Advanced Architectures

Master Informatics Eng.

2015/16
A.J.Proencga

Data Parallelism 1 (vector, SIMD ext., GPU)

(most slides are borrowed)

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16

Introduction

‘ SIMD architectures can exploit significant data-

level parallelism for:
matrix-oriented scientific computing
media-oriented image and sound processing

SIMD is more energy efficient than MIMD
only needs to fetch one instruction per data operation
makes SIMD attractive for personal mobile devices

SIMD allows programmers to continue to think
sequentially

Copyright © 2012, Elsevier Inc. All rights reserved.

uononpo.U|

| Instruction and Data Streams

‘ An alternate classification

Data Streams
Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

| SIMD Parallelism

uononpo.u|

m Vector architectures (siides 5 to 18)
m SIMD & extensions (slides 19 to 23)
» Graphics Processor Units (GPUS) (next set)

1000

MIMD*SIMD (32b)
- MIMD*SIMD (64 b)

m For x86 processors: e I’
= Expected grow:
2 more cores/chip/year
= SIMD width:
2x every 4 years

= Potential speedup:
SIMD 2x that from MIMD!

2
3

Potential parallel speedup

°

1
2003 2007 2011 2015 2019 2023

Vector Architectures

» Basic idea:

» Read sets of data elements (gather from

memory) into “vector re

gisters”

= Operate on those registers
» Store/scatter the results back into memory

$81N108)IY2IY J0}OSA

= Registers are controlled by the compiler
= Used to hide memory latency
= Leverage memory bandwidth

I VMIPS

= Example architecture: VMIPS
Loosely based on Cray-1 (next slide)

Vector registers Main mermory I
= Each register holds a 64-element,

64 bits/element vector

= Register file has 16 read ports and
8 write ports

Vector functional units

= Fully pipelined, new op each clock-cyc
= Data & control hazards are detected
Vector load-store unit veeto
= Fully pipelined

= 1 word/clock-cycle after initial latency
Scalar registers

= 32 general-purpose registers

= 32 floating-point registers

Vector
load/store
le
)

S81NJ081IY21y 10108/

FP add/subtract
FP multiply

.
ers

Scalar
registers

FP divide '—'
—

B

]
=:

S

Crossbar switches

et avestor Tnstruction Parallelism AN

\

Can overlap execution of multiple vector instructions
- Consider machine with 32 elements per vector register and 8 lanes:

Load Unit . Multiply Unit Add Unit
load f5To 000

eooooe dMul ATTATATATA
time oleje/e(eee[blajajajaja[ladd fu[n[nnnun]m
IoadOOO.OO.?AAAAAAA‘IIIIIIII
/ .ImulAAAAAAAAIIIII.III
AAAAA s N\nennnnnmn
Hlajalalajalladd /e e(mmn =®
Ala[alalala[all|m/m/mmn/n(m|m
AlAlalalaAlalalalmm(en(ennm
Instruction Ssssssas=

issue

COmEIete 24 operations/cycle while issuing 1 short instruction/cycle
8/19/2009

John Kubiatowicz Parallel Architecture: 35

Cray-1 Supercomputer
(1976)

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 8

| VMIPS Instructions | Vector Execution Time

| = ADDVV.D: add two vectors
= ADDVS.D: add vector to a scalar
= LV/SV: vector load and vector store from address

= Execution time depends on three factors:
= Length of operand vectors
= Structural hazards

$81N108)IY2IY J0}OSA
$81N)08]IY2IY J0}OOA

n Example: DAXPY (Double-precision A x X Plus Y) = Data dependencies
L.D FO,a ; load scalar a
v VI, Rx i load vector X = VMIPS functional units consume one element
MULVS.D V2,V1,FO ; vector-scalar multiply per clock cycle
LV V3,Ry ; load vector Y
ADDVV V4.V2,V3 ; add = Execution time is approximately the vector length
SV Ry, V4 ; store the result
= Convoy
= Requires the execution of 6 instructions versus almost 600 for MIPS = Set of vector instructions that could potentially

(assuming DAXPY is operating on a vector with 64 elements)

execute together in one unit of time, chime

< <
@ H ()
| Challenges 8 | Multiple Lanes (7 g
> >
m Start up time S , o - s
. Latency of vector functional unit g u EIIemen;c n off vecttor regllstterg is “hardwired” to g
= Assume the same as Cray-1 3 elementno ve.c or register 3
« Floating-point add => 6 clock cycles @ = Allows for multiple hardware lanes 2
= Floating-point multiply => 7 clock cycles — Lane 0 Lane 1 Lane 2 Lane 3
= Floating-point divide => 20 clock cycles e e
= Vector load => 12 clock cycles I FP add FP add FP add FP add
P oo pipe 0 pipe 1 pipe 2 pipe 3
= Improvements: il ek 1 1 1 1

Vector Vector Vector Vector

5141 registers: registers: registers: registers:
elements elements elements. elements

0,4,8,... 1,5,9,... 2,6,10,... 37,11,

= > 1 element per clock cycle (1) “

. Il\ll:on-64 wide v.ectors (2) miziliz o]] I] T
= statements in vector code (3) - o] o @ pees [e - - . -
= Memory system optimizations to support vector processors (4) X - A A o ! P e
= Multiple dimensional matrices (5) \; \g\@/i/ S g
= Sparse matrices (6) - - \ Vectorloadstore unit |
= Programming a vector computer (7) 2 g

< <
u ® = @
| Vector Length Register (2 g | Vector Mask Registers (3 8
| > | >
o . . o
. — S : o
= Handling vector length not known at compile time g = Handling IF statements in Vector Loops: g
= Use Vector Length Register (VLR) = for (i =0; 1 < 64; i=i+l) E
L . (2 if (X[i] !'= 0 »
= Use strip mining for vectors over the maximum length: ([.] .) .
low = 0; X[i] = X[i] - Y[i];
VLT (nR ML) /rEind oddmsize piece using modulo op &t/ = Use vector mask register to “disable” elements:
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/)
for (1 = low; i < (low+VL); i=i+1) /*runs for length VL*/ v V1,Rx 7load vector X into V1
Y[i] = a * X[i] + Y[i] ; /*main operation*/ LV V2,Ry ;load vector Y
low = low + VL; /*start of next vector*/ L.D FO,#O :load FP zero into FO
: VL = MVL; /*reset the length to maximum vector length*/ SNEVS.D V1, FO ssets VM(1) to 1 if V1 (i)!=F0
vaeof] 0 1 2 3 L SUBVV.D v1,v1l,v2 ;subtract under vector mask
IJF AJ 44[AJ' AJ AJV Aj SV Rx,V1 ;store the result in X
Range of i 0 m (m+MVL) (m+2xMVL) ... (n-MVL)
(m-1) (m-1) (m-1) (m-1) (n-1)
HHVL 2L S s GFLOPS rate decreases!

| Stride (5)

| Memory Banks 4

| = Handling multidimensional arrays in Vector Architectures:
for (1 = 0; i < 100; i=i+1) {
for (j = 0; j < 100; j=j+1) {
A[i][3] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][3J] = A[i][3] + B[i][k] * D[k]I[3];

| = Memory system must be designed to support high
bandwidth for vector loads and stores

$2IN}08]IY21Y J0JOS\
$8IN}08}IY21Y J0JOS

Spread accesses across multiple banks
= Control bank addresses independently
= Load or store non sequential words
= Support multiple vector processors sharing the same memory

}
= Must vectorize multiplication of rows of B with columns of D
» Use non-unit stride (in VMIPS: load/store vector with stride)

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
= How many memory banks needed? = #banks / Least_ Common_Multiple (stride, #banks) < bank busy time

Example (Cray T932, 1996; Ford acquired 1 out of 13, $39M):
= 32 processors, each generating 4 loads and 2 stores per cycle
= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

< . <
| Scatter-Gather (s g | Vector Programming (7) 8
> | >
S S
= Handling sparse matrices in Vector Architectures: g = Compilers are a key element to give hints on whether a g
for (i = 0; 1 < n; i=i+1) % code section will vectorize or not %
A[K[i]] = A[K[i]] + CIM[i]]; : :
= Check if loop iterations have data dependencies,
« Use index vector: otherwise vectorization is compromised
LV Vk, Rk ;load K)))
LVI Va, (Ra+Vk) :load A[K[]] . Vec;tor Architectures havg a too high cost, but S|mpler
variants are currently available on off-the-shelf devices;
vV Vm, Rm ;load M however:
LVI Ve, (Rct+Vm) ;load C[M[]] = most do not support non-unit stride => care must be taken in the
ADDVV.D Va, Va, Vc ;add them design of data structures
SVI (Ra+Vk), Va ;store A[K[]] = same applies for gather-scatter...

. %)
, | SIMD Extensions 2
3 rchitecture LN =
g \ . L &
A IeERPE Connection Network | = Media applications operate on data types narrower than ¢
Controller S S S S S S S the native word size 5
v | +] |]] ¢ v v . axfloat 17
PE PE PE PE PE PE PE PE " g_xample' t SSE and AVX-128 types D: 2x double @
5 5 : isconnec
S I T T I O N o (T = 7
Data < M| m| m| m| M| m| M| owm Wl e EEEEEEE B R g
e e e e e e e e to “partition [l 32+t dovbleword @,
mjp(mj [(m] [m] [m mj(m m adder (O O oo oo %
+ Single Instruction Multiple Data (SIMD) = Next generation wassope: .
* Central controller broadcasts instructions to multiple AVX-512 will o =
processing elements (PEs) be available [N | E | B < coue =
- Only requires one controller for whole array soon... ?D
- Only requires storage for one copy of program ey . . ,%-
- All computations fully synchronized = Limitations, compared to vector instructions:
* Recent Return to Popularity: = Number of data operands encoded into op code
- GPU (Graphics Processing Units) have SIMD properties = No sophisticated addressing modes (strided, scatter-gather)

- However, also multicore behavior, so mix of SIMD and MIMD (more later)

+ Dual between Vector and SIMD execution
8/19/2009 John Kubiatowicz Parallel Architecture: 36

= No mask registers

_IﬂIID Implementations A Brief History of x86 SIMD

= Implementations:

= Intel MMX (1996)
= Eight 8-bit integer ops or four 16-bit integer ops
= Streaming SIMD Extensions (SSE) (1999)
= Eight 16-bit integer ops

8 x 8 bit

Integer MMX

4 x 32 bit

3dNow!
4 x 32 bit SP Float
l Subset SSE p Float

2 x 64 bit

: SSE2
: DP Float
- Future Subset) -

v

elpawiyny\ 1o} SUoISuUL)Xg 185 uoioNISU| QNIS

= Four 32-bit integer/fp ops or two 64-bit integer/fp ops SSE3
= Advanced Vector eXtensions (AVX) (2010) SSéES
= Eight 32-bit fp ops or Four 64-bit fp ops (integer in AVX-2) —
» 512-bits wide in AVX-512 (and also in Larrabee & MIC-KC) SST‘“ " f—
v SSE4.2
» Operands must be in consecutive and aligned Larrabee e

8x 32 bit
AVX" 5P Float

\4

memory locations

16 x 32 bit SP Float
AVX+FMA 3 operands

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 22

I Example SIMD Code

s Example DAXPY:

Reading suggestions (from CAQA 5 Ed)

L.D FO,a ;load scalar a

MOV Fl, FO ;jcopy a into F1 for SIMD MUL . .

MOV F2, FO ;copy a into F2 for SIMD MUL » Concepts and challenges in ILP: section 3.1
MoV B3, FO jeopy a into F3 for SIMD MUL + Exploiting ILP w/ multiple issue & static scheduling: 3.7

DADDIU R4,Rx,#512 ;last address to load

» Exploiting ILP w/ dyn sched, multiple issue & specul: 3.8

elpawiny\ Jo} SuoIsue)xg 18S uononasu| NIS

Loop:
boab o B4 OlRe] g load XL, XLLHL), Xlitz), X[ie3] + Multithread: exploiting TLP on uniprocessors: 3.12
MUL.4D F4,F4,F0 jaxX[i],axX[1i+1],axX[1+2],axX[1+3]
L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3] » Multiprocessor cache coherence and
ADD.4D F8,F8,Fd4 jaxX[i]+Y[i], ..., axX[i+3]+Y[1+3] snooping coherence protocol with example: 5.2
S.4D O[Ry],F8 ;store into Y[4i],Y[i+1],Y[i+2],Y[i+3] i . .
DADDIU Rx,Rx,#32 ;increment index to X » Basics on directory-based cache coherence: 54
DADDIU Ry,Ry, #32 ;increment index to Y . Models Of memory Consistency: 56
DSUBU R20,R4,Rx ;compute bound . .
BNEZ R20,Loop ;check if done » A tutorial by Sarita Ave & K. Gharachorloo (see link at website)

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 24

