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Introduction 
n  Programmers want unlimited amounts of memory with 

low latency 
n  Fast memory technology is more expensive per bit than 

slower memory 
n  Solution:  organize memory system into a hierarchy 

n  Entire addressable memory space available in largest, slowest 
memory 

n  Incrementally smaller and faster memories, each containing a 
subset of the memory below it, proceed in steps up toward the 
processor 

n  Temporal and spatial locality insures that nearly all 
references can be found in smaller memories 
n  Gives the illusion of a large, fast memory being presented to the 

processor 

Introduction 
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Memory Performance Gap 
Introduction 
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Memory Hierarchy Design 
n  Memory hierarchy design becomes more crucial 

with recent multi-core processors: 
n  Aggregate peak bandwidth grows with # cores: 

n  Intel Core i7 can generate two references per core per clock 
n  Four cores and 3.2 GHz clock 

n  25.6 billion* 64-bit data references/second + 
n  12.8 billion* 128-bit instruction references 
n  = 409.6 GB/s! 

n  DRAM bandwidth is only 6% of this (25 GB/s) 
n  Requires: 

n  Multi-port, pipelined caches 
n  Two levels of cache per core 
n  Shared third-level cache on chip 

* US billion = 109 

Introduction 
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The Memory Hierarchy 

n  Common principles apply at all levels of 
the memory hierarchy 
n  Based on notions of caching 

n  At each level in the hierarchy 
n  Block placement 
n  Finding a block 
n  Replacement on a miss 
n  Write policy 
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The BIG Picture 
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Direct Mapped Cache 
n  Location determined by address 
n  Direct mapped: only one choice 

n  (Block address) modulo (#Blocks in cache) 

n  #Blocks is a 
power of 2 

n  Use low-order 
address bits 
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Associative Caches 
n  Fully associative 

n  Allow a given block to go in any cache entry 
n  Requires all entries to be searched at once 
n  Comparator per entry (expensive) 

n  n-way set associative 
n  Each set contains n entries 
n  Block number determines which set 

n  (Block number) modulo (#Sets in cache) 
n  Search all entries in a given set at once 
n  n comparators (less expensive) 
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How Much Associativity 
n  Increased associativity decreases miss 

rate 
n  But with diminishing returns 

n  Simulation of a system with 64KB 
D-cache, 16-word blocks, SPEC2000 
n  1-way: 10.3% 
n  2-way: 8.6% 
n  4-way: 8.3% 
n  8-way: 8.1% 
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Block Placement 
n  Determined by associativity 

n  Direct mapped (1-way associative) 
n  One choice for placement 

n  n-way set associative 
n  n choices within a set 

n  Fully associative 
n  Any location 

n  Higher associativity reduces miss rate 
n  Increases complexity, cost, and access time 
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Replacement Policy 
n  Direct mapped: no choice 
n  Set associative 

n  Prefer non-valid entry, if there is one 
n  Otherwise, choose among entries in the set 

n  Least-recently used (LRU) 
n  Choose the one unused for the longest time 

n  Simple for 2-way, manageable for 4-way, too hard 
beyond that 

n  Random 
n  Gives approximately the same performance 

as LRU for high associativity 
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Write Policy 
n  Write-through 

n  Update both upper and lower levels 
n  Simplifies replacement, but may require write 

buffer 
n  Write-back 

n  Update upper level only 
n  Update lower level when block is replaced 
n  Need to keep more state 

n  Virtual memory 
n  Only write-back is feasible, given disk write 

latency  
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Memory Hierarchy Basics 

n  n sets => n-way set associative 
n  Direct-mapped cache => one block per set 
n  Fully associative => one set 

n  Writing to cache:  two strategies 
n  Write-through 

n  Immediately update lower levels of hierarchy 
n  Write-back 

n  Only update lower levels of hierarchy when an updated block 
is replaced 

n  Both strategies use write buffer to make writes 
asynchronous 

Introduction 
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Memory Hierarchy Basics 
Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time 

Memstall-cycles = IC × ... Miss rate ... Mem accesses ... Miss penalty... 

CPUexec-time = (IC × CPICPU + Memstall-cycles) × Clock cycle time 

14 

n  Note2: speculative and multithreaded processors may 
execute other instructions during a miss 
n  Reduces performance impact of misses 
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Memory Hierarchy Basics 

Introduction CPUexec-time = (CPUclock-cycles + Memstall-cycles) × Clock cycle time 

Memstall-cycles = IC × Misses ⁄ Instruction × Miss Penalty 

n  Note1: miss rate/penalty are often different for reads and 
writes 
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Cache Performance Example 
n  Given 

n  I-cache miss rate = 2% 
n  D-cache miss rate = 4% 
n  Miss penalty = 100 cycles 
n  Base CPI (ideal cache) = 2 
n  Load & stores are 36% of instructions 

n  Miss cycles per instruction 
n  I-cache:  
n  D-cache: 

n  Actual CPI = 2 + ?? + ?? = ?? 
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Cache Performance Example 
n  Given 

n  I-cache miss rate = 2% 
n  D-cache miss rate = 4% 
n  Miss penalty = 100 cycles 
n  Base CPI (ideal cache) = 2 
n  Load & stores are 36% of instructions 

n  Miss cycles per instruction 
n  I-cache: 0.02 × 100 = 2 
n  D-cache: 0.36 × 0.04 × 100 = 1.44 

n  Actual CPI = 2 + 2 + 1.44 = 5.44 
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Memory Hierarchy Basics 
n  Miss rate 

n  Fraction of cache access that result in a miss 

n  Causes of misses (3C’s +1) 
n  Compulsory 

n  First reference to a block 
n  Capacity 

n  Blocks discarded and later retrieved 
n  Conflict 

n  Program makes repeated references to multiple addresses 
from different blocks that map to the same location in the 
cache 

n  Coherency 
n  Different processors should see same value in same location 

Introduction 
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The 3C’s in diff cache sizes 

Introduction 

Conflict 
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The cache coherence pb 

n  Processors may see different values 
through their caches: 
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Cache Coherence 
n  Coherence 

n  All reads by any processor must return the most 
recently written value 

n  Writes to the same location by any two processors are 
seen in the same order by all processors 
 (Coherence defines the behaviour of reads & writes to the 

   same memory location) 

n  Consistency 
n  When a written value will be returned by a read 
n  If a processor writes location A followed by location B, 

any processor that sees the new value of B must also 
see the new value of A 
 (Consistency defines the behaviour of reads & writes with 
  respect to accesses to other memory locations) 
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Enforcing Coherence 

n  Coherent caches provide: 
n  Migration:  movement of data 
n  Replication:  multiple copies of data 

n  Cache coherence protocols 
n  Directory based 

n  Sharing status of each block kept in one location 
n  Snooping 

n  Each core tracks sharing status of each block 
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Memory Hierarchy Basics 

n  Six basic cache optimizations: 
n  Larger block size 

n  Reduces compulsory misses 
n  Increases capacity and conflict misses, increases miss penalty 

n  Larger total cache capacity to reduce miss rate 
n  Increases hit time, increases power consumption 

n  Higher associativity 
n  Reduces conflict misses 
n  Increases hit time, increases power consumption 

n  Multilevel caches to reduce miss penalty 
n  Reduces overall memory access time 

n  Giving priority to read misses over writes 
n  Reduces miss penalty 

n  Avoiding address translation in cache indexing 
n  Reduces hit time 

Introduction 
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Multilevel Caches 
n  Primary cache attached to CPU 

n  Small, but fast 
n  Level-2 cache services misses from 

primary cache 
n  Larger, slower, but still faster than main 

memory 
n  Main memory services L-2 cache misses 
n  Some high-end systems include L-3 cache 
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Multilevel Cache Example 
n  Given 

n  CPU base CPI = 1, clock rate = 4GHz 
n  Miss rate/instruction = 2% 
n  Main memory access time = 100ns 

n  With just primary cache 
n  Miss penalty = ??? = 400 cycles 
n  Effective CPI = 1 + ??? = 9 

n  Now add L-2 cache … 
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Multilevel Cache Example 
n  Given 

n  CPU base CPI = 1, clock rate = 4GHz 
n  Miss rate/instruction = 2% 
n  Main memory access time = 100ns 

n  With just primary cache 
n  Miss penalty = 100ns/0.25ns = 400 cycles 
n  Effective CPI = 1 + 0.02 × 400 = 9 

n  Now add L-2 cache … 
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Example (cont.) 

n  Now add L-2 cache 
n  Access time = 5ns 
n  Global miss rate to main memory = 0.5% 

n  Primary miss with L-2 hit 
n  Penalty = 5ns/0.25ns = 20 cycles 

n  Primary miss with L-2 miss 
n  Extra penalty = 400 cycles 

n  CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 
n  Performance ratio = 9/3.4 = 2.6 



Multilevel On-Chip Caches 
Intel Nehalem 4-core processor 

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache 
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3-Level Cache Organization 
Intel Nehalem AMD Opteron X4 

L1 caches 
(per core) 

L1 I-cache: 32KB, 64-byte 
blocks, 4-way, approx LRU 
replacement, hit time n/a 
L1 D-cache: 32KB, 64-byte 
blocks, 8-way, approx LRU 
replacement, write-back/
allocate, hit time n/a 

L1 I-cache: 32KB, 64-byte 
blocks, 2-way, approx LRU 
replacement, hit time 3 cycles 
L1 D-cache: 32KB, 64-byte 
blocks, 2-way, approx LRU 
replacement, write-back/
allocate, hit time 9 cycles 

L2 unified 
cache 
(per core) 

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, write-
back/allocate, hit time n/a 

512KB, 64-byte blocks, 16-way, 
approx LRU replacement, write-
back/allocate, hit time n/a 

L3 unified 
cache 
(shared) 

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-back/
allocate, hit time n/a 

2MB, 64-byte blocks, 32-way, 
replace block shared by fewest 
cores, write-back/allocate, hit 
time 32 cycles 

n/a: data not available 
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Intel new cache approach with Skylake 
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Intel new cache approach with Skylake 
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Ten Advanced Optimizations 

n  Reducing the hit time 
1.  Small & simple first-level caches 
2.  Way-prediction 

n  Increase cache bandwidth 
3.  Pipelined cache access 
4.  Nonblocking caches 
5.  Multibanked caches 

n  Reducing the miss penalty 
6.  Critical word first 
7.  Merging write buffers 

n  Reducing the miss rate 
8.  Compiler optimizations 

n  Reducing the miss penalty or miss rate via parallelism 
9.  Hardware prefetching of instructions and data 
10.  Compiler-controlled prefetching 
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1. Small and simple 1st level caches 

n  Small and simple first level caches 
n  Critical timing path: 

n  addressing tag memory, then 
n  comparing tags, then 
n  selecting correct set 

n  Direct-mapped caches can overlap tag compare and 
transmission of data 

n  Lower associativity reduces power because fewer 
cache lines are accessed 
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L1 Size and Associativity 

Access time vs. size and associativity 

A
dvanced O

ptim
izations 

34 Copyright © 2012, Elsevier Inc. All rights reserved. 

L1 Size and Associativity 

Energy per read vs. size and associativity 
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2. Way Prediction 

n  To improve hit time, predict the way to pre-set 
mux 
n  Mis-prediction gives longer hit time 
n  Prediction accuracy 

n  > 90% for two-way 
n  > 80% for four-way 
n  I-cache has better accuracy than D-cache 

n  First used on MIPS R10000 in mid-90s 
n  Used on ARM Cortex-A8 

n  Extend to predict block as well 
n  �Way selection� 
n  Increases mis-prediction penalty 
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3. Pipelining Cache 

n  Pipeline cache access to improve bandwidth 
n  Examples: 

n  Pentium:  1 cycle 
n  Pentium Pro – Pentium III:  2 cycles 
n  Pentium 4 – Core i7:  4 cycles 

n  Increases branch mis-prediction penalty 
n  Makes it easier to increase associativity 
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4. Nonblocking Caches 

n  Allow hits before 
previous misses 
complete 
n  �Hit under miss� 
n  �Hit under multiple 

miss� 
n  L2 must support this 
n  In general, 

processors can hide 
L1 miss penalty but 
not L2 miss penalty 
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5. Multibanked Caches 

n  Organize cache as independent banks to 
support simultaneous access 
n  ARM Cortex-A8 supports 1-4 banks for L2 
n  Intel i7 supports 4 banks for L1 and 8 banks for L2 

n  Interleave banks according to block address 
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6. Critical Word First, Early Restart 

n  Critical word first 
n  Request missed word from memory first 
n  Send it to the processor as soon as it arrives 

n  Early restart 
n  Request words in normal order 
n  Send missed work to the processor as soon as it 

arrives 

n  Effectiveness of these strategies depends on 
block size and likelihood of another access to 
the portion of the block that has not yet been 
fetched 
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7. Merging Write Buffer 

n  When storing to a block that is already pending in the 
write buffer, update write buffer 

n  Reduces stalls due to full write buffer 
n  Do not apply to I/O addresses 

A
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No write 
buffering 

Write buffering 
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8. Compiler Optimizations 

n  Loop Interchange 
n  Swap nested loops to access memory in 

sequential order 

n  Blocking 
n  Instead of accessing entire rows or columns, 

subdivide matrices into blocks 
n  Requires more memory accesses but improves 

locality of accesses 
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9. Hardware Prefetching 

n  Fetch two blocks on miss (include next 
sequential block) 
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Pentium 4 Pre-fetching 
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10. Compiler Prefetching 

n  Insert prefetch instructions before data is 
needed 

n  Non-faulting:  prefetch doesn�t cause 
exceptions 

n  Register prefetch 
n  Loads data into register 

n  Cache prefetch 
n  Loads data into cache 

n  Combine with loop unrolling and software 
pipelining 
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Summary 
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