fully associative
Any location

Higher associativity reduces miss rate
Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Write Policy

Write-through
Update both upper and lower levels
Simplifies replacement, but may require write
buffer

Write-back
Update upper level only
Update lower level when block is replaced
Need to keep more state

Virtual memory

Only write-back is feasible, given disk write
latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

‘ Memory Hierarchy Basics

m N sets => n-way set associative
» Direct-mapped cache => one block per set
s Fully associative => one set

uonoONPOJIU|

= Writing to cache: two strategies
» Write-through

« Immediately update lower levels of hierarchy

= Write-back
= Only update lower levels of hierarchy when an updated block
is replaced

= Both strategies use write buffer to make writes
asynchronous

Memory Hierarchy Basics

uoNoNPOIU|

CPU o ccotime = (CPUclock—cycles + Memstall—cycles) x Clock cycle time
CPU ; cctime = UC X CPIpy + Memstan_cycles) x Clock cycle time

Memyg)i eyeles = IC X ... Miiss rate ... Mem accesses ... Miss penalty...

Memory Hierarchy Basics

=1
=
o
o
c
3]
=3
o
5

CPUexec-time - (CPUclock-cycles + Memstall-cycles) x Clock cycle time

Memy);.eyeies = IC * Misses/ Instruction x Miss Penalty

Misses _ Miss rate X Memory accesses _ Miss rate X Memory accesses
Instruction Instruction count - Instruction

Average memory access time = Hit time + Miss rate X Miss penalty

= Note1: miss rate/penalty are often different for reads and
writes

» Note2: speculative and multithreaded processors may
execute other instructions during a miss
= Reduces performance impact of misses

Cache Performance Example

Given

|-cache miss rate = 2%

D-cache miss rate = 4%

Miss penalty = 100 cycles

Base CPI (ideal cache) = 2

Load & stores are 36% of instructions
Miss cycles per instruction

|-cache:

D-cache:

Actual CPI =2 + 7?7 + 77 =77

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Performance Example

Given
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
|-cache: 0.02 x 100 = 2
D-cache: 0.36 x 0.04 x 100 = 1.44

Actual CPI=2+2+1.44 =544

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Memory Hierarchy Basics

= Miss rate
» Fraction of cache access that result in a miss

uoNoNPOIU|

m Causes of misses (3C’s +1)

= Compulsory
= First reference to a block
= Capacity
= Blocks discarded and later retrieved

x Conflict

» Program makes repeated references to multiple addresses
from different blocks that map to the same location in the

cache

= Coherency
» Different processors should see same value in same location

The 3C’s in diff cache sizes

uonoONPOJIU|

10%

9%

8% o
One-way < Gonflict

O,
1% Two-way &
6% -
Miss rate Four-way

per type 5% 1

4% 1
3% 1
2% A

Capacity
1% A

0% T T T T T T T 1
4 8 16 32 64 128 256 512 1024

Cache size (KB)

The cache coherence pb

m Processors may see different values
through their caches:

saJn)o8)IydJy Alows|\-paleys pazijesua)

Memory
Cache contents Cache contents contents for
Time Event for processor A for processorB location X
0 1
| Processor A reads X | |
2 Processor B reads X | 1 |
3 Processor A stores 0 0 | 0
into X

Cache Coherence

s Coherence

= All reads by any processor must return the most
recently written value

= Writes to the same location by any two processors are

seen in the same order by all processors

(Coherence defines the behaviour of reads & writes to the
same memory location)

= Consistency
= When a written value will be returned by a read

= |f a processor writes location A followed by location B,
any processor that sees the new value of B must also
see the new value of A

O
®
>
—
=
2
N
D
o
2}
=
QO
=
®
=
=
®
3
o
<
>
=
(@)
=
—
o
Q
—
=
=
D
()

(Consistency defines the behaviour of reads & writes with
respect to accesses to other memory locations)

Enforcing Coherence

= Coherent caches provide:
= Migration. movement of data
= Replication: multiple copies of data

s Cache coherence protocols

= Directory based

= Sharing status of each block kept in one location
= Snooping

= Each core tracks sharing status of each block

saJn)o8)IydJy Alows|\-paleys pazijesua)

Memory Hierarchy Basics

uonoONPOJIU|

m Six basic cache optimizations:

= Larger block size

= Reduces compulsory misses

= Increases capacity and conflict misses, increases miss penalty
Larger total cache capacity to reduce miss rate

= Increases hit time, increases power consumption
Higher associativity

= Reduces conflict misses

= Increases hit time, increases power consumption

Multilevel caches to reduce miss penalty
= Reduces overall memory access time

Giving priority to read misses over writes
= Reduces miss penalty

Avoiding address translation in cache indexing
= Reduces hit time

Multilevel Caches

Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Multilevel Cache Example

Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns
With just primary cache
Miss penalty = 7?7 = 400 cycles
Effective CPI =1+ 7?77 =9
Now add L-2 cache ...

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Multilevel Cache Example

Given
CPU base CPI = 1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

Now add L-2 cache ...

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Example (cont.)

Now add L-2 cache

Access time = 5ns
Global miss rate to main memory = 0.5%

Primary miss with L-2 hit
Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
Extra penalty = 400 cycles

CPI=1+0.02x20+0.005%x400=34
Performance ratio =9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Intel Nehalem 4-core processor

Multilevel On-Chip Caches

8 MB L3
Cache

Z
(©)
=
=F
(93)
=
(S5
(o]
(")
0
(@)
o
3
—
=
=
O
EN
=
3
w
2
1
=

‘sm;;ng M.
siayng Al T

=
=
>
99
=
=
47
o
w

2/MB
L ofd
8IMB 113
€ache

v Hipleg- o

%} DDR3DATA63732] =

I off |-
8:MB! -3
) Ca‘_chg-

SEEEN

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

3-Level Cache Organization

Intel Nehalem

AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-back/
allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, write-back/
allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-back/
allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Intel new cache approach with Skylake

N\
ININ

Re-Architected L2 & L3 Cache Hierarchy

Previous Architectures

Shared L3
2.5MB/core
(inclusive)

L2 L2 L2
(256KB private) (256KB private) (256KB private)

Core Core Core

Skylake-SP Architecture

Shared L3
1.375MB/core
(non-inclusive)

L2 L2 L2
(1MB private) (1MB private) (1MB private)

Core Core Core

* On-chip cache balance shifted from shared-distributed (prior architectures) to private-local (Skylake architecture):

* Shared-distributed =» shared-distributed L3 is primary cache

* Private-local = private L2 becomes primary cache with shared L3 used as overflow cache

* Shared L3 changed from inclusive to non-inclusive:

* Inclusive (prior architectures) = L3 has copies of all lines in L2
» Non-inclusive (Skylake architecture) < lines in L2 may not exist in L3

SKYLAKE-SP CACHE HIERARCHY ARCHITECTED SPECIFICALLY FOR DATA CENTER USE CASE

AJProenga, Advanced Architectures, MiEIl, UMinho, 2017/18

29

Intel new cache approach with Skylake

N\
ININ

Inclusive vs Non-Inclusive L3

Non-Inclusive L3
(Skylake-SP architecture)

Inclusive L3
(prior architectures)

L2
256kB

2 I

1.375 MB
L3

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18

1. Memory reads fill directly to the L2,
no longer to both the L2 and L3

2. When a L2 line needs to be removed,
both modified and unmodified lines
are written back

3. Data shared across cores are copied
into the L3 for servicing future L2
misses

Cache hierarchy architected and
optimized for data center use cases:

* Virtualized use cases get larger private
L2 cache free from interference

Multithreaded workloads can operate
on larger data per thread (due to
increased L2 size) and reduce uncore
activity

30

https://www.servethehome.com/intel-xeon-scalable-processor-family-microarchitecture-overview/

https://www.servethehome.com/intel-xeon-scalable-processor-family-microarchitecture-overview/

Ten Advanced Optimizations

= Reducing the hit time
1. Small & simple first-level caches
2. Way-prediction

Increase cache bandwidth
3. Pipelined cache access

4. Nonblocking caches
5. Multibanked caches

Reducing the miss penalty
6. Critical word first
7. Merging write buffers
Reducing the miss rate
8. Compiler optimizations
Reducing the miss penalty or miss rate via parallelism

9. Hardware prefetching of instructions and data
10. Compiler-controlled prefetching

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18 31

1. Small and simple 15t level caches

= Small and simple first level caches

» Critical timing path:
= addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data
= Lower associativity reduces power because fewer
cache lines are accessed

suoneziwndQ pasueApy

L1 Size and Associativity

900 + m 1-way o 2-way
m 4-way @ 8-way

800

700

suoneziwndQ pasueApy

600

500

400

300

Access time in picrosecornds

200

100

16KB 32KB 64 KB 128KB 256 KB
Cache size

Access time vs. size and associativity

>
n n L]]
o
L1 Size and Associativity 5
3
19}
0.5 =
W 1-way O 2-way O
0.45 | W 4-way @ 8-way 'g_
3
0.4 N
2 21
2 0.35- o
g 0.3 A
£
T 0.25-
o
g 0.2 -
>
2 0.15 -
&
0.1
0.05 -

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity

2. Way Prediction

= To improve hit time, predict the way to pre-set
muxXx
= Mis-prediction gives longer hit time

= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
» |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
s Used on ARM Cortex-A8

s Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty

suoneziwndQ pasueApy

3. Pipelining Cache

m Pipeline cache access to improve bandwidth

= Examples:
« Pentium: 1 cycle
« Pentium Pro — Pentium Ill: 2 cycles
« Pentium 4 — Core i7: 4 cycles

suoneziwndQ pasueApy

m Increases branch mis-prediction penalty
m Makes it easier to increase associativity

4. Nonblocking Caches

s Allow hits before ——_
previous misses e

complete
= “Hit under miss”
. “I—_Iit Hnder multiple
miISS
s L2 must support this
= In general,
processors can hide 20%

70% [

suoneziwndQ pasueApy

60%

Ratio of cache miss penalty
(%
(=3
o~
\‘é

L1 miss penalty but 1o%
not L2 miss penalty
& & OFESESERE & A FR R AN P
‘\ﬁ(\&? @é@‘\v‘%%\o“o grﬁzﬁii\(@\ & &Obe:#? é‘:;o%\eg\:}%,‘%oigo rﬁ‘i“@
kg ¢ ¢ & f

5. Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

suoneziwndQ pasueApy

» Interleave banks according to block address

Block Block Block Block

address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 1
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

6. Critical Word First, Early Restart

» Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

n Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

suoneziwndQ pasueApy

m Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

7. Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/0O addresses

\

suoneziwndQ pasueApy

Write address \

100 Mem([100]

108 Mem[108]

No write
buffering

116 Mem[116]

- o N S

(=] =] o o | <

o o o o

o o (=] o

124

Mem[124]

Write address

100 Mem[100] Mem[108] Mem[116] Mem[124]

Write buffering

o o o - <
o o o - <

8. Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order

suoneziwndQ pasueApy

= Blocking
= Instead of accessing entire rows or columns,
subdivide matrices into blocks

= Requires more memory accesses but improves
locality of accesses

9. Hardware Prefetching

m Fetch two blocks on miss (include next
sequential block)

2.20

suoneziwndQ pasueApy

- =~ =~ Db
5 &8 & &

Performance improvement

3

1.97
1.49
1.45
] 1.40
1.32
126 129
120 121

i1 ia I I I I

gap mcf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPEC{p2000

8

Pentium 4 Pre-fetching

10. Compiler Prefetching

» Insert prefetch instructions before data is
needed

= Non-faulting: prefetch doesn’t cause
exceptions

suoneziwndQ pasueApy

» Register prefetch
= Loads data into register

s Cache prefetch
» Loads data into cache

= Combine with loop unrolling and software
pipelining

>
Q
Summary :
)
>
®
Hit Band- Miss Miss Power Hardware cost/ o
Technique time width penalty rate consumption complexity Comment e}
Small and simple + - + 0 Trivial; widely used -g-
caches 3
Way-predicting caches + + 1 Used in Pentium 4 g
Pipelined cache access - 1 Widely used g
Nonblocking caches + + 3 Widely used c:’n
Banked caches + + 1 Used in L2 of both 17 and
Cortex-A8
Critical word first + 2 Widely used
and early restart
Merging write buffer + 1 Widely used with write
through
Compiler techniques to + 0 Software is a challenge, but
reduce cache misses many compilers handle
common linear algebra
calculations
Hardware prefetching + + - 2instr., Most provide prefetch
of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.
Compiler-controlled + + 3 Needs nonblocking cache;
prefetching possible instruction overhead:

in many CPUs

