Joao Barbosa

Week 2, March 2021

From last class

Atomics and Memory Order (J. Barbosa) 1/53

From last class
Single Source Shortest Path
Delta-stepping algorithm

> Use several buckets to subdivide distance

> Use a priority queue for each bucket

> Perform a parallel Djisktra (or other) for each bucket
> Put the active edge on the appropriate bucket

» When the bucket becomes empty go to next bucket

Atomics and Memory Order (J. Barbosa) 2/53

Atomics and Memory Order (J. Barbosa) 3/53

Atomics
Atomics basis of ”Lock-free” programming
"Lock-free” means "fast”

Performance: Measure, Measure, Measure]
P Both programs encode the same operation and get the same result
b Both programs are correct and with no "wait-loops”

> One program uses std::mutex the other one is "wait-free” (even better than
Lock-free)

Atomics and Memory Order (J. Barbosa) 4/53

Atomics

Atomics basis of ”Lock-free” programming
"Lock-free” means "fast”

50

40

30

Speedup

20

1 2 4 8 16 32 64 128

Number of threads

Atomics and Memory Order (J. Barbosa) 5/53

Atomics

Atomics basis of ”Lock-free” programming
"Lock-free” means "fast”

50

& Wait-free

-
0 Mutex

30

Speedup

20

1 2 4 8 16 32 64 128

Number of threads

Atomics and Memory Order (J. Barbosa) 6/53

Atomics

"Lock-free” means "fast”

Wait-free

Atomics basis of ”Lock-free” programming

std ::atomic<int> sum = O;

(...)

for (int i=0; i<N;i++)
sum += Afi]

(...)

Lock

Atomics and Memory Order (J. Barbosa)

std :: mutex M;

(...)

for (int i=0; i<N;i++)
localsum += A[i]

std ::lock_guard L(M);

sum += localsum;

(...)

7/53

Atomics

Atomics basis of ”Lock-free” programming
"Lock-free” faster?

1E+7 /’_¥

1E+6 .
- Wait-free

]
o
g 1E+5 =¥ Mutex
E

1E+4

1E+3

1 2 4 8 16 32 64 128

Number of threads

Atomics and Memory Order (J. Barbosa) 8/53

Atomics
Atomics basis of ”Lock-free” programming
"Lock-free” faster?

> Algorithms rule supreme
> "Wait-free” has nothing to do with time

> Refers to the number of compute "steps”
> Steps don’t have to be of the same duration

> Atomics do not guarantee good performance
> There is no substitute for understanding what you are doing

Atomics and Memory Order (J. Barbosa) 9/53

Atomic operations

Atomics and Memory Order (J. Barbosa) 10/53

Atomic operations

- What is an atomic?

> Atomic opereations is an operation that is guaranteed to execute as a single
transation:

> Other threads will see the state of the system before the operation started or
after it finished, but never in the intermediate state
> At the low level, atomic operations are special hardware instructions

Atomics and Memory Order (J. Barbosa) 11/53

Atomic operations

Atomic operation example

> Incrementis a "read-modify-write” operation

P> read X
> add1to X
> write new value of X

Atomics and Memory Order (J. Barbosa) 12/53

Atomic operations

Atomic operation example

> read-modify-write operation is non atomic
> itis adata race, i.e., non defined behaviour

Atomics and Memory Order (J. Barbosa) 13/53

Atomic operations

Atomic operation example

Atomics and Memory Order (J. Barbosa) 14/53

Atomic operations

Atomic operations

b std::atomic

std ::atomic<int> x(0)

(... Inside thread ...)
++X ;

Atomics and Memory Order (J. Barbosa) 15/53

Atomic operations

Atomic operation example

Atomics and Memory Order (J. Barbosa) 16/53

std::atomic

Atomics and Memory Order (J. Barbosa) 17/53

std::atomic
- Atomic operation

What C++ types can be made atomic?
What operations can be done on those types?
Are all operations on atomic types atomic?

>
| 4
| 4
> How fast are atomic operations?
> Is atomic the same as lock-free?
>

If atomic operations avoid locks, there is no wait, right?

Atomics and Memory Order (J. Barbosa) 18/53

std::atomic

- Atomic operation

P Any trivially copyable type can be made atomic
> What is trivially copyable?

» Continuous chunk of memory

> Copying the object means copying all bits

» No virtual functions
> Examples

b std::atomic<int>

> std::atomic<double>

> struct S long x; long y;; std::atomic<S>

Atomics and Memory Order (J. Barbosa) 19/53

std::atomic

- What operations can be done with std::atomic <T >

P Assignment reads and writes
P Special atomic operations
» Other atomic operations depends on <T>

Atomics and Memory Order (J. Barbosa) 20/53

std::atomic

- What operations can be done with std::atomic <T >

P Assignment reads and writes
P Special atomic operations
» Other atomic operations depends on <T>

Atomics and Memory Order (J. Barbosa) 21/53

std::atomic

What operations can be done with std::atomic <T >

std ::atomic<int> x{0};

++X
X++;

* + 4+ 0 -
N PP X

x
1
X X< <

Atomics and Memory Order (J. Barbosa) 22/53

std::atomic

What operations can be done with std::atomic <T >

std ::atomic<int> x{0};

++X; // Atomic pre-increment

X++; // Atomic post-increment

X += 1; // Atomic increment

X |= 2; // Atomic bit set

X *= 2; // No atomic multiplication
inty=x=*2; // Atomic read x

X =y + 1; // Atomic write of x

X = x + 1; // Atomic read followed by atomic write
X =X * 2; // Atomic read followed by atomic write

Atomics and Memory Order (J. Barbosa) 23/53

std::atomic

- std::atomic <T > and overloaded operators

> std::atomic provides overload operators only for atomics
> False (it just will not compile)

P any expression with atomics will not be atomic
> Easy to make mistakes

ttx=x+=1l=x=x+1,
if x is not atomic

Atomics and Memory Order (J. Barbosa) 24/53

std::atomic

- std::atomic <T > operation for type

> Assignment and copy for all types

> Increment and decrement of raw pointers

> Addition, subtraction, and bit logic operations for integers
> T=bool is valid, no special operations

> T=double is valid, no special operations

Atomics and Memory Order (J. Barbosa) 25/53

std::atomic

- std::atomic <T > operation for type

> Explicit reads and writes

std ::atomic<int> x;

auto a = x.load ();

(...)

x.store(a);

P> Atomic exchange

auto z = x.exchange(a); // z = x and x =y

Atomics and Memory Order (J. Barbosa) 26/53

std::atomic

std::atomic <T > operation for type

» Compare and swap

bool success = x.compare_exchange_strong(y, z);
// If x==y, make x=z and return true
// Otherwise, set y=x and return false

» Compare-and-swap is the basis for lock-free algorithms

Atomics and Memory Order (J. Barbosa) 27/53

std::atomic

std::atomic <T > operation for type

» Compare and swap increment

std ::atomic<int> x{0};
int x0 = x;
while (!x.compare_exchange_strong(x0, x0+1)) {}

P> Compare-and-swap multiplication

std ::atomic<int> x{2};
int x0 = x;
while (!x.compare_exchange_strong(x0, x0%2)) {}

Atomics and Memory Order (J. Barbosa) 28/53

std::atomic
- std::atomic <T > operation for type

> Forintegers only

std ::atomic<int> x; x.fetch_add(y);
int z = x.fetch_add(y);

> Same for fetch_sun(), fetch_and(), fetch_or(), fetch_xor()
> Less error prone than overload operators

Atomics and Memory Order (J. Barbosa) 29/53

std::atomic

Is std::atomic <T > lock-free?

b std::atomic hides a secret

long x;
struct A { long x; }
struct B { long x; long vy; };

struct C { long x; long y; long z; };

Atomics and Memory Order (J. Barbosa) 30/53

std::atomic

Is std::atomic <T > lock-free?

std::atomic Is not always lock-free
» std::atomic::is_lock _free()

long x; // Lock-free
struct A { long x; } // Lock-free
struct B { long x; long vy; 1};

struct C { long x; long y; long z; }; // Not Lock-free

> Results are runtime and platform dependent
» Why not compile time? - Alignment
» C++ 1 add a constexpr is,lways,ock,ree()

Atomics and Memory Order (J. Barbosa) 31/53

std::atomic

Is std::atomic < T > lock-free? X86 Example

long x; // Lock-free - atomic move %nmx
struct A { long x; } // Lock-free — atomic move %mmx
struct B { long x; long vy; 1}; // Lock-free - atomic move %mmx
struct C { long x; int y; }; // Not Lock-free 12 bytes
struct E { long x; long y; long z; }; // Not Lock-free >16 bytes

Atomics and Memory Order (J. Barbosa) 32/53

std::atomic

Is std::atomic <T > lock-free? Cache alignment

cache line

Atomics and Memory Order (J. Barbosa) 33/53

std::atomic

Do atomic operations wait on each other?
"Lock-free” means "fast”

50

& Wait-free

-
0 Mutex

30

Speedup

20

1 2 4 8 16 32 64 128

Number of threads

Atomics and Memory Order (J. Barbosa) 34/53

std::atomic
Do atomic operations wait on each other?
"Lock-free” faster?

> Algorithms rule supreme
> "Wait-free” has nothing to do with time

> Refers to the number of compute "steps”

> Steps don’t have to be of the same duration
> Atomic operations do wait on each other

> In particular, write operations do
> Read-only operations can scale near-perfectly

Atomics and Memory Order (J. Barbosa) 35/53

std::atomic

Do atomic operations wait on each other?
"Lock-free” faster?

b Atomic operations have to wait for cache line access
> Price of data sharing without races
> Accessing different locations in the same cache line still incurs run-time
penalty (false sharing)
> Avoid false sharing by aligning per-thread data to separate cache lines
» On NUMA machines, may be even separate pages

Atomics and Memory Order (J. Barbosa) 36/53

std::atomic

- Strong and weak compare-and-swap

> C++ provides two versions of CAS — weak and strong

x.compare_exchange_strong (old_x, new_x) // if (x == old_x)
// { x = new_x; return true; }
// else { old_x = x; return false; }

> x.compare_exchange_weak(old_x, new_x): same thing but can “spuriously
fail” and return false even if x==old_x

> What is the value of old_x if this happens?

Atomics and Memory Order (J. Barbosa) 37/53

std::atomic

- Strong and weak compare-and-swap

> C++ provides two versions of CAS — weak and strong

x.compare_exchange_strong(old_x, new_x) // if (x == old_x)
// { x = new_x; return true; }
// else { old_x = x; return false; }

> x.compare_exchange_weak(old_x, new_x): same thing but can “spuriously
fail” and return false even if x==old_x

> What is the value of old_x if this happens? Must be old_x!
> If weak CAS correctly returns x == old_x, why would it fail?

Atomics and Memory Order (J. Barbosa) 38/53

std::atomic

- Strong and weak compare-and-swap

x.compare_exchange_strong(old_x, new_x) // if (x == old_x)
// { x = new_x; return true; }
// else { old_x = x; return false; }

> x.compare_exchange_weak(old_x, new_x): same thing but can “spuriously
fail” and return false even if x==old_x

> What is the value of old_x if this happens? Must be old_x!
> If weak CAS correctly returns x == old_x, why would it fail?

Atomics and Memory Order (J. Barbosa) 39/53

std::atomic

Strong and weak compare-and-swap

bool compare_exchange_strong (T& old_v, T new_v) {

Lock L; // Get exclusive access
T tmp = value; // Current value of the atomic
if (tmp != old_v) { old_v = tmp; return false; }

value = new_v;
return true;

> Lock is not a real mutex but some form of exclusive access implemented in
hardware

Atomics and Memory Order (J. Barbosa) 40/53

std::atomic

Strong and weak compare-and-swap

bool compare_exchange_strong (T& old_v, T new_v) {

T tmp = value; // Current value of the atomic
if (tmp != old_v) { old_v = tmp; return false;
Lock L; // Get exclusive access

tmp = value; // value could have changed!

if (tmp != olv_v) { old_v = tmp; return false;
value = new_v;

return true;

}

}

>

Atomics and Memory Order (J. Barbosa)

Double-checked locking pattern is back!

41/53

std::atomic

Strong and weak compare-and-swap

bool compare_exchange_weak (T& old_v, T new_v) {
T tmp = value; // Current value of the atomic
if (tmp != old_v) { old_v = tmp; return false; }
TimedLock L; // Get exclusive access or fail
if (!L.locked()) return false; // old v is correct
tmp = value; // value could have changed!
if (tmp != olv_v) { old_v = tmp; return false; }
value = new_v;
return true;

> Double-checked locking pattern is back!

Atomics and Memory Order (J. Barbosa) 42/53

std::atomic

Atomics memory order

int q[N];
std ::atomic<size_t> front;

void push(int x) {
size_t my_slot = front.fetch_add(1);

gl my_slot] = x;

> Atomic variable is an index to (non-atomic) memory

43/53

Atomics and Memory Order (J. Barbosa)

std::atomic

Memory order

struct node { int value; node* next; };

std ::atomic<node*> head;
void push_front(int x) {
node* new_n = new node;-
new_nvalue = x;
node* old_h = head;
do { —new_nnext = old_h; }
while (!head.compare_exchange_strong(old_h,new_n);

> Atomic variable is a pointer to (hon-atomic) memory

Atomics and Memory Order (J. Barbosa) 44/53

std::atomic

-

> Atomics are used to get exclusive access to memory or to reveal memory to
other threads

» But most memory is not atomic!

> What guarantees that other threads see this memory in the desired state

> For acquiring exclusive access: data may be prepared by other threads, must
be completed

> For releasing into shared access: data is prepared by the owner thread, must
become visible to everyone

Atomics and Memory Order (J. Barbosa)

45/53

std::atomic

Memory order

P> C++03 as no portable memory barriers C++11 provides standard memory
barriers

> Memory barriers are closely related to “memory order” — they are what
ensures the memory order

P> C++ memory barriers are modifiers on atomic operations
P Actual implementation may vary

std ::atomic<int> x;
x.store (1, std::memory_order_release);

Atomics and Memory Order (J. Barbosa) 46/53

std::atomic

- Memory order : std::memory_order _relaxed
'R0t

L

a b c x

It8-131

Observed order

Memory ’

Atomics and Memory Order (J. Barbosa) 47/53

std::atomic

- Memory order : std::memory_order_acquire

P Acquire barrier guarantees that all memory operations scheduled after the
barrier in the program order become visible after the barrier

> “All operations” not “all reads” or “all writes”, i.e. both reads and writes
> “All operations” not just operations on the same variable that the barrier was on

P> Reads and writes cannot be reordered from after to before the barrier
» Only for the thread that issued the barrier!

Atomics and Memory Order (J. Barbosa) 48/53

std::atomic

- Memory order : std::memory_order_acquire

Program order
H H H PN H G N
X
a b c x \dsmory}
il 21830
L] ~ . A 4

Observed order

Atomics and Memory Order (J. Barbosa) 49/53

std::atomic

- Memory order : std::memory_order_release

> Release barrier guarantees that all memory operations scheduled before the
barrier in the program order become visible before the barrier
> Reads and writes cannot be reordered from before to after the barrier
» Only for the thread that issued the barrier!

Atomics and Memory Order (J. Barbosa) 50/53

std::atomic

- Memory order : std::memory_order_release

Program order

111511

R 2

Memory

ITin: 438

Observed order

Atomics and Memory Order (J. Barbosa)

51/53

std::atomic

- Memory order : Acquire / Release protocol

Acquire and release barriers are often used together:
Thread 1 writes atomic variable x with release barrier
Thread 2 reads atomic variable x with acquire barrier

vvyywvyy

All memory writes that happen in thread 1 before the barrier (in program
order) become visible in thread 2 after the barrier

Thread 1 prepares data (does some writes) then releases (publishes) it by
updating atomic variable x

v

> Thread 2 acquires atomic variable x and the data is guaranteed to be visible

Atomics and Memory Order (J. Barbosa) 52/53

std::atomic

> Acquire-Release (std::memory_order_acq_rel) combines acquire and release
barriers — no operation can move across the barrier

> But only if both threads use the same atomic variable!

> Sequential consistency (std::memory_order_seq_cst) removes that

requirement and establishes single total modification order of atomic
variables

Memory order : Acquire / Release memory barrier and SEQ consisteg

Atomics and Memory Order (J. Barbosa)

53/53

	From last class
	Atomics
	Atomic operations
	std::atomic

