Computing Systems & Performance

MSc Informatics Eng.

2011/12
A.J.Proencga

Data Parallelism 2 (Cell BE, GPU, ...)

(most slides are borrowed)

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Texas Instruments: Keystone DSP architecture

Multicore Navigator

Multicore Navigator

Network Acceleration
7 o1P/
ARM 66x | 66x | 66x | 66x ose
A8
256KB 1MB | 1MB | 1MB | 1MB —

MSMC 2MB

Network
coprocessor

64720 EMIFand Low Speed lIO__
DOR3 [EMIF JUART)
T [g ATh ser f oc fusm

Memory system
Multicore memory
controller
System elements
Power System
management monitor

TeraNet

System Elements

High Speed SERDES
Peripherals and I/0

AR | O e | smio | Hrpertink

6 2 2 84 4
i x i My x

I
Hyperlink

£ =
LR

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Beyond Vector/SIMD architectures

» Vector/SIMD-extended architectures are hybrid approaches

— mix scalar + vector operation capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

« Evolution of Vector/SIMD-extended architectures

— CPU cores with wider vectors and/or SIMD cores:
» DSP VLIW cores with vector capabilities: Texas Instrument
» PPC cores coupled with SIMD cores: Cell Broadband Engine
* ARM®64 cores coupled with SIMD cores: project Denver (NVidia)
« future x86 hybrid cores: Intel, AMD ...

— devices with no scalar processor: accelerator devices
* penalty on disjoint physical memories

based on the GPU architecture: SIMD—>SIMT to hide memory latency

ISA-free architecture, code compiled to silica: FPGA
AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Cell Broadband Engine (1)

Architecture

Protessor. -
i

e

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Cell Broadband Engine (2) Cell Broadband Engine (3)

¢ Heterogeneous multicore processor ¢ Heterogeneous multicore processor
¢ 1x Power Processor Element (PPE) * 8x Synergistic Processing Element (SPE)
— 64-bit Power-architecture-compliant processor — Dual-issue, in-order execution, 128-bit SIMD processors
— Dual-issue, in-order execution, 2-way SMT processor —=n — Synergistic Processor Unit (SPU) r
owerPC Regsters) ; -
IR — SIMD ISA (four different granularities) ‘ ————

— PowerPC Processor Unit (PPU)
—32KB L11C, 32 KB L1 DC, VMX unit

32KB L1 ICache | | 32 KB L1 DCache 256 KB Local Store (LS)

— 128 x128-bit SIMD register file

— 256 KB Local Storage (LS) for code/data

— PowerPC Processor Storage Subsystem (PPSS) [MMIO Registers) DMA Gonrolker |
— 512 KB L2 Cache — Memory Flow Controller (MFC)

— Memory-mapped I/O registers (MMIO Registers)

= — General-purpose processor to run OS and control-intensive code -

S i o & — DMA Controller: commands to transfer data in and out

5w — Coordinates the tasks performed by the remaining cores el
e — Custom processors specifically designed for data-intensive code
L N]
nase — Providethe main computing power of the Cell BE

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008 Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 5 AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 6

Cell Broadband Engine (4) NVidia: Project Denver

¢ Element Interconnect Bus (EIB) » Pick a successful SoC:
— Interconnects PPE, SPEs, and the memory and I/O interface controllers Tegra 3 e
— 4x16 Byte-wide rings (2 clockwise and 2 counterclockwise) Upto x‘vn.gml ;;pu'.;m;mn;;

Blu-Ray Quality Video

— Up to three simultaneous data transfers per ring

— Shortest path algorithm for transfers

* Replace the 32-bit
ARM Cortex 9 cores
by 64-bit ARM cores | s rower

2W/Core

Idle Power:
500mW/Core

* Memory Interface Controller (MIC)

25.6 GB/s|
— 2 xRambus XDR I/O memory channels

(accesses on each channel
of 1-8, 16, 32, 64 or 128 Bytes)

s/go fo'sz

Sleep:
300mW/SoC

= Cell BE Interface (BEI) + Add some Fermi

SIMT cores into
the same chip

sas — 2 x Rambus FlexIO 1/O channels
LR N

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 7 AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 8

What is an FPGA FPGA as a multiple configurable ISA

Field-Programmable Gate Arrays (FPGA)

A fabric with 1000s of simple configurable logic cells with LUTSs,
on-chip SRAM, configurable routing and I/O cells

Columns of

embedded RAM Input/Output Blocks
blocks
Arrays of
programmable
logic blocks . . .

= Many coarse-grained processors

- Different Implementation Options
® Small soft scalar processor
® or Larger vector processor
® or Customized hardware pipeline

- Each with local memory

m Each processor can exploit the
fine grained parallelism of the

a N L] g o FPGA to more efficiently
=il . implement it's “program
rogrammable Jl
D D m Possibly heterogeneous
|:| D = - Optimized for different tasks
] . .
i v m Customizable to suit the needs
AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 Of a particular application
The GPU as a compute device: the G80 The CUDA programming model

Thread Execution Control Unit

» Compute Unified Device Architecture
+ CUDA s a recent programming model, designed for
— Manycore architectures
— Wide SIMD parallelism
— Scalability
» CUDA provides:
— Athread abstraction to deal with SIMD
— Synchr. & data sharing between small groups of threads
» CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— Programming model essentially identical

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 11 AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 12

®
CUDA Devices and Threads | Terminology (and in NVidia) e
o
]
= Threads of SIMD instructions (warps) g
* A compute device = Each has its own PC (up to 48 per SIMD processor) %
- lIsa coprocessor to the (_IPU or host = Thread scheduler uses scoreboard to dispatch ci
— Has its own DRAM (device memory) = No data dependencies between threads! 2
— Runs many threads in parallel .) . @
— Is typically a GPU but can also be another type of parallel = Threads are organized into blocks & executed in groups

of 32 threads (thread block)
= Blocks are organized into a grid
= The thread block scheduler schedules blocks to
SIMD processors (Streaming Multiprocessors)

= Within each SIMD processor:
= 32 SIMD lanes (thread processors)
= Wide and shallow compared to vector processors

processing device

» Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

» Differences between GPU and CPU threads
— GPU threads are extremely lightweight
» Very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
* Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 13

CUDA basic model:

Single-Program Multiple-Data (SPMD) Programming Model: SPMD + SIMT/SIMD

. . . . CPU GPU
« CUDA integrated CPU + GPU application C program * Hierarchy Seril
- gq\élce _B>I GEds Code
— i - rid => Blocks
Serial C code executes on CPU ~ Block 2> Warps ——
— Parallel Kernel C code executes on GPU thread blocks — Warp =>Threads o L [t | ot
+ Single kernel runs on multiple blocks L83 L0 IL&8]
CPU Code sido s (SPMD) el H sk ?rﬁ,*
n gg . Threladﬁ within a warﬁ %re extlecuted E ’ FA— '
52 in a lock-step way called single- Grld,z
GPU Parallel Kernel :32 instruction multiple-thread (SIMT)
KernelA<<< nBlk, nTid >>>(args); Z 5 o . Kemel j j [
25 » Single instruction are executed on 4 e
54 multiple threads (SIMD) ek | — ‘
CPU Code & — Warp size defines SIMD granularity : L
Grid 1 Zz (32 threads) *‘
8%
- + Synchronization within a block using — |
GPU Parallel Kernel 35 shared memory L
KernelB<<< nBIk, nTid >>>(args); 23 Courtesy NVIDIA
AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 15 g g AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/1_

The Computational Grid:

Block IDs and Thread IDs
* A kernel runs on a computational
grid of thread blocks P T
— Threads share global memory p— o
« Each thread uses IDs to decide wiatem = | Il e
what data to work on / o
—Block ID: 1D or 2D @0 || an
—Thread ID: 1D, 2D, or 3D e —
« A thread block is a batch of \ e L ';
threads that can cooperate by: 2 I’ I—l r“_

Block (1, 1

— Sync their execution w/ barrier

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different
blocks cannot cooperate

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 17

Parallel Memory Sharing

Thread » Local Memory: per-thread
—Private per thread
—Auto variables, register spill
» Shared Memory: per-block
Block —Shared by threads of the same
block
Shared —Inter-thread communication

Memory

+ Global Memory: per-application
—Shared by all threads
—Inter-Grid communication

Global Sequential
S Grids
in Time
AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 19

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Thread Block
O

» Programmer declares (Thread) Block:
— Block size 1 to 512 concurrent
threads CUDA Thread Block
— Block shape 1D, 2D, or 3D
— Block dimensions in threads

threadID [o[1]2]3]4][5]e]7]
« All threads in a Block execute the
same thread program

* Threads share data and synchronize
while doing their share of the work

* Threads have thread id numbers
within Block

» Thread program uses thread id to
select work and address shared data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 18

CUDA Memory Model Overview

O
+ Each thread can: e
— R/W per-thread registers BEe Qo) Block (1, 0)
— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory ’ ’ ’ ’
— Read only per-grid constant
memory Thread (0, 0) Thread (1,0) Thread (0, 0) Thread (1, 0)
— Read only per-grid texture
memory
* The host can R/W Fost

global, constant, and
texture memories

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 20

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation:
Memory Architecture

N

Device

® DeV|Ce memory (DRAM) Multiprocessor N
— Slow (2~300 cycles) g

— Local, global, constant,
and texture memory

Multiprocessor 2

Multiprocessor 1

Shared Memory
° On_ Chlp m em Ory Registers I Registers I Registers I Instl;u?:ion
_ Fast (1 CyCIe) Processor1 | | Processor2 | Processor M
; f f 1
— Registers, ‘ ‘ e ‘
shared memory, —
constant/texture cache Cache l

Device memory

Courtesy NVIDIA
AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Families in NVidia GPU

GPU G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double-Precision None 30 FMA ops per clock 256 FMA ops per clock
Floating Point

Single-Precision 128 MADD ops per clock | 240 MADD ops per clock 512 FMA ops per clock
Floating Point

Warp Schedulers

per Streaming 1 1 2

Multiprocessor (SM)

Special Function 2 2 4

Units per SM

Shared Memory 16KB 16KB Configurable

per SM 48KB or 16KB

L1 Cache None None Configurable

per SM 16KB or 48KB

L2 Cache None None 768KB

ECC Memory No No Yes

Protection
Concurrent Kernels No No Upto 16

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 23

NVIDIA GPU Memory Structures

suun Buissaodold |eoiydels

» Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)
= Contains stack frame, spilling registers, and private

variables

» Each multithreaded SIMD processor also has
local memory (Shared Memory)
= Shared by SIMD lanes / threads within a block

» Memory shared by SIMD processors is GPU

Memory (Global Memory)
= Host can read and write GPU memory

Copyright © 2012, Elsevier Inc. All rights reserved. 22

NVidia GPU structure & scalability

G80:
128 Cores

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 24

The NVidia Fermi architecture
[nstuctionCache 1}

.

CUDA Core

Dicpaton Port
‘Operand Colleator

DRAM IIF
4/l NVd¥a

=i

4/l WVaa

w
=
(7]
o
I

o
£
.
Fermi £ 2
Multithreaded g =
SIMD Processor
M (.IStf‘reammg Fermi
utiprocessor) Architecture
AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 25

| Fermi Architecture Innovations

I = Each SIMD processor has
= Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

= Fast double precision

= Caches for GPU memory

= 64-bit addressing and unified address space
= Error correcting codes

= Faster context switching

m Faster atomic instructions

syun Buissesoid |eoiydels

GT200 and Fermi SIMD processor

GT200 Core

1 warp instruction

Fermi Core

1 warp instruction

coreboarded Scoreboarded
r| | Warp Scheduler

1 warp instruction

S
Scoreboarded I
Warp Scheduler WarpiScheduls

1 warp instruction

64KB 16KB |

128KB |
Register File

Register File Shared Memo Port0

Port 1

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

Fermi:

Multithreading and Memory Hierarchy

NN

N
|

Thread

Instruction Dispatch

AAAAAAAAAAAL
Warp 8 instruction 11

Shared Memory

time

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12

AAAAA,

Warp Scheduler Warp Scheduler

Unit Instruction Dispatch Unit

AAAAAA!A ! AAAAA; !A ! !nnn

AAAAAAAAAAALAAALAAALALL
Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33
Warp 14 instruction 95 Warp 15 instruction 95

Warp 14 instruction 96 Warp 3 instruction 34

Warp 8 instruction 12 Warp 9 instruction 12
Warp 2 instruction 43 Warp 15 instruction 96

28

o) o)
o)
g Example 3
5 =
. ‘_D_U Warp scheduler Scoreboard %
| Multlply two vectors of Iength 8192 § netruction] Wa? No. Adirzess Sl’r;l?nzzz::ficéi:ns OP:;:r;;s? §
. . (0] h (0]
= Code that works over all elements is the grid 2 o 1 s 164 e a
. . . =] 3 96 dd.s32 N >
= Thread blocks break this down into manageable sizes @ 5 11| Tagobelied | Ready @
g 8 12 1d.global.f64 Ready g
= 512 threads per block = : : 5
(2] ‘—J (2]
SIMD inst ti t 32 el t tati [Instruction register |
. instruction executes 32 elements at a time e
= Thus grid size = 16 blocks @@@@@@@@’E@@@@@@@SIMDLanes
(Thread
. . . . Py
= Block is analogous to a strip-mined vector loop with e | 7o | o | oo | o | 7o | e | o | | | e | e | | o | e |
VeCtor Iength of 32 1Kx32 [1Kx32 [1Kx32 | 1Kx32 [1Kx32 [1Kx32 | 1Kx32 [1Kx32 | 1Kx32 | 1Kx32 [1Kx32 | 1Kx32 | 1Kx32 [1Kx32 | 1K x32 | 1K x32
= Block is assigned to a multithreaded SIMD processor HEEEE BB EEEEEEE

[EEEE RN N NE R NE N

by the thread block scheduler _
= Current-generation GPUs (Fermi) have 7-16 | —— 2 — ;‘

¥
To Global

multithreaded SIMD processors Local Memory Vermory

GPU: NVidia Fermi versus AMD Cayman

| [Pc]

SIMD Thread Scheduler
Instruction m Instruction
cache cache Dispatch unit Fermi
PC

v

,—{ Instruction register | Instruction register |

syun Buissesoid |eoiydels

Ultra-Threaded Dispatch Processor

- r@ % @ @ %
Proeesset J I v I 1 W 1 r
2

2 4 5 6

2 4

> 2

Qe 2z (GDDR5 Memory

g &

2| e 61 62 63 1023 || 1023 || 1023 |[1023 i

rZ FZ [z [z FZ [z FZ [z 12x48 @ 4.0GT/s ZxZB@SDGT/s
Vector load/store unit SIMD Load/store unit E?\‘g?r?e anir?e Enginy
r vE L2 vi L2 Thread
| Address coalescing unit | Fiecessar

vi

_ L 15
Memorlyj r:ﬂtedace I Memory interface unit | 8x4B@55GT/s 2x2B@5.0GT/s
v

AJProenga, Computer Systems & Performance, MEI, UMinho, 2011/12 32

General-Purpose Registers

