
SPMD-CUDAGPUProgramming

Joao Barbosa
Week 2, March 2021

Outline

Why do we care about General Purpose GPUs?

Brief history of the GPU

Programming and Execution model

More advanced concepts

SPMD - CUDA GPU Programming (J. Barbosa) Ŵ/ŸŹ

Why do we care about General Purpose GPUs?

SPMD - CUDA GPU Programming (J. Barbosa) ŵ/ŸŹ

Why do we care about General Purpose GPUs?

Performance Trends

Figure: FLOPS (source NVidia)
Figure: Memory bandwidth
(source NVidia)

SPMD - CUDA GPU Programming (J. Barbosa) Ŷ/ŸŹ

Brief history of the GPU

SPMD - CUDA GPU Programming (J. Barbosa) ŷ/ŸŹ

Brief history of the GPU

NVidia G70 - Pre-GPGPU Programable

Figure: NVidia G70 Architectural diagram (source NVidia)
SPMD - CUDA GPU Programming (J. Barbosa) Ÿ/ŸŹ

Brief history of the GPU

NVidia G80 - GPGPU Programable

Figure: NVidia G80 Architectural diagram (source NVidia)

▶ November 2006 - NVidia launched the G80 Architecture
▶ June 2007 - CUDA - Compute Unified Device Architecture (NVidia)SPMD - CUDA GPU Programming (J. Barbosa) Ź/ŸŹ

Brief history of the GPU

NVidia G80 - GPGPU Programable

Figure: NVidia G80 Architectural diagram (source NVidia)

▶ August 2009 - OpenCL 1.0 - Open Computing Language (Apple)
▶ June 2010 - OpenCL 1.1 - Open Computing Language (Khronos Group)SPMD - CUDA GPU Programming (J. Barbosa) ź/ŸŹ

Brief history of the GPU

Latest NVidia - Volta GV100 GPU

Figure: NVidia Volta (GV100) Architectural diagram 1

1source NVidia Volta GV100 white paper

SPMD - CUDA GPU Programming (J. Barbosa) Ż/ŸŹ

Brief history of the GPU

NVidia - Volta GV100 GPU Stream Multiprocessor
Stream Multiprocessor

▶ 128 KB L1/Shared memory
▶ 32 Double precision units
▶ 64 Single precision units
▶ 64 Scalar cores
▶ 8 mixed-precision Tensor Cores

𝐷 = 𝐴.𝐵 + 𝐶
where A,B, C and D are 4x4
Matrices

Figure: NVidia Volta (GV100) Stream
Multiprocessor (source NVidia)

SPMD - CUDA GPU Programming (J. Barbosa) ż/ŸŹ

Brief history of the GPU

Difference between a CPU and GPU

Figure: Abstract CPU and GPU Architecture diagrams (source NVidia)

▶ Minimize latency of a single
thread

▶ Larger on chip cache
▶ Complex logic (e.g. branch

prediction)
▶ Complex cores → Lower core

count

▶ Maximize throughput of all
threads

▶ Lots of resources
▶ Simpler cores
▶ Smaller caches

▶ Control shared across multiple
threads (warp)

▶ Simpler cores → Higher core countSPMD - CUDA GPU Programming (J. Barbosa) Ŵų/ŸŹ

Programming and Execution model

SPMD - CUDA GPU Programming (J. Barbosa) ŴŴ/ŸŹ

Programming and Execution model

Programming and Execution model

Caveat
▶ We are going to use the CUDA programming and execution model from

NVidia.
▶ The other common portable programming and execution model is OpenCL,
which is similar to CUDA minor some names and syntax changes.

▶ Microsoft as its own, called Direct Compute, but it is similar to CUDA and
OpenCL

▶ OpenCL and Direct Computed can be used in all GPUs brands (CPUs also for
OpenCL) not just NVidia.

SPMD - CUDA GPU Programming (J. Barbosa) Ŵŵ/ŸŹ

Programming and Execution model

CUDA - Compute Unified Device Architecture

Both an architecture and programming model
▶ Architecture and execution model

▶ Introduced in NVIDIA in 2007
▶ Get highest possible execution performance requires understanding of

hardware architecture
▶ Programming model

▶ Small set of extensions to C / C++
▶ Enables GPUs to execute programs written in C / C++
▶ Within C programs, call SIMT “kernel” routines that are executed on GPU.

SPMD - CUDA GPU Programming (J. Barbosa) ŴŶ/ŸŹ

Programming and Execution model

CUDA - Programming and Execution model

host The CPU and its memory (host memory)
device The GPU and its memory (device memory)
kernel The computational payload called from the host to be executed on

the device

Copy data from the host to the Device Invoke the kernel on the host Copy data from the device to the host

SPMD - CUDA GPU Programming (J. Barbosa) Ŵŷ/ŸŹ

Programming and Execution model

CUDA - Thread Hierarchical Model

Thread ▶ Unique ID
Block (3 dimensions)

▶ Threads within the same
block can cooperate

▶ Threads within the same
block execute the same code

Grid (2 dimensions)
▶ Blocks are organized into a

grid
▶ Blocks cannot cooperate

Figure: CUDA thread hierarchy (source
NVidia)

SPMD - CUDA GPU Programming (J. Barbosa) ŴŸ/ŸŹ

Programming and Execution model

Thread/Block Hierarchy transparency

Figure: source: NVidia

▶ Blocks can be assigned
arbitrarily to any processor

▶ Increase scalability to GPU
architecture design

Blocks must be independent for this
reason, to accommodate various
GPU architectures

SPMD - CUDA GPU Programming (J. Barbosa) ŴŹ/ŸŹ

Programming and Execution model

CUDA - Memory Model - Scope

▶ Thread
▶ R/W Registers
▶ Localmemory

▶ Block
▶ Shared memory

▶ Grid (Host also)
▶ Device memory [RW]
▶ Constant memory [RO]
▶ Texture Memory [RO]

Figure: Memory Model (source NVidia)
SPMD - CUDA GPU Programming (J. Barbosa) Ŵź/ŸŹ

Programming and Execution model

CUDA - Memory Model

Figure: Memory Model (source NVidia)

▶ Device Memory
▶ Communication between host

and device
▶ Content visible to all threads
▶ Long latency access

▶ Shared Memory
▶ Low latency access [L1 Cache

Level]
▶ Used for intra-block /

inter-thread cooperation

SPMD - CUDA GPU Programming (J. Barbosa) ŴŻ/ŸŹ

Programming and Execution model

CUDA - Execution Model

▶ Thread Block
▶ Schedule until completion on

the same Steam
Multiprocessor (SM)

▶ Max 1024 threads (pre-Volta)
▶ Warp

▶ 32 threads of the same warp
▶ Shared the same program

counter (pre-Volta)
▶ Scheduled Interleaved in the

SM
Figure: Warp Execution Model (source
NVidia)

SPMD - CUDA GPU Programming (J. Barbosa) Ŵż/ŸŹ

Programming and Execution model

CPU - Vector Add

void vectoradd (f l oa t * a , f l oa t * b , f l oa t * c , i n t N) {
for (i n t i = 0; i < N; i ++) {
c [i] = a [i] + b [1] ;

}
}

i n t main (i n t argc , char* argv []) {
i n t N = 32;
f l oa t * a = (f l oa t *) malloc (N*sizeof (f l oa t) ;
f l oa t * b = (f l oa t *) malloc (N*sizeof (f l oa t) ;
f l oa t * c = (f l oa t *) malloc (N*sizeof (f l oa t) ;

vectoradd (a , b , c ,N) ;

/ / do something with c

f ree (a) ; f ree (b) , f ree (c) ;
}

SPMD - CUDA GPU Programming (J. Barbosa) ŵų/ŸŹ

Programming and Execution model

GPU / CUDA - Vector Add

__global__ void vectoradd (f l oa t * a , f l oa t * b , f l oa t * c , i n t N) {
i n t i = blockIdx . x * blockDim . x + threadIdx . x
c [i] = a [i] + b [1] ;

}

i n t main (i n t argc , char* argv []) {
i n t N = 32;
f l oa t * a , *b , *c ;

cudaMallocManaged(&a , N*sizeof (f l oa t)) ;
cudaMallocManaged(&b , N*sizeof (f l oa t)) ;
cudaMallocManaged(&c , N*sizeof (f l oa t)) ;

vectoradd<<<
1 , /* g r id con f i gu ra t i on */
N /* block con f i gu ra t i on */
>>>(a , b , c ,N) ;

/ / do something with c

cudaFree (a) ; cudaFree (b) , cudaFree (c) ;
}

SPMD - CUDA GPU Programming (J. Barbosa) ŵŴ/ŸŹ

Programming and Execution model

GPU / CUDA - Vector Add - Defining block size and number of blocks

__global__ void vectoradd (f l oa t * a , f l oa t * b , f l oa t * c , i n t N) {
i n t i = blockIdx . x * blockDim . x + threadIdx . x
c [i] = a [i] + b [1] ;

}

i n t main (i n t argc , char* argv []) {
i n t N = 1 << 32;
f l oa t * a , *b , *c ;

cudaMallocManaged(&a , N*sizeof (f l oa t)) ;
cudaMallocManaged(&b , N*sizeof (f l oa t)) ;
cudaMallocManaged(&c , N*sizeof (f l oa t)) ;

i n t thread_block_size = 1024;
i n t number_of_blocks = (i n t) c e i l (f l oa t (N) / thread_block_size) ;

vectoradd<<<number_of_blocks , thread_block_size >>>(a , b , c ,N) ;

/ / do something with c

cudaFree (a) ; cudaFree (b) , cudaFree (c) ;
}

SPMD - CUDA GPU Programming (J. Barbosa) ŵŵ/ŸŹ

More advanced concepts

SPMD - CUDA GPU Programming (J. Barbosa) ŵŶ/ŸŹ

More advanced concepts

optimization and advanced concepts

▶ Thread Divergence
▶ Memory Coalescing
▶ Shared Memory
▶ Shared Memory Bank Conflicts

Ilustrated using an reduction example
(based of original reduction example material by Mark Harris from NVidia)

SPMD - CUDA GPU Programming (J. Barbosa) ŵŷ/ŸŹ

More advanced concepts

Parallel reduction 2

▶ Important data paralel primitive
▶ Easy to Implement but hard to get right
▶ Hits almost all the major bottlenecks, we will implement incrementally

2based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŵŸ/ŸŹ

More advanced concepts

Parallel reduction 3

▶ Tree based computation inside each thread block
▶ Each thread block only does a partial reduction (MAX. threads per block

2048)
▶ Requires multiple thread block

▶ to process large values of 𝑁
▶ to increase occupancy of the GPU (maintain all SMs busy)

3based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŵŹ/ŸŹ

More advanced concepts

Parallel reduction 4

▶ Requires multiple thread block
▶ Problem: How do we communicate results between blocks?

▶ thread block execution is independent
▶ only warps can be synchronized inside a thread block

4based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŵź/ŸŹ

More advanced concepts

Parallel reduction 5

Problem: How do we communicate results between blocks?▶ Up to the Volta architecture cuda does not have global synchronize primitive
inside the kernel

▶ After Volta it does have but we will see bellow (caveat: read white paper for
details)

▶ With global synchronize the parallel pattern is easy to implement
▶ thread blocks compute the partial result
▶ once all thread blocks reach barrier, continue recursively

▶ CUDA (exception after Volta) has no global sync, why?
▶ Expensive to build in GPU with high core count
▶ Forces programmer to use less thred blocks (no more than # multiprocessors *

resident blocks / multiprocessor) to avoid deadlock, which may reduce
overall efficiency

▶ Solution: decompose into multiple kernels
▶ kernel launch serves as a global synchronization
▶ kernel launch is cheap (low HW and SE overhead)

5based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŵŻ/ŸŹ

More advanced concepts

Parallel reduction 6

▶ Problem: How do we communicate results between blocks?
▶ Solution: decompose into multiple kernels

▶ natural global synchronizatio
▶ same kernel code at recursively lower values of N

6based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŵż/ŸŹ

More advanced concepts

Parallel reduction 7

Our goals should always be to:
▶ Achieve peak GPU performance

▶ TFlops : compute bound kernels
▶ GB/s : bandwidth bound kernels

▶ Parallel reduction is a compute bound kernel
▶ Only one arithmetic operation per loaded element (in this case 2)
▶ Goal peak bancdwith

▶ We are using maverick with a Tesla k40m
▶ SP : 4.29 TFlops peak | DP : 1.42 TFlops peak
▶ DRAM : 240 GB/s

7based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ŷų/ŸŹ

More advanced concepts

Parallel reduction 8: Interleaved Addressing

8based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŴ/ŸŹ

More advanced concepts

Parallel reduction 9: Interleaved Addressing
__global__ void reduce0 (i n t * idata , i n t *odata) {

/ / Shared memory rese rva t i on done on kerne l c a l l
extern __shared__ i n t sdata [] ;

/ / each thread loads one element from global to shared mem
unsigned int t i d = threadIdx . x ;
unsigned int i = blockIdx . x*blockDim . x + threadIdx . x ;

/ / Copy data to shared memory
sdata [t i d] = idata [i] ;

/ / Make sure a l l threads (wraps) reach t h i s po in t
__syncthreads () ;

/ / do reduct ion in shared mem
for (unsigned int s=1; s < blockDim . x ; s *= 2) {

i f (t i d % (2*s) == 0) {
sdata [t i d] += sdata [t i d + s] ;

}
__syncthreads () ;

}

/ / wr i t e r e s u l t f o r t h i s block to g loba l mem
i f (t i d == 0) odata [blockIdx . x] = sdata [0] ;

}

9based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ŷŵ/ŸŹ

More advanced concepts

Parallel reduction 10: Interleaved Addressing

Reduction kernel
implementation

Time (222) Bandwith (222) Speedup

Interleaved Addressing with
divergence

0.9941 ms 15.72 GB/s N/A N/A

10based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŶ/ŸŹ

More advanced concepts

Parallel reduction 11: Interleaved Addressing

/ / do reduct ion in shared mem
for (unsigned int s=1; s < blockDim . x ; s *= 2) {

i f (t i d % (2*s) == 0) {
sdata [t i d] += sdata [t i d + s] ;

}
__syncthreads () ;

}

▶ Highly divergente code
▶ Half of the threads don’t do

anything

11based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ŷŷ/ŸŹ

More advanced concepts

Parallel reduction 12: Thread divergence

What happens if the threads within
the warp diverge?

1. Marks as active all threads on
Path A

2. Executes warp
3. Marks as active all threads on

Path B
4. Executes warp

12based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŸ/ŸŹ

More advanced concepts

Parallel reduction 12: Thread divergence

What happens if the threads within
the warp diverge?

1. Marks as active all threads on
Path A

2. Executes warp

3. Marks as active all threads on
Path B

4. Executes warp

12based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŸ/ŸŹ

More advanced concepts

Parallel reduction 12: Thread divergence

What happens if the threads within
the warp diverge?

1. Marks as active all threads on
Path A

2. Executes warp
3. Marks as active all threads on

Path B
4. Executes warp

12based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŸ/ŸŹ

More advanced concepts

Parallel reduction 13: Interleaved Addressing without divergence
Just replace divergent branch in inner loop:

/ / do reduct ion in shared mem
for (unsigned int s=1; s < blockDim . x ; s *= 2) {

i f (t i d % (2*s) == 0) {
sdata [t i d] += sdata [t i d + s] ;

}
__syncthreads () ;

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim . x ; s *= 2) {
i n t index = 2 * s * t i d ;
i f (index < blockDim . x) {
sdata [index] += sdata [index + s] ;

}
__syncthreads () ;

}

13based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŹ/ŸŹ

More advanced concepts

Parallel reduction 14: Interleaved Addressing

14based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ŷź/ŸŹ

More advanced concepts

Parallel reduction 15: Interleaved Addressing

Reduction kernel
implementation

Time (222) Bandwith (222) Speedup

Interleaved Addressing with
divergence

0.9941 ms 15.72 GB/s N/A N/A

Interleaved Addressing
without divergence

0.6215 ms 25.14 GB/s 1.60 1.60

15based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŶŻ/ŸŹ

More advanced concepts

Parallel reduction 16: Interleaved Addressing

Problem: Shared memory bankconflict
16based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ŷż/ŸŹ

More advanced concepts

Parallel reduction 17: Interleaved Addressing

Since compute 3.0
▶ Shared memory organized into 32

banks
▶ No conflict as long as each thread

in a warp writes to a single bank

17based of original reduction example material by Mark Harris from NVidia

SPMD - CUDA GPU Programming (J. Barbosa) ŷų/ŸŹ

More advanced concepts

Parallel reduction 18: Interleaved Addressing

Since compute 3.0
▶ Shared memory organized into 32

banks
▶ If more than one thread in a warp
writes to the same bank

18based of original reduction example material by Mark Harris from NVidia

SPMD - CUDA GPU Programming (J. Barbosa) ŷŴ/ŸŹ

More advanced concepts

Parallel reduction 19: Sequencial Addressing

for (unsigned int s=1; s < blockDim . x ; s *= 2) {
i n t index = 2 * s * t i d ;
i f (index < blockDim . x) {
sdata [index] += sdata [index + s] ;

}
__syncthreads () ;

}

Reversed loop and threadID-based indexing:

for (unsigned int s=blockDim . x /2 ; s>0; s>>=1) {
i f (t i d < s) {
sdata [t i d] += sdata [t i d + s] ;

}
__syncthreads () ;

}

19based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷŵ/ŸŹ

More advanced concepts

Parallel reduction 20: Sequential Addressing

Problem: Shared memory bankconflict
20based of original reduction example material by Mark Harris from NVidia

SPMD - CUDA GPU Programming (J. Barbosa) ŷŶ/ŸŹ

More advanced concepts

Parallel reduction 21: Sequential Addressing

Reduction kernel
implementation

Time (222) Bandwith (222) Speedup

Interleaved Addressing with
divergence

0.9941 ms 15.72 GB/s N/A N/A

Interleaved Addressing
without divergence

0.6215 ms 25.14 GB/s 1.60 1.60

Sequential Addressing 0.2588 ms 60.38 GB/s 1.00 1.61

21based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷŷ/ŸŹ

More advanced concepts

Parallel reduction 22: Sequencial Addressing

for (unsigned int s=blockDim . x /2 ; s>0; s>>=1) {
i f (t i d < s) {
sdata [t i d] += sdata [t i d + s] ;

}
__syncthreads () ;

}

Problem: Loosing half of the threads in a warp

22based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷŸ/ŸŹ

More advanced concepts

Parallel reduction 23: First Add During Load
Solution: Halve the number of blocks, and replace single load

/ / each thread loads one element from global to shared mem
unsigned int t i d = threadIdx . x ;
unsigned int i = blockIdx . x*blockDim . x + threadIdx . x ;
sdata [t i d] = g_idata [i] ;
__syncthreads () ;

Reversed loop and threadID-based indexing

/ / perform f i r s t l e v e l of reduct ion ,
/ / reading from global memory , w r i t i n g to shared memory
unsigned int t i d = threadIdx . x ;
unsigned int i = blockIdx . x* (blockDim . x*2) + threadIdx . x ;
sdata [t i d] = g_idata [i] + g_idata [i +blockDim . x] ;
__syncthreads () ;

23based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷŹ/ŸŹ

More advanced concepts

Parallel reduction 24: First Add During Load

Reduction kernel
implementation

Time (222) Bandwith (222) Speedup

Interleaved Addressing with
divergence

0.9941 ms 15.72 GB/s N/A N/A

Interleaved Addressing
without divergence

0.6215 ms 25.14 GB/s 1.60 1.60

Sequential Addressing 0.2588 ms 60.38 GB/s 1.00 1.61
First Add During Load 0.1915 ms 81.59 GB/s 2.39 3.84

24based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷź/ŸŹ

More advanced concepts

Parallel reduction 25: So far

We optimized bandwith to X GB/s
▶ Optimization

▶ Removed thread Divergence
▶ Removed shared memory bank conflict

▶ What are we missing?
▶ We know reduction has low arithmetic intensity.
▶ How about address arithmetic and loop overhead?

▶ Strategy: unroll loops

25based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷŻ/ŸŹ

More advanced concepts

Parallel reduction 26: So far

▶ As reduction proceeds, # “active” threads decreases
▶ When 𝑠 ≤ 32, we have only one warp left
▶ Instructions are SIMT synchronous within a warp

▶ That means when 𝑠 ≤ 32:
▶ We don’t need to __syncthreads()
▶ We don’t need 𝑖𝑓 (𝑡𝑖𝑑 < 𝑠) because it doesn’t save any work

26based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŷż/ŸŹ

More advanced concepts

Parallel reduction 27: Loop unroll

__device__ void warpReduce (vo la t i l e in t * sdata , i n t t i d) {
sdata [t i d] += sdata [t i d + 32] ;
sdata [t i d] += sdata [t i d + 16] ;
sdata [t i d] += sdata [t i d + 8] ;
sdata [t i d] += sdata [t i d + 4] ;
sdata [t i d] += sdata [t i d + 2] ;
sdata [t i d] += sdata [t i d + 1] ;

}

Reversed loop and threadID-based indexing

for (unsigned int s=blockDim . x /2 ; s>32; s>>=1) {
i f (t i d < s)
sdata [t i d] += sdata [t i d + s] ;
__syncthreads () ;

}
i f (t i d < 32) warpReduce (sdata , t i d) ;

27based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ÿų/ŸŹ

More advanced concepts

Parallel reduction 28: Loop Unroll

Reduction kernel
implementation

Time (222) Bandwith (222) Speedup

Interleaved Addressing with
divergence

0.9941 ms 15.72 GB/s N/A N/A

Interleaved Addressing
without divergence

0.6215 ms 25.14 GB/s 1.60 1.60

Sequential Addressing 0.2588 ms 60.38 GB/s 1.00 1.61
First Add During Load 0.1915 ms 81.59 GB/s 2.39 3.84
Loop Unroll 0.1915 ms 81.59 GB/s 1.35 5.19

28based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŸŴ/ŸŹ

More advanced concepts

Parallel reduction 29: So far

▶ If we knew the number of iterations at compile time, we could completely
unroll the reduction

▶ Set the GPU thread block size to 512 threads
▶ Also, we are sticking to power-of-2 block sizes

▶ So we can easily unroll for a fixed block size
▶ But we need to be generic – how can we unroll for block sizes that we don’t

know at compile time?
▶ Templates to the rescue!

▶ CUDA supports C++ template parameters on device and host functions

29based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ÿŵ/ŸŹ

More advanced concepts

Parallel reduction 30: Complete Unroll / Static Unroll

Template <unsigned int blockSize >
__device__ void warpReduce (vo la t i l e in t * sdata , i n t t i d) {

i f (b lockSize >= 64) sdata [t i d] += sdata [t i d + 32] ;
i f (b lockSize >= 32) sdata [t i d] += sdata [t i d + 16] ;
i f (b lockSize >= 16) sdata [t i d] += sdata [t i d + 8] ;
i f (b lockSize >= 8) sdata [t i d] += sdata [t i d + 4] ;
i f (b lockSize >= 4) sdata [t i d] += sdata [t i d + 2] ;
i f (b lockSize >= 2) sdata [t i d] += sdata [t i d + 1] ;

}

template <unsigned int blockSize > __global__ void reduce5 (i n t * idata , i n t *odata) {
(. . .)
i f (b lockSize >= 512) { i f (t i d < 256) { sdata [t i d] += sdata [t i d + 256]; } __syncthreads () ; }
i f (b lockSize >= 256) { i f (t i d < 128) { sdata [t i d] += sdata [t i d + 128]; } __syncthreads () ; }
i f (b lockSize >= 128) { i f (t i d < 64) { sdata [t i d] += sdata [t i d + 64] ; } __syncthreads () ; }
i f (t i d < 32) warpReduce<blockSize >(sdata , t i d) ;
(. . .)

}

30based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŸŶ/ŸŹ

More advanced concepts

Parallel reduction 31: Complete Unroll / Static Unroll
switch (threads)
{

case 512:
reduce5<512><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 256:
reduce5<256><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 128:
reduce5<128><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 64:
reduce5< 64><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 32:
reduce5< 32><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 16:
reduce5< 16><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 8:
reduce5< 8><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 4:
reduce5< 4><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 2:
reduce5< 2><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;
case 1:
reduce5< 1><<< dimGrid , dimBlock , smemSize >>>(d_idata , d_odata) ; break ;

}

31based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) Ÿŷ/ŸŹ

More advanced concepts

Parallel reduction 32: Complete Unroll / Static Unroll

Reduction kernel
implementation

Time (222) Bandwith (222) Speedup

Interleaved Addressing with
divergence

0.9941 ms 15.72 GB/s N/A N/A

Interleaved Addressing
without divergence

0.6215 ms 25.14 GB/s 1.60 1.60

Sequential Addressing 0.2588 ms 60.38 GB/s 1.00 1.61
First Add During Load 0.1915 ms 81.59 GB/s 2.39 3.84
Loop Unroll 0.1915 ms 81.59 GB/s 1.35 5.19
Static Unroll 0.1753 ms 89.15 GB/s 1.09 5.67

32based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŸŸ/ŸŹ

More advanced concepts

Parallel reduction 33: Complete Unroll / Static Unroll

33based of original reduction example material by Mark Harris from NVidiaSPMD - CUDA GPU Programming (J. Barbosa) ŸŹ/ŸŹ

Thank you

SPMD - CUDA GPU Programming (J. Barbosa) ŸŹ/ŸŹ

	Why do we care about General Purpose GPUs?
	Brief history of the GPU
	Programming and Execution model
	More advanced concepts

