
AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1

Computing Systems & Performance

MSc Informatics Eng.

2011/12

A.J.Proença

Data Parallelism 2 (Cell BE, GPU, ...)
(most slides are borrowed)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 2

Beyond Vector/SIMD architectures

•  Vector/SIMD-extended architectures are hybrid approaches
– mix scalar + vector operation capabilities on a single device
– highly pipelined approach to reduce memory access penalty
–  tightly-closed access to shared memory: lower latency

•  Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vectors and/or SIMD cores:

•  DSP VLIW cores with vector capabilities: Texas Instrument
•  PPC cores coupled with SIMD cores: Cell Broadband Engine
•  ARM64 cores coupled with SIMD cores: project Denver (NVidia)
•  future x86 hybrid cores: Intel, AMD ...

– devices with no scalar processor: accelerator devices
•  penalty on disjoint physical memories
•  based on the GPU architecture: SIMD—>SIMT to hide memory latency
•  ISA-free architecture, code compiled to silica: FPGA

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 3

Texas Instruments: Keystone DSP architecture

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 4

Cell Broadband Engine (1)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 5

Cell Broadband Engine (2)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 6

Cell Broadband Engine (3)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 7

Cell Broadband Engine (4)

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 8

NVidia: Project Denver

•  Pick a successful SoC:
Tegra 3

•  Replace the 32-bit
ARM Cortex 9 cores
by 64-bit ARM cores

•  Add some Fermi
SIMT cores into
the same chip

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 9

What is an FPGA

Field-Programmable Gate Arrays (FPGA)
A fabric with 1000s of simple configurable logic cells with LUTs,
on-chip SRAM, configurable routing and I/O cells

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 10

FPGA as a multiple configurable ISA

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 11

The GPU as a compute device: the G80

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 12

The CUDA programming model

•  Compute Unified Device Architecture
•  CUDA is a recent programming model, designed for

–  Manycore architectures
–  Wide SIMD parallelism
–  Scalability

•  CUDA provides:
–  A thread abstraction to deal with SIMD
–  Synchr. & data sharing between small groups of threads

•  CUDA programs are written in C with extensions
•  OpenCL inspired by CUDA, but hw & sw vendor neutral

–  Programming model essentially identical

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 13

CUDA Devices and Threads

•  A compute device
–  Is a coprocessor to the CPU or host
–  Has its own DRAM (device memory) !
–  Runs many threads in parallel
–  Is typically a GPU but can also be another type of parallel

processing device

•  Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

•  Differences between GPU and CPU threads
–  GPU threads are extremely lightweight

•  Very little creation overhead, requires LARGE register bank
–  GPU needs 1000s of threads for full efficiency

•  Multi-core CPU needs only a few

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09
!

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n!

14 Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology (and in NVidia)

!  Threads of SIMD instructions (warps)
!  Each has its own PC (up to 48 per SIMD processor)
!  Thread scheduler uses scoreboard to dispatch
!  No data dependencies between threads!
!  Threads are organized into blocks & executed in groups

of 32 threads (thread block)
!  Blocks are organized into a grid

!  The thread block scheduler schedules blocks to
SIMD processors (Streaming Multiprocessors)

!  Within each SIMD processor:
!  32 SIMD lanes (thread processors)
!  Wide and shallow compared to vector processors

G
raphical P

rocessing U
nits

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 15

CUDA basic model:
Single-Program Multiple-Data (SPMD)

•  CUDA integrated CPU + GPU application C program
–  Serial C code executes on CPU
–  Parallel Kernel C code executes on GPU thread blocks

CPU Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09
!

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n!

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 16

Programming Model: SPMD + SIMT/SIMD

•  Hierarchy
–  Device => Grids
–  Grid => Blocks
–  Block => Warps
–  Warp => Threads

•  Single kernel runs on multiple blocks
(SPMD)

•  Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

•  Single instruction are executed on
multiple threads (SIMD)
–  Warp size defines SIMD granularity

(32 threads)

•  Synchronization within a block using
shared memory

Courtesy NVIDIA

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 17

The Computational Grid:
Block IDs and Thread IDs

• A kernel runs on a computational
grid of thread blocks

– Threads share global memory
• Each thread uses IDs to decide

what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• A thread block is a batch of
threads that can cooperate by:

– Sync their execution w/ barrier
– Efficiently sharing data through a

low latency shared memory
– Two threads from two different

blocks cannot cooperate

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09
!

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n!

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 18

CUDA Thread Block

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent

threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the
same thread program

• Threads share data and synchronize
while doing their share of the work

• Threads have thread id numbers
within Block

• Thread program uses thread id to
select work and address shared data

CUDA Thread Block

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09
!

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n!

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 19

Parallel Memory Sharing

•  Local Memory: per-thread
– Private per thread
– Auto variables, register spill

•  Shared Memory: per-block
– Shared by threads of the same

block
– Inter-thread communication

•  Global Memory: per-application
– Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1 Sequential
Grids
in Time

Block

Shared
Memory

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09
!

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n!

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 20

CUDA Memory Model Overview

•  Each thread can:
–  R/W per-thread registers
–  R/W per-thread local memory
–  R/W per-block shared memory
–  R/W per-grid global memory
–  Read only per-grid constant

memory
–  Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host •  The host can R/W
global, constant, and
texture memories

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09
!

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n!

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 21

Hardware Implementation:
Memory Architecture

•  Device memory (DRAM)
–  Slow (2~300 cycles)
–  Local, global, constant,

and texture memory

•  On-chip memory
–  Fast (1 cycle)
–  Registers,

shared memory,
constant/texture cache

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Courtesy NVIDIA
22 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Memory Structures

!  Each SIMD Lane has private section of off-chip
DRAM
!  “Private memory” (Local Memory)
!  Contains stack frame, spilling registers, and private

variables
!  Each multithreaded SIMD processor also has

local memory (Shared Memory)
!  Shared by SIMD lanes / threads within a block

!  Memory shared by SIMD processors is GPU
Memory (Global Memory)
!  Host can read and write GPU memory

G
raphical P

rocessing U
nits

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 23

Families in NVidia GPU

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 24

NVidia GPU structure & scalability

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 25

The NVidia Fermi architecture

Fermi
Multithreaded

SIMD Processor
(Streaming

Multiprocessor)
Fermi

Architecture

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 26

GT200 and Fermi SIMD processor

27 Copyright © 2012, Elsevier Inc. All rights reserved.

Fermi Architecture Innovations

!  Each SIMD processor has
!  Two SIMD thread schedulers, two instruction dispatch units
!  16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units
!  Thus, two threads of SIMD instructions are scheduled every two

clock cycles

!  Fast double precision
!  Caches for GPU memory
!  64-bit addressing and unified address space
!  Error correcting codes
!  Faster context switching
!  Faster atomic instructions

G
raphical P

rocessing U
nits

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 28

Fermi:
Multithreading and Memory Hierarchy

29 Copyright © 2012, Elsevier Inc. All rights reserved.

Example

!  Multiply two vectors of length 8192
!  Code that works over all elements is the grid
!  Thread blocks break this down into manageable sizes

!  512 threads per block

!  SIMD instruction executes 32 elements at a time
!  Thus grid size = 16 blocks
!  Block is analogous to a strip-mined vector loop with

vector length of 32
!  Block is assigned to a multithreaded SIMD processor

by the thread block scheduler
!  Current-generation GPUs (Fermi) have 7-16

multithreaded SIMD processors

G
raphical P

rocessing U
nits

30 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
G

raphical P
rocessing U

nits

31 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Processor versus CUDA core

G
raphical P

rocessing U
nits

AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 32

GPU: NVidia Fermi versus AMD Cayman

