Execução detalhada de instruções

TPC3 + Guião Teatral

Alberto José Proença

.....

Objectivos

Treinar as capacidades de visualização de terminologia e conceitos que descrevem o funcionamento de um sistema de computação na execução de código.

Para atingir estes objetivos vai-se realizar um exercício experimental com <u>estudantes-atores</u>, em <u>contra-relógio</u>: usando 8 atores: "banco de registos", "ALU", "unidade de controlo do processador", "descodificador de instruções", "memória", "barramento de endereços", "barramento de dados", e "barramento de controlo". Estes irão representar (teatralmente) a execução de um conjunto de instruções em linguagem máquina, o corpo de uma função em C compilada e montada para uma arquitetura IA-16.

Como preparação para esta peça de teatro, são propostos alguns exercícios sob a forma de TPC. Estes deverão ser resolvidos e entregues no início da próxima sessão PL, para discussão sucinta no início dessa sessão, seguindo-se a peça de teatro propriamente dita (esta irá durar 2 semanas consecutivas).

1. Exercícios de preparação (TPC)

1. Considere a execução duma operação aritmética "montada" em linguagem máquina para a arquitetura IA-16 definida neste TPC, desde que o processador terminou a instrução anterior; em assembly corresponde a addw %bx, -8 (%bp).

Essa instrução dá indicação ao processador para adicionar 2 operandos de 16 bits – 1 colocado em registo e outro em memória – e guardar o resultado de volta nas mesmas células de memória onde antes estava guardado o 2º operando. O 1º operando está no registo %bx, enquanto o 2º operando está localizado em memória a partir do endereço calculado pela soma do conteúdo do registo %bp com a constante (-8). Considere os valores em memória e nos registos apresentados neste enunciado nas pág. 4 e 5, e que esta instrução está codificada em 2 bytes na memória, referenciados pelo IP (veremos depois que isto é falso).

Indique, cronologicamente e em binário ou hexadecimal, toda a informação que irá circular nos 3 barramentos (ver sua descrição no exercício **2.**) durante a execução integral desta instrução (não esquecer que o processador tem de ir buscar a instrução à memória). Considere que o barramento de dados transporta a informação de/para a memória sob a forma *little endian*, i.e., o *byte* menos significativo do barramento refere-se ao conteúdo da célula de memória com o endereço mais baixo.

Indique também todos os registos e todas as células de memória que foram modificados com a execução desta instrução.

Considere a operação de montagem em binário dessa mesma instrução em assembly de acordo com as regras definidas neste enunciado (inclui pág. 3): addw %bx, -8 (%bp).

Tente construir a instrução em linguagem máquina deste sistema IA-16 (em hexadecimal, *byte* a *byte*), depois de montada pelo *assembler*. **Explicite** sucintamente, o processo de montagem.

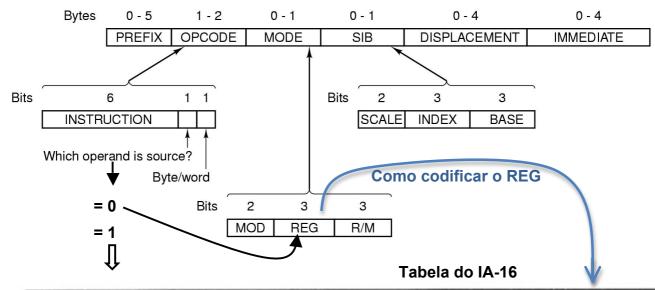
2. Caraterização da "peça de teatro"

Pretende-se com este exercício analisar todos os passos da execução de instruções por um processador *little endian* de 16 bits (semelhante ao Intel x86), desde a busca de cada uma das instruções à memória até à sua execução, passando pela sua descodificação e atualização do apontador para a próxima instrução, IP.

Os principais componentes do computador serão representados por estudantes-atores, estando cada uma/um apenas na posse da informação que necessita e durante o tempo que essa informação existe.

Caraterísticas do sistema de computação e funções a desempenhar por cada estudante-ator:

1. **Processador**, constituído pelas seguintes partes/atores:


- a. **Banco de registos**, responsável pelo conteúdo dos 8 registos "genéricos" do Intel x86 (ax, bx, cx, dx, si, di, bp, sp) e do *instruction pointer* (ip); no início do exercício, os registos terão um conteúdo pré-definido (folha com o ator; contém a lista de registos e respectivo conteúdo inicial, bem como espaço para escrever os novos valores dos registos);
- ALU, responsável por efetuar as operações aritméticas (soma/subtração) ou lógicas (AND/OR/NOT) que lhe forem solicitadas, e sobre os operandos que lhe forem disponibilizados; no fim o resultado necessita de ser armazenado algures; as operações são feitas no quadro e apagadas após a sua conclusão (a ALU não tem capacidade de armazenar valores);
- c. Unidade de controlo, responsável por gerar todos os sinais que controlam as operações no exterior do processador, e ainda por dar todas as instruções para o correto funcionamento interno do processador; a apoiá-la/o terá a colaboração de uma outra estrutura/ator (o descodificador de instruções);
- d. Descodificador de instruções, com capacidade para armazenar internamente até 4 bytes com instruções em binário; a descodificação das instruções faz-se com base na informação disponibilizada na pág. 3, contendo:
 - (i) figura com os formatos de instruções do i386,
 - (ii) mapa da codificação dos modos de endereçamento do i386, em que a última coluna mostra também como os registos são codificados, e
 - (iii) tabela com códigos de operação das instruções mais usadas nesta peça; de notar que este mapa dos modos de endereçamento se refere a um processador de 32 bits, mas que iremos adaptá-lo nesta peça a um processador de 16 bits, com as necessárias correções (por ex., todas as referências a registos de 32 bits deverão ser substituídas por referências a registos de 16 bits);
- 2. **Memória**, responsável pelo conteúdo das 2¹⁶ células de memória (folha com o ator; contém o conteúdo de células numa lista de endereços previamente definidos, bem como espaço para escrever novos valores em células que tenham sido modificadas);
- 3. Barramentos de interligação entre o processador e a memória:
 - a. Barramento de endereços, responsável por transportar 16 bits de cada vez (em 2 folhas de papel, 1 em cada mão contendo um valor numérico de 1 byte), e apenas durante o período de tempo em que esses valores estiverem ativos no barramento;
 - b. Barramento de dados, responsável por transportar 16 bits de cada vez (em 2 folhas de papel, 1 em cada mão contendo um valor numérico de 1 byte), e apenas durante o período de tempo em que esses valores estiverem ativos no barramento;
 - c. **Barramento de controlo**, responsável por transportar os sinais de controlo que forem necessários (neste exercício apenas serão necessários os sinais de RD e WR).

3. Guião teatral

- Distribuir os papéis com a informação pertinente a cada um dos atores, conjuntamente com várias folhas de papel para que a "PU" e a "memória" possam escrever a informação que os "barramentos" irão transportar.
- 2. Considerar que a PU acabou de executar uma instrução, e que o estado do computador é o que está representado nas folhas distribuídas.
- 3. Simular com as/os atores a execução de instruções até ao fim da 1ª instrução de ret que encontrar.
- **4.** (Para fazer depois da aula) Tentar recriar o código em C que deu origem a esta função compilada. (Sugestão: dê uma vista de olhos pelos slides das aulas...)

AJProença / fev'19

Formatos de instrução no IA-32

Operands	No Displacement	Displacement 8-bit	Displacement 16-bit	Register Operands		
MOD	00	01	10	11		
R/M				W = 0	W = 1	
000	(BX) + (SI)	(BX) + (SI) + D8	(BX) + (SI) + D16	AL	AX	
001	(BX) + (DI)	(BX) + (DI) + D8	(BX) + (DI) + D16	CL	CX	
010	(BP) + (SI)	(BP) + (SI) + D8	(BP) + (SI) + D16	DL	DX	
011	(BP) + (DI)	(BP) + (DI) + D8	()	BL	BX	
100	(SI)	(SI) + D8	(SI) + D16	AH	SP	
101	(DI)	(DI) + D8	(DI) + D16	CH	BP	
110	D16	(BP) + D8	(BP) + D16	DH	SI	
111	(BX)	(BX) + D8	(BX) + D16	BH	DI	

Opcode	Mnemónica	Comentários
0000 00xx	add	xx: ver figura acima; requer mais <i>bytes</i>
0101 Оууу	push	yyy: identificação de registo, de acordo com tabela acima
0101 lyyy	pop	yyy: identificação de registo, de acordo com tabela acima
1000 10xx	mov	xx: ver figura acima; requer mais <i>bytes</i>
1000 110x	lea	xx: ver figura acima; requer mais <i>bytes</i>
1100 0011	ret	

Banco de registos

ax	XXXX X	XXXX	XXXX	XXXX	_	0	0_	_0_	_c_	 	 	 		
-							·			 	 	 		
bж	XXXX X	XXXX	XXXX	xxxx		f	f	е	f					
					_					 	 	 		
_										 	 	 		
						•	0	•	0					
CX	XXXX	XXXX	XXXX	XXXX	-	_0	_0	_0_	_0_	 	 	 	—-	
_														
_											 			
dx	XXXX X	XXXX	XXXX	XXXX	_	0_	_1	_4_	_0_	 	 	 		
-										 	 	 		
si	XXXX X	XXXX	XXXX	XXXX	_	88	0_	_8_	_0_		 	 		
-										 	 	 		
di	XXXX X	<xxx< th=""><th>xxxx</th><th>xxxx</th><th></th><th>8</th><th>0</th><th>С</th><th>6</th><th></th><th></th><th></th><th></th><th></th></xxx<>	xxxx	xxxx		8	0	С	6					
					_						 	 		
_										 	 	 		
1						•	4	4						
bp	XXXX X	XXXX	XXXX	XXXX	-	<u>8</u>	_4	_1	_C_	 	 	 		
_											 			
sp	XXXX X	XXXX	XXXX	XXXX	-	8	_4	_1_	_4_	 	 	 		
-														
ip	XXXX X	XXXX	XXXX	xxxx	_	4	_0	_4_	_0_	 	 	 		
_										 	 	 		
_														

Memória

Ī		1			
0x0000	0101 1001	_59_	 	 	
	•••				
0x4040	0101 0101	_55_	 	 	
1	1000 1001	<u>8 9</u>	 	 	
0x4042	1110 0101	_e5_	 	 	
3	1000 1011	_8b_	 	 	
0x4044	0100 0110	_46_	 	 	
5	0000 0110	_06_	 	 	
0x4046	0000 0011	_03_	 	 	
7	0100 0110	_46_	 	 	
0x4048	0000 0100	_04_	 	 	
9	1000 1001	_89_	 	 	
0x404a	1110 1100	_ec_	 	 	
b	0101 1101	_5d_	 	 	
0x404c	1100 0011	_c3_	 	 	
d	1000 1101	_8d_	 	 	
0x404e	0111 0110	_76_	 	 	
£	0000 0000	_00_	 	 	
• • •					
0x8410	0010 1001	<u>2 9</u>	 	 	
1	0001 1111	_1f_	 	 	
0x8412	1101 0101	_d5_	 	 	
3	0010 1001	_2_9_	 	 	
0x8414	0001 0010	_1_2_	 	 	
5	0100 0000	_40_	 	 	
0x8416	0001 0100	_1_4_	 	 	
7	0000 0000	_00_	 	 	
0x8418	1110 1010	_ea_	 	 	
9	1111 1111	<u>f</u> f	 	 	
• • •	• • •				

Nº	Nome:	Turma:

Resolução dos exercícios

(**Nota**: Apresente sempre os cálculos que efectuar no verso da folha; <u>o não cumprimento desta regra equivale à não entrega do trabalho.)</u>

1. **Indique**, cronologicamente e em bin ou hex, toda a informação que irá circular nos 3 barramentos:

Address Bus:

Data Bus:

Control Bus (indique só os sinais de controlo):

Indique também <u>todos os registos</u> **e** <u>todas as células de memória</u> modificados: