
AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1

Advanced Architectures

Master Informatics Eng.

2017/18

A.J.Proença

Memory Hierarchy
(most slides are borrowed)

2 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction
n  Programmers want unlimited amounts of memory with

low latency
n  Fast memory technology is more expensive per bit than

slower memory
n  Solution: organize memory system into a hierarchy

n  Entire addressable memory space available in largest, slowest
memory

n  Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

n  Temporal and spatial locality insures that nearly all
references can be found in smaller memories
n  Gives the illusion of a large, fast memory being presented to the

processor

Introduction

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap
Introduction

4 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design
n  Memory hierarchy design becomes more crucial

with recent multi-core processors:
n  Aggregate peak bandwidth grows with # cores:

n  Intel Core i7 can generate two references per core per clock
n  Four cores and 3.2 GHz clock

n  25.6 billion* 64-bit data references/second +
n  12.8 billion* 128-bit instruction references
n  = 409.6 GB/s!

n  DRAM bandwidth is only 6% of this (25 GB/s)
n  Requires:

n  Multi-port, pipelined caches
n  Two levels of cache per core
n  Shared third-level cache on chip

* US billion = 109

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

The Memory Hierarchy

n  Common principles apply at all levels of
the memory hierarchy
n  Based on notions of caching

n  At each level in the hierarchy
n  Block placement
n  Finding a block
n  Replacement on a miss
n  Write policy

§5.5 A C
om

m
on Fram

ew
ork for M

em
ory H

ierarchies

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Direct Mapped Cache
n  Location determined by address
n  Direct mapped: only one choice

n  (Block address) modulo (#Blocks in cache)

n  #Blocks is a
power of 2

n  Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Associative Caches
n  Fully associative

n  Allow a given block to go in any cache entry
n  Requires all entries to be searched at once
n  Comparator per entry (expensive)

n  n-way set associative
n  Each set contains n entries
n  Block number determines which set

n  (Block number) modulo (#Sets in cache)
n  Search all entries in a given set at once
n  n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

How Much Associativity
n  Increased associativity decreases miss

rate
n  But with diminishing returns

n  Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n  1-way: 10.3%
n  2-way: 8.6%
n  4-way: 8.3%
n  8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Block Placement
n  Determined by associativity

n  Direct mapped (1-way associative)
n  One choice for placement

n  n-way set associative
n  n choices within a set

n  Fully associative
n  Any location

n  Higher associativity reduces miss rate
n  Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Replacement Policy
n  Direct mapped: no choice
n  Set associative

n  Prefer non-valid entry, if there is one
n  Otherwise, choose among entries in the set

n  Least-recently used (LRU)
n  Choose the one unused for the longest time

n  Simple for 2-way, manageable for 4-way, too hard
beyond that

n  Random
n  Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Write Policy
n  Write-through

n  Update both upper and lower levels
n  Simplifies replacement, but may require write

buffer
n  Write-back

n  Update upper level only
n  Update lower level when block is replaced
n  Need to keep more state

n  Virtual memory
n  Only write-back is feasible, given disk write

latency

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

n  n sets => n-way set associative
n  Direct-mapped cache => one block per set
n  Fully associative => one set

n  Writing to cache: two strategies
n  Write-through

n  Immediately update lower levels of hierarchy
n  Write-back

n  Only update lower levels of hierarchy when an updated block
is replaced

n  Both strategies use write buffer to make writes
asynchronous

Introduction

13 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time

Memstall-cycles = IC × ... Miss rate ... Mem accesses ... Miss penalty...

CPUexec-time = (IC × CPICPU + Memstall-cycles) × Clock cycle time

14

n  Note2: speculative and multithreaded processors may
execute other instructions during a miss
n  Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time

Memstall-cycles = IC × Misses ⁄ Instruction × Miss Penalty

n  Note1: miss rate/penalty are often different for reads and
writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Performance Example
n  Given

n  I-cache miss rate = 2%
n  D-cache miss rate = 4%
n  Miss penalty = 100 cycles
n  Base CPI (ideal cache) = 2
n  Load & stores are 36% of instructions

n  Miss cycles per instruction
n  I-cache:
n  D-cache:

n  Actual CPI = 2 + ?? + ?? = ??

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Cache Performance Example
n  Given

n  I-cache miss rate = 2%
n  D-cache miss rate = 4%
n  Miss penalty = 100 cycles
n  Base CPI (ideal cache) = 2
n  Load & stores are 36% of instructions

n  Miss cycles per instruction
n  I-cache: 0.02 × 100 = 2
n  D-cache: 0.36 × 0.04 × 100 = 1.44

n  Actual CPI = 2 + 2 + 1.44 = 5.44

17 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
n  Miss rate

n  Fraction of cache access that result in a miss

n  Causes of misses (3C’s +1)
n  Compulsory

n  First reference to a block
n  Capacity

n  Blocks discarded and later retrieved
n  Conflict

n  Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

n  Coherency
n  Different processors should see same value in same location

Introduction

18 Copyright © 2012, Elsevier Inc. All rights reserved.

The 3C’s in diff cache sizes

Introduction

Conflict

19 Copyright © 2012, Elsevier Inc. All rights reserved.

The cache coherence pb

n  Processors may see different values
through their caches:

C
entralized S

hared-M
em

ory A
rchitectures

20 Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence
n  Coherence

n  All reads by any processor must return the most
recently written value

n  Writes to the same location by any two processors are
seen in the same order by all processors
 (Coherence defines the behaviour of reads & writes to the

 same memory location)

n  Consistency
n  When a written value will be returned by a read
n  If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A
 (Consistency defines the behaviour of reads & writes with
 respect to accesses to other memory locations)

C
entralized S

hared-M
em

ory A
rchitectures

21 Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

n  Coherent caches provide:
n  Migration: movement of data
n  Replication: multiple copies of data

n  Cache coherence protocols
n  Directory based

n  Sharing status of each block kept in one location
n  Snooping

n  Each core tracks sharing status of each block

C
entralized S

hared-M
em

ory A
rchitectures

22 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

n  Six basic cache optimizations:
n  Larger block size

n  Reduces compulsory misses
n  Increases capacity and conflict misses, increases miss penalty

n  Larger total cache capacity to reduce miss rate
n  Increases hit time, increases power consumption

n  Higher associativity
n  Reduces conflict misses
n  Increases hit time, increases power consumption

n  Multilevel caches to reduce miss penalty
n  Reduces overall memory access time

n  Giving priority to read misses over writes
n  Reduces miss penalty

n  Avoiding address translation in cache indexing
n  Reduces hit time

Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Multilevel Caches
n  Primary cache attached to CPU

n  Small, but fast
n  Level-2 cache services misses from

primary cache
n  Larger, slower, but still faster than main

memory
n  Main memory services L-2 cache misses
n  Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Multilevel Cache Example
n  Given

n  CPU base CPI = 1, clock rate = 4GHz
n  Miss rate/instruction = 2%
n  Main memory access time = 100ns

n  With just primary cache
n  Miss penalty = ??? = 400 cycles
n  Effective CPI = 1 + ??? = 9

n  Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Multilevel Cache Example
n  Given

n  CPU base CPI = 1, clock rate = 4GHz
n  Miss rate/instruction = 2%
n  Main memory access time = 100ns

n  With just primary cache
n  Miss penalty = 100ns/0.25ns = 400 cycles
n  Effective CPI = 1 + 0.02 × 400 = 9

n  Now add L-2 cache …

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Example (cont.)

n  Now add L-2 cache
n  Access time = 5ns
n  Global miss rate to main memory = 0.5%

n  Primary miss with L-2 hit
n  Penalty = 5ns/0.25ns = 20 cycles

n  Primary miss with L-2 miss
n  Extra penalty = 400 cycles

n  CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n  Performance ratio = 9/3.4 = 2.6

Multilevel On-Chip Caches
Intel Nehalem 4-core processor

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-back/
allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, approx LRU
replacement, write-back/
allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-back/
allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 29

Intel new cache approach with Skylake

ht
tp

s:
//w

w
w

.s
er

ve
th

eh
om

e.
co

m
/in

te
l-x

eo
n-

sc
al

ab
le

-p
ro

ce
ss

or
-fa

m
ily

-m
ic

ro
ar

ch
ite

ct
ur

e-
ov

er
vi

ew
/

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 30 ht
tp

s:
//w

w
w

.s
er

ve
th

eh
om

e.
co

m
/in

te
l-x

eo
n-

sc
al

ab
le

-p
ro

ce
ss

or
-fa

m
ily

-m
ic

ro
ar

ch
ite

ct
ur

e-
ov

er
vi

ew
/

Intel new cache approach with Skylake

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 31

Ten Advanced Optimizations

n  Reducing the hit time
1.  Small & simple first-level caches
2.  Way-prediction

n  Increase cache bandwidth
3.  Pipelined cache access
4.  Nonblocking caches
5.  Multibanked caches

n  Reducing the miss penalty
6.  Critical word first
7.  Merging write buffers

n  Reducing the miss rate
8.  Compiler optimizations

n  Reducing the miss penalty or miss rate via parallelism
9.  Hardware prefetching of instructions and data
10.  Compiler-controlled prefetching

32 Copyright © 2012, Elsevier Inc. All rights reserved.

1. Small and simple 1st level caches

n  Small and simple first level caches
n  Critical timing path:

n  addressing tag memory, then
n  comparing tags, then
n  selecting correct set

n  Direct-mapped caches can overlap tag compare and
transmission of data

n  Lower associativity reduces power because fewer
cache lines are accessed

A
dvanced O

ptim
izations

33 Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
izations

34 Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
izations

35 Copyright © 2012, Elsevier Inc. All rights reserved.

2. Way Prediction

n  To improve hit time, predict the way to pre-set
mux
n  Mis-prediction gives longer hit time
n  Prediction accuracy

n  > 90% for two-way
n  > 80% for four-way
n  I-cache has better accuracy than D-cache

n  First used on MIPS R10000 in mid-90s
n  Used on ARM Cortex-A8

n  Extend to predict block as well
n  �Way selection�
n  Increases mis-prediction penalty

A
dvanced O

ptim
izations

36 Copyright © 2012, Elsevier Inc. All rights reserved.

3. Pipelining Cache

n  Pipeline cache access to improve bandwidth
n  Examples:

n  Pentium: 1 cycle
n  Pentium Pro – Pentium III: 2 cycles
n  Pentium 4 – Core i7: 4 cycles

n  Increases branch mis-prediction penalty
n  Makes it easier to increase associativity

A
dvanced O

ptim
izations

37 Copyright © 2012, Elsevier Inc. All rights reserved.

4. Nonblocking Caches

n  Allow hits before
previous misses
complete
n  �Hit under miss�
n  �Hit under multiple

miss�
n  L2 must support this
n  In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanced O

ptim
izations

38 Copyright © 2012, Elsevier Inc. All rights reserved.

5. Multibanked Caches

n  Organize cache as independent banks to
support simultaneous access
n  ARM Cortex-A8 supports 1-4 banks for L2
n  Intel i7 supports 4 banks for L1 and 8 banks for L2

n  Interleave banks according to block address

A
dvanced O

ptim
izations

39 Copyright © 2012, Elsevier Inc. All rights reserved.

6. Critical Word First, Early Restart

n  Critical word first
n  Request missed word from memory first
n  Send it to the processor as soon as it arrives

n  Early restart
n  Request words in normal order
n  Send missed work to the processor as soon as it

arrives

n  Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanced O

ptim
izations

40 Copyright © 2012, Elsevier Inc. All rights reserved.

7. Merging Write Buffer

n  When storing to a block that is already pending in the
write buffer, update write buffer

n  Reduces stalls due to full write buffer
n  Do not apply to I/O addresses

A
dvanced O

ptim
izations

No write
buffering

Write buffering

41 Copyright © 2012, Elsevier Inc. All rights reserved.

8. Compiler Optimizations

n  Loop Interchange
n  Swap nested loops to access memory in

sequential order

n  Blocking
n  Instead of accessing entire rows or columns,

subdivide matrices into blocks
n  Requires more memory accesses but improves

locality of accesses

A
dvanced O

ptim
izations

42 Copyright © 2012, Elsevier Inc. All rights reserved.

9. Hardware Prefetching

n  Fetch two blocks on miss (include next
sequential block)

A
dvanced O

ptim
izations

Pentium 4 Pre-fetching

43 Copyright © 2012, Elsevier Inc. All rights reserved.

10. Compiler Prefetching

n  Insert prefetch instructions before data is
needed

n  Non-faulting: prefetch doesn�t cause
exceptions

n  Register prefetch
n  Loads data into register

n  Cache prefetch
n  Loads data into cache

n  Combine with loop unrolling and software
pipelining

A
dvanced O

ptim
izations

44 Copyright © 2012, Elsevier Inc. All rights reserved.

Summary

A
dvanced O

ptim
izations

