intel)

Intel® Performance Tuning Utility
4.0

User Guide

Copyright © 2006-2009 Intel Corporation
All Rights Reserved

Document Number: 315953-035US
Revision: 3.1.5

World Wide Web: http://www.intel.com

[| ®
l n tel Intel® Performance Tuning Utility 4.0

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN
WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE
OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, InteIDX2, InteIDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge,
Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside,
vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2006-2009, Intel Corporation. All rights reserved.

Revision History

Document Revision Description Revision Date
Number Number
315953- 3.0 Initial release. November
003US 2007
315953- 3.1 IPTU 3.1 release February 2008
031USs » Updated information on Data Access View

e Updated information on Sampling View

e Updated information on Hotspot Analysis Configuration

settings
315953- 3.1.1 IPTU 3.1 update 2 April 2008
032Us Added information on Importing Data.
315953- 3.1.2 IPTU 3.1 update 3 June 2008
033US Updated information on Data Access View.

2 Document Number: 315953-035US

[| ®
About the Intel® Performance Tuning Utility l n tel

315953- 3.1.3 IPTU 3.1 update 4 July 2008
034US Added information on event ratios.
315953- 3.1.4 IPTU 3.2 update 1 December
034US Added information on Advanced Profile view, Registers 2008

view, call sites, and improved experiment naming scheme.
315953- 3.1.5 IPTU 4.0 September
035Us Added information on Overtime view, Hotspot view with 2009

Loop Granularity, basic block execution counters, updated

Advanced Profile view and information on modifying ratios.

User Guide 3

[®
(l n tel > Intel® Performance Tuning Utility 4.0

Contents

About the Intel® Performance Tuning ULilityccoooiiiiiiiii e 6
Data CollECtiON .o e 8
2.1 SaAMIP NG e 8
2.2 Statistical Call Graph ... 9
2.3 EXacCt Call Graph .o e 10
2.4 Heap Profiling. .o i i e e e e e 10
2.5 Data AcCess Profilingvoeiiiiii e 11
Profiling EXPerimMENt ...ttt 13
R E 2T o] [Lo o PP 14
4.1 Automatic File RESOIULIONvii e 14
4.2 SY=T= 1o g B T =Tl o o =T 15
4.3 Predefined Search DireCtoriescuovuiiiiiiiiiiii e 15
4.4 File SEarch Order. ..o e e 16
EVENT RaATIOS ot 17
5.1 Modifying / Creating Ratiosoociuiiieiiii e 17
Working with the Command-line Interfaceccocviiiiiiiiiii e 20
6.1 Sampling HOtSPOt ANalysSiS cuvviriiiiiiiii i e eas 20
6.1.1 Collecting Sampling Datacoooiiiiiiiiiiii s 20
6.1.2 Viewing Sampling Data......coviiiiiiiiiii i e 23
6.1.3 Comparing Two Sampling Experimentsccoovviiiiiiiiiiiiiiiiiinns 23
6.2 Statistical Call Graph ANalysSiS......cooiiiiiiii s 25
6.2.1 Collecting Statistical Call Graph Datacccvviviiiiiiiiiiiiienns 25
6.2.2 Collecting Data for Specific Code RegiONSccoviiiviiiiiniiiieinnnens. 27
6.2.3 Viewing Statistical Call Graph Data...........coooviiiiiiiiee 28
6.2.4 Identifying LOOPS cuieiiieiii i i i 29
6.3 Exact Call Graph ANalysSiS.......ouieiii e 29
6.3.1 Collecting Call Graph Dataccoviviiiiiiiic e 29
6.3.2 Viewing Call Graph Dataooviviiiiiiiiiee e eas 30
6.4 MEMONY ANAIYSIS ..uuiieiiiiiii it 31
6.4.1 Collecting Heap Profile Dataccoveviiiiiiiiiiiiicrsneneiee e 31
6.4.2 Viewing Heap Profile Dataccooiiieiiiiiiii e 32
6.4.3 Collecting Data Access ReSUItS......cvviiiiiiiiiiiiicii e 35
6.4.4 Viewing Data AcCess RESUIES......ccvviiiiiiiiiii i i i i cee s 35
6.5 Specifying Search DIr€CLOMEScouiuieiiie i e e 36
Working with the Graphical Interface.......cooiiiiiiiiiiii e 38
7.1 Profiling CONCEPES 1.viii ittt 38
7.1.1 PrOJeCE v 39
7.1.2 Profiling Configurationcooieiiiiii e 40
7.2 Configuration SettiNgsSouieieiii i 41
7.2.1 Hotspot Analysis Configuration Settingscccoviiiiiiiiiiiiei e 42

4 Document Number: 315953-035US

About the Intel® Performance Tuning Utility l n te I

7.2.2 Call Count Analysis Configuration Settings.........ccoovviviiiiiiiiininnnns 44

7.2.3 Heap Analysis Configuration Settings.........coovviiiiiiiiiiiiiiineees 45

7.2.4 Configuration-specific Project Properties.........ccccvviviiiiiiiiiinnnnns 46

7.3 Workspace and Tuning Navigatoroviiiiiiiei e e 48

7.4 Data ViEWS v 48

7.4.1 Filtering CoNtrols ...o.e e 49

7.4.2 =T a] 0] 11 g T BV A T= 1 PP 50

7.4.3 OVErtimE VIEW .uiviiiiiiiiiii e 57

7.4.4 Statistical Call Graph VIieWccoviiiiiiii e 66

7.4.5 Call COUNT VIBW Lneinieieiei et e e e e e as 69

7.4.6 Heap Profiling VIEW ... 69

7.4.7 Data ACCESS VIEW...uiuiiiiiiiiiiii i 69

7.4.8 SOUNCE VIBW iutiuiieitiie ettt aaas 75

7.4.9 Hotspot Difference VIEWSciviiieiiiiiiiie e e 82

7.5 Specifying Search DireCtoriesoviiiiii i e 85

7.6 IMPOorting Data. ..o i 86

8 Collecting and Analyzing Data on Different Systemsccooiiiiiiiiiii e, 87
8.1 (@00] [[=Tol] e I T - PP 87

8.2 CoNVErtiNg Data ..o e 87

8.3 Copying Data to the Analysis Machinge......ccovoiiiiiiiiiiic e 88

9 TroUDIESNOOEING ... e 89
9.1 Troubleshooting the HOtSpot VIeWc.oiiiiiiiii e 89

Appendix A: Command-liNe REFEIENCE. ... cui i e e e e e 91
PaY o]]=T o o [> G €] [111 [Y 99

User Guide 5

ntel)

Intel® Performance Tuning Utility 4.0

About the Intel® Performance Tuning

Utility

The Intel® Performance Tuning Utility (Intel® PTU) is a cross-platform performance
analysis tool set succeeding the VTune™ Performance Analyzer. Along with such
traditional features of the VTune analyzer as identifying the hottest modules and
functions of the application, tracking call sequences, identifying performance-critical
source code, the Intel Performance Tuning Utility has new, more powerful capabilities
of data collection, analysis, and visualization. Most of these capabilities are developed
upon requests of the users experienced in performance tuning but at the same time
they are easy to use for novices.

In addition to the standard VTune analyzer functionality, this version of the Intel
Performance Tuning Utility introduces the following new features:

Capability

Description

Target Audience

Statistical Call
Graph

e Analyzes and reconstructs a call flow of
your application

¢ No source code or binary
instrumentation required

e Low collection overhead

e No driver dependency on Linux

Novice to Expert

Predefined Profile
Configurations

Ensures to collect the most important and
informative events for target system

Novice to Expert

Automatic
identification of
potential
performance
issues

Uses event ratios to automatically identify
potential performance problems and bring
them to the user attention for any
predefined or user-created event profiles.
Tuning advice can also be viewed for these
issues.

Novice to Expert

Call counts per
call source

Detects the number of times each function
was called by each of its callers.

Novice to Expert

Call argument Provides minimum, maximum, average, Expert
statistics and RMS values of call arguments on Intel®

64 architecture systems.
Loop trip count Provides minimum, maximum, average, Expert
for counted and RMS values of counted loop trip
loops counts.
Advanced event- e Event Multiplexing Expert

based sampling

e Data Profiling

6 Document Number: 315953-035US

About the Intel® Performance Tuning Utility

Loop profiler

Identifies loop(s) in a function and its caller
function.

Intermediate

Basic Block .
analysis

Displays disassembly code structured in
basic blocks.

Annotates each basic block with the
number of event occurred in this block
Provides Control Flow Graph for a
function.

Intermediate /
Expert

Result difference

Analyzes and reports difference of two
sampling experiments.

Expert

Events over IP °
view (histogram)

Plots the number of events collected per
IP range (or single) address in the
selected module.

Supports drill-down from selected IP
address to its source code or
disassembly if no source is available.

Intermediate /
Expert

Heap profiling

Identifies unnecessary memory allocations
and memory leaks.

Intermediate /
Expert

Aligning Linux
and Windows
profiling
capabilities

Makes tools easier to learn and use

Novice to Expert

You can work with the Intel Performance Tuning Utility using the command-line
utilities and graphical components integrated to the Eclipse* development
environment both on the Microsoft* Windows* and Linux* operating systems.

User Guide

[®
l n tel > Intel® Performance Tuning Utility 4.0

Data Collection

2.1

The Intel Performance Tuning Utility enables collecting performance data in the
following modes:

e Sampling

e Statistical call graph
e Exact call graph

e Heap profiling

e Data access profiling

There are two types of the data collection mechanism: time-based and event-based.
The collection mechanism you choose depends on the type of interrupt you wish to use
for data collection: the Operating System (OS) timer or processor event(s). If you use
the OS timer, the Intel Performance Tuning Utility interrupts the processor and collects
samples after the specified time interval. If you use the processor event, the Intel
Performance Tuning Utility programs the processor to interrupt execution and collects
a sample after the specified humber of occurrences of the selected processor event(s).
The sampling collector interrupts the processor after a specified interval (time or
event-based), collects the samples of active instruction addresses for each processor
on your system, and writes them to a file.

This version of the product supports the following:
e Event-based sampling collection on Windows and Linux
¢ Time-based statistical call graph collection on Windows and Linux

e Event-based statistical call graph collection on Windows. Limited to one PMU event
per one collection run.

Sampling

The sampling collector profiles the whole system by interrupting active software based
on the OS timer (Time Based Sampling, TBS) or Performance Monitoring Unit (PMU)
counter overflow (Event Based Sampling, EBS) and captures the IP of interrupted
process at the time of the interrupt. Statistically collected IPs of active processes
enable the viewer to show statistically important code regions that affect software
performance.

Sampling collection with the Intel Performance Tuning Utility is based on SEP
(Sampling Enabling Product) and has the same average overhead - about 2% on 1ms

8 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

Data Collection

2.2

User Guide

sampling interval. Sampling collection with the Intel Performance Tuning Utility is very
similar to the sampling collector in the VTune analyzer but it has a number of
enhancements in collection configuration and application management.

The number of hardware events that can be collected simultaneously is limited by CPU
capabilities. Usually, it is no more than 4 events. To overcome this limitation, the Intel
Performance Tuning Utility splits the event list into several event groups. Each group
consists of events that can be collected simultaneously. The Intel Performance Tuning
Utility uses one of the following techniques:

e Run an application several times collecting one event group during each run. This is
a classical approach, well-known to the users of the VTune analyzer.

e Run an application only once and multiplex the event groups in a round robin
fashion during the run. This is a new approach that is more transparent and
convenient. But beware that it may not work on some OS/hardware combinations.

See Also:

Sampling Hotspot Analysis (CLI)
Hotspot Analysis Configuration Settings (GUI)
Sampling View (GUI)

Statistical Call Graph

The statistical call graph collector profiles your application using the OS timer (TBS) or
PMU event (EBS) depending on the selected sampling mechanism. The collector
interrupts a process, collects samples of all active instruction addresses, and restores
a call sequence upon each sample. Sampled instruction pointer along with a call
sequence (stack) is stored in data collection files and then can be analyzed by the Intel
Performance Tuning Utility viewer. Statistically collected IP samples with call
sequences enable the viewer to display a call graph or/and the most time-consuming
paths. Use this data to understand the control flow for statistically important code
sections.

On Linux, the statistical call graph collector embeds an agent library into the profiled
application using the LD_PRELOAD variable. This variable affects dynamic loader
behavior and sets up the OS timer for each thread in the application. Upon timer
expiration, the application receives the SIGPROF signal that is handled by the
collector. The collector identifies the application stack on each sample using the
information the compiler stores inside the application.

On Windows, the collector attaches to the process using OS debugging mechanism,
and the sampling driver generates a single step on each interrupt from PMU counter
overflow. The collector catches that single step debug exception and unwinds stack for
currently active thread.

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

[| ®
l n tel > Intel® Performance Tuning Utility 4.0

2.3

2.4

Average overhead of the statistical call graph collector is about 5% when sampling
using default interval - 10ms.

See Also:

Statistical Call Graph Analysis (CLI)
Hotspot Analysis Configuration Settings (GUI)
Statistical Call Graph View (GUI)

Exact Call Graph

The exact call graph collector profiles your application by instrumenting function entry
and exit points using the PIN dynamic instrumentation framework. For each function
call, the Intel Performance Tuning Utility records a caller-callee pair together with
timing and call count information. It enables you to identify how much time the
application spent in each function. You may use this information to identify the code
sections that could be optimized.

To analyze the resulting call graph, use the Intel Performance Tuning Utility command-
line viewer that provides the following information:

e List of functions with their parents, children, and timing information
e Flat data: list of functions with timing and call information with no relationships

e Per-thread view for multithreaded applications

Collection overhead may vary depending on the overall number of loaded libraries and
length of initialization stage. For computationally-intensive console applications, call

graph overhead typically does not exceed 2x-8x. Call count overhead does not exceed
1.1-x1.5x%.

See Also:

Exact Call Graph Analysis (CLI)
Call Count Analysis Configuration Settings (GUI)
Call Count View (GUI)

Heap Profiling

The heap profiler enables you to identify when and where dynamic memory was
allocated in your application. Unnecessary allocations can decrease the application
locality, resulting in performance degradation. The heap profiler helps you identify
unnecessary memory allocations, as well as logical memory leaks - references to
blocks of memory that are not de-allocated promptly when they are no longer used by
the application.

10 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

Data Collection :i n te I oa)

Since the heap profiler collection requires instrumentation of your application, your
application may execute slower. Collection overhead may vary depending on the
overall number of loaded libraries and length of initialization stage and typically does
not exceed 3x-8x for computationally-intensive console applications in exact mode and
1.1-2.0x in fast mode.

See Also:

Memory Analysis (CLI)
Heap Analysis Configuration Settings (GUI)
Heap Profiling View (GUI)

2.5 Data Access Profiling

The data access profiling enables the analysis of data access and layout-related
performance problems in your application. The Intel Performance Tuning Utility
performs the data profiling via Event-Based Sampling data collection that uses the
precise events related to data memory operations such as loads and stores. The
events can be configured to collect extended information, the values of all the
registers evaluated at the IP of the interrupt, on IA-32 and Intel® 64 architecture
systems. The register values and the disassembly allows the reconstruction of the
linear address of the memory operation that caused the event. Intel PTU does this
automatically. This will work with the predefined event profiles enabled for data
profiling, or with user-created profiles when they are similarly enabled through the
check box in the profile configuration interface. Check the event description to make
sure the events you use are precise. To see the event description:

1. Open your configuration in the Profile dialog box.

2. From the Hotspot Analysis tab, click the Add button.
The Select events to add dialog box opens.

3. Select an event from the list and see the short event description below.
Precise events are marked as follows: INST_RETIRED.ANY_P (precise).

The following precise events are used:

Processors Events

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_O
Intel® Core™ i7 processor

NOTE: You may use any other
MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD _* events.

MEM_INST_RETIRED.LOADS
MEM_INST_RETIRE.STORES
MEM_LOAD_RETIRED.DTLB_MISS
MEM_LOAD_RETIRED.HIT_LFB
MEM_LOAD_RETIRED.L1D_HIT

User Guide 11

António Pina

António Pina

António Pina

António Pina

António Pina

NOTE:

Intel® Performance Tuning Utility 4.0

MEM_LOAD_RETIRED.L2_HIT
MEM_LOAD_RETIRED.LLC_MISS
MEM_LOAD_RETIRED.LLC_UNSHARED_HIT
MEM_LOAD_RETIRED.OTHER_CORE_L2_HIT_HITM
MEM_STORE_RETIRED.DTLB_MISS
MEM_UNCORE_RETIRED.LOCAL_DRAM
MEM_UNCORE_RETIRED.OTHER_CORE_L2_HITM
MEM_UNCORE_RETIRED.REMOTE_CACHE_LOCAL_HOME_HIT
MEM_UNCORE_RETIRED.REMOTE_DRAM

Intel® Core™ 2 Duo processors

INST_RETIRED.ANY_P
MEM_LOAD_RETIRED.L1D_MISS
MEM_LOAD_RETIRED.L2_MISS
MEM_LOAD_RETIRED.L1D_LINE_MISS
MEM_LOAD_RETIRED.L2_LINE_MISS
MEM_LOAD_RETIRED.DTLB_MISS

Intel® Pentium® 4 processors

Loads Retired
1st Level Cache Load Misses Retired

2nd Level Cache Load Misses Retired

Intel® Itanium® 2 processors

DEAR_LATENCY_ANY
NOTE: You may use any other DEAR_LATENCY_* events.

It is not necessary to collect all listed events. For example, when collecting data for
Intel Core 2 Duo processors, you may use only MEM_LOAD_RETIRED.L1D_MISS and
MEM_LOAD_RETIRED.L2_MISS events. This results in less accuracy but may
significantly decrease the size of collection results and, consequently, processing time.

Due to the statistical nature of sampling, data access profiling results are also only

statistically correct.

See Also:

Collecting Data Access Results (CLI)

Viewing Data Access Results (CLI)

Hotspot Analysis Configuration Settings (GUI)

Data Access View (GUI)

12 Document Number: 315953-035US

Profiling Experiment i n te l ®>

Profiling Experiment

User Guide

Profiling experiment (or experiment) is a basic concept of the performance analysis
with the Intel Performance Tuning Utility.

Treat your profiling experiment as a physical experiment. Thus, in the physical
experiment, an event under research is sensitive to the research tools and
environment conditions. The same is with profiling when you measure something
about your application or system. Once application, or system, or measurement tools
change (or you just suspect that one of them might have changed), this becomes
another experiment. For example, once you recompile the code of your application, or
give different data for the input, or invoke another data collector - all these cases
become separate experiments.

It is dangerous to mix data you collected during different experiments since it could
lead to wrong conclusions. To ensure the experiment data accuracy, the Intel
Performance Tuning Utility relies on you when you place the data related to a specific
experiment under the experiment directory. This is the reason why the command-line
tools of the Intel Performance Tuning Utility accept the experiment directory as the
first (position) parameter. GUI version of the product facilitates this procedure by
creating experiment directories automatically and locating the data collected during
one profiling run under a specific experiment directory.

See Also:
Profiling Concepts (GUI)

13

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

[®
l n tel > Intel® Performance Tuning Utility 4.0

4

File Resolution

4.1

Viewing and analyzing data collection results requires data from user files: modules
(binaries), symbol files, and source files. Sometimes it could be problematic for the
tool to find correct binaries and/or symbols, define boundaries of functions where
hotspots occurred, and locate the source files. Consider the following examples:

e Collection is done for binaries with no debug information and no source code
provided.

e Analysis is done several days after collection when some binaries and source files
have been updated and do not correspond to the collection state.

e Collection is done on one machine while analysis is performed on another machine.

This section describes basic concepts of file resolution mechanism used in the Intel
Performance Tuning Utility.

Automatic File Resolution

In many cases the Intel Performance Tuning Utility is able to resolve user files
automatically. Automatic file resolution includes the following steps:

e Look-up by the absolute name

e Heuristic resolution of broken or incomplete file names and paths

e Search in system directories (binary and symbol files only)

e Search around corresponding binaries (symbol and source files only)

System directories are specific to the target operating system and include the
following:

Windows:

e $SYSTEMROOTS%, $%SYSTEMROOTS/System32, $SystemRoot%/System32/drivers
(binary files only)

e Directories specified in $pATHS (binary files only)

e Directories specified in $ NT SYMBOL PATH% (symbol files only). Only local
directories from this path are currently taken into account. References to the
Microsoft* Symbol Server* are ignored.

Linux:

All the directories below are used for locating binary files only.

14 Document Number: 315953-035US

António Pina

António Pina

File Resolution

4.2

4.3

User Guide

intel)

e /bin, /usr/bin, /usr/local/bin

e /lib, /usr/lib, /usr/local/lib

e /lib/modules/<current kernel version>/kernel and its subdirectories
o Directories specified in $PATH and $LD LIBRARY PATH

e Directories specified in the /etc/1d.so.conf file

Search Directories

Search directories provide additional information for locating user files. Search
directories can be specific to the user file category (binary/symbol/source files) and
common to all files. During resolution of a user file category (binary/symbol/source
files), the Intel Performance Tuning Utility searches the directories specific to this
category and, then, common search directories.

There is a set of predefined search directories used by the Intel Performance Tuning
Utility. But you can specify additional search directories using both graphical user
interface and command-line interface.

You can set the high priority to a search directory. This means that search in this
directory must be performed before automatic file resolution. High priority search
directories are very important if you collect and view results on different machines. In
this case, high priority search directories should point to the location of original
binary/symbol/source files to prevent the Intel Performance Tuning Utility from picking
up wrong versions of these files during automatic resolution.

Predefined Search Directories

While resolving user files for the specific experiment, the Intel Performance Tuning
Utility automatically adds a set of subfolders in the experiment directory to a search
directories list:

e <experiment dir>/binaries for binary files
e <experiment dir>/sources for source files
e <experiment dir>/symbols for symbol files
e <experiment dir>/all for all the above files

All of these search directories are recursive and of high priority. Their use makes the
experiment self-contained and simplifies further work with it, for example transition to
another machine.

15

António Pina

António Pina

®
l n tel Intel® Performance Tuning Utility 4.0

4.4 File Search Order

The Intel Performance Tuning Utility uses the following order when resolving user
files:

e Predefined search directories

e User-defined high priority search directories

e Automatic files resolution

e Other user-defined search directories

16 Document Number: 315953-035US

Event Ratios

intel)

Event Ratios

5.1

User Guide

Event ratios help identify potential performance problems for a code region
automatically by using values of events collected during event-based sampling.

An event ratio is a dynamically calculated value based on the events that make up the
formula.

A wide variety of commonly-used event ratios are predefined for your convenience. If
you collect events that make up a predefined ratio, the data for the event ratio may be
shown in the sampling data from the command line or GUI Sampling Hotspot view.

By default, the Intel Performance Tuning Utility calculates predefined event ratios. But
you can also modify them or create new ones. However, to do that, you are expected
to have an expertise.

Some ratios define a threshold so that if the ratio value is greater than this threshold,
it signals of a potential performance issue. By default, the Intel Performance Tuning
Utility is configured to highlight cells in GUI Sampling Hotspot view where
corresponding ratios exceed the threshold. This enables automatic identification of
potential performance issues.

The Sampling Hotspot view also uses the ratios to define the displayed column order.
The predefined ratios are all approximately normalized so that the value indicates
what fraction of the execution time can be attributed to the issue the ratio identifies.
The event data columns are ordered (left to right) to first show some fixed events if
they are present (cycles, instructions, stalled cycles). These are then followed by the
events identified in the ratio definitions, in the order of the ratio values. For the
Sampling Hotspot view, the evaluation is done on the basis of all the collected events.
In the source and assembly views, the order is defined by just the events in the
function. This technique brings the most critical issues into immediate view.

See Also:
Advanced Profile View. Automatic Identification of Performance Issues (GUI)

Modifying / Creating Ratios

Event ratios are defined in a text file with the .vtr extension located in the

<install dir>/bin folder. There is a separate .vtr file for each processor supported
by the product. For example, ratios for Intel® Core™ 2 processor family built using
65-nm processor technology are defined in the pmm.vtr file.

17

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

n tel / Intel® Performance Tuning Utility 4.0

To modify an existing ratio or create a new one, you simply need to edit the
corresponding .vtr file. The format for ratio definition is the following:

<ratio name>[<number format>]=<ratio formula>
<list of optional attributes>

<ratio description>

e <ratio name> is any string that defines a ratio name;
e <number format> is a ratio display format (for example, *%’, *0.000’, etc);

e <ratio formula> is a formula to calculate the ratio. It can consist of events,
operators, and constants. If the formula consists of events, it has the following
format: [event generator:EventName] where Event Generator is the
processor that collects the event data. If the formula consists of constants, the
format is [constant:Name] where Name is the name of a constant;

e <list of optional attributes> is any of the following attributes:

Attributes Description

HID=<val>, HelpFileName=<val> | Points to the ratio documentation in the
product help system. Currently not
used.

Threshold=<val> Defines a threshold value. Exceeding
this value indicates a potential
performance issue.

ThresholdEvent=<event name> Defines the key event in the ratio that
you should pay attention to if the ratio
value exceeds the Threshold value.
Used together with the Threshold
attribute.

CyclesRatio=<yes/no> Identifies whether the ratio value means
relative number of CPU clockticks.

ShortDescription Provides a short ratio description to
display it in a tooltip.

Dependency="ratio namel, Specifies other ratios this ratio depends
ratio namez2,..” on. It means that if this ratio exceeds
the threshold, it is not considered as an
issue unless all ratios it depends on also
exceed their threshold.

e <ratio description> is a text describing the ratio;

18 Document Number: 315953-035US

e ‘---’ s a three ‘minus’ symbol marking the end of the ratio definition.

The Intel PTU supports the following constants:

Constant Description
CPU_REF_FREQ Equals to the CPU reference frequency.
latency:data source Represents average access latency in CPU

cycles when accessing a certain data
source. Possible data sources are:

e Unknown

° On Core

° Local LLC
] Remote LLC
e Local DRAM

L] Remote DRAM

Ratios are classified into groups of different priority. This affects the default column
ordering in the Hotspot view. Threshold events for ratios from groups of higher priority
appear before those from groups of lower priority. This enables you to focus on the
most important performance issues.

To change the default grouping, modify the following settings in the .vtr file:
e SubGroup=Name - specify the name of the ratio group;

e SubGroupPriority=number - set the priority humber for the ratio group. The
smaller the number, the higher the group priority. The highest priority is 0.

See Also:
Sampling View Preferences

User Guide 19

[| ®
l n tel > Intel® Performance Tuning Utility 4.0

6

Working with the Command-line
Interface

6.1

If you are interested only in the graphical interface of the product, you may skip this
section and go directly to the Working with the Graphical Interface section. However,
be aware that the following features are available via command line only:

e pause/resume for sampling and statistical call graph
e attach/detach for statistical call graph on Windows
e detailed loop analysis

e exact call graph data collection and analysis

Sampling Hotspot Analysis

6.1.1 Collecting Sampling Data

To analyze your application performance using the sampling collector, configure the
data collection session and launch the collector from the command line as follows:

vtsarun <experiment dir> [options] [-- <application> [arguments]]
Where:
e <experiment dir> is the directory where the collection results are stored;
e [options]are the configuration settings for your experiment;
e <application> is the application to analyze;
e [arguments] are the arguments passed to the analyzed application.
Sampling collector in the Intel Performance Tuning Utility is based on SEP and
supports exactly the same syntax as the SEP commands for collection configuration. It

also is able to display information about event modifiers.

This version of the product supports event multiplexing. Traditionally, the number of
events per sampling run is limited by the number of performance counters. Event

20 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

"] ®
Working with the Command-line Interface < l n te I)

User Guide

multiplexing is an enhancement to the traditional sampling model which removes this
restriction by multiplexing the use of physical counters within a single sampling run.
Event multiplexing removes the need for multiple runs of the application, thereby
reducing the time needed to complete sampling collection. Event sample counts
collected in the multiplexed mode are extrapolated to the total collection runtime.

Event multiplexing is also useful if the application does not have a long steady state or
takes a long time to get to steady state. On the other hand, if application initialization
is short and it gets to steady state quickly, then you can do multiple short runs and
will not need to do event multiplexing. To enable event multiplexing, use the -em
option. The event groups are interleaved (cycled) in round-robin fashion within the
default data slice. If dts (default time slice) is not specified, the default is 50
milliseconds.

Usage examples:

1. Sampling an application:

$ vtsarun ./exp -- ./my app

This example runs the data collection session for the application . /my app using
default events and stores data collection files in the experiment directory ./exp.

$ vtsarun ./exp -sd 20 -d 30 -ec “<event 1>:5a=10000” -- ./my app

This example runs the data collection session for the application . /my app on event
<event 1> with the Sample After value 10000. The collector launches the application,
waits for 20 seconds, starts data collection for 30 seconds, and then stops data
collection and terminates the application.

2. Sampling a system:

$ vtsarun ./exp -s —ec “<event 1>:s5a=10000” -d 10

This example runs a 10-second data collection session without running any application
on event <event 1> with the Sample After value 10000. Data collection results are
stored in the experiment directory . /exp.

$ vtsarun ./exp -s -ec “<event 1>,<event 2>:s5a=5000,<event 3>” -d 10

This example runs a 10-second data collection session without running any application
on events <event 1>, <event 2>, and <event_3>. Data collection results are stored in
the experiment directory ./exp. <eventl> and <event 3> are collected with the
default Sampling After value. Sampling After value for <event 2> is 5000.

$ vtsarun ./exp -s

Start system-wide sampling collection for default events forever until it is explicitly
stopped with the --stop command.

3. Pausing, resuming, and stopping the collection:

$ vtsarun ./exp --pause

21

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

[®
l n tel > Intel® Performance Tuning Utility 4.0

NOTE:

This example pauses the collection specified by the experiment . /exp. The pause
command simply suspends generation of profiling data while application continues
executing. You may use pause/resume commands to collect the data on interesting
code regions only.

$ vtsarun ./exp --resume

This example resumes the sampling collection specified by the experiment . /exp.

$ vtsarun ./exp --stop

This example stops the collection identified by the experiment . /exp. If the
experiment corresponds to the collection where application was launched, --stop
command terminates the profiled application as well.

4. Using built-in event information:
$ vtsarun -cl

This example displays the list of supported CPU names along with their
aliases/shortcuts for convenience.

$ vtsarun -el —-c I50

This example displays all events available for the Intel® Core 2 Duo processor (alias
name is I50). If the -c option is omitted, vtsarun displays available events for the
current processor.

Enter vtsarun -cl to know the alias name for your processor. Alias names are
provided in parentheses. For example: for Intel® Core™ i7 processor (I170), I70 is an
alias name. In the CPU list, your current processor is marked with an asterisk in the
beginning. If you choose to use a full processor name, make sure to use quotation
marks.

$ vtsarun —-ml RESOURCE STALLS.ANY -c I50

This example displays descriptions of all event modifiers available for the
RESOURCE_STALLS.ANY PMU event on the Intel Core 2 Duo processor (alias name is
150).

5. Event multiplexing:

$ vtsarun ./exp -s -em -dts 100 -ec
INST RETIRED.ANY P,MEM LOAD RETIRED.L1D MISS,MEM LOAD RETIRED.L2 MISS -d
10

This example samples INST_RETIRED.ANY_P, MEM_LOAD_RETIRED.L1D_MISS, and
MEM_LOAD_RETIRED.L2_MISS events within one experiment run using the event
multiplexing approach with the data slice time equal to 100ms. Without event
multiplexing, this example requires three runs.

See Also:

Profiling Configuration (GUI)

Hotspot Analysis Configuration Settings (GUI)
Configuration-specific Project Properties (GUI)

22 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

"] ®
Working with the Command-line Interface < l n te I)

User Guide

6.1.2 Viewing Sampling Data

To view the collected data from the command line, run the vtsaview command as
follows:

vtsaview <experiment dir> [options]
Where:
e <experiment dir> is the directory where the collection results were stored;

e [options] are the options for the data view.

When the vtsaview is called for the first time for some <experiment dir> it first
performs conversion of all tb5 files in the directory to a single database. This database
will contain all information needed by sampling viewer including functions names and
basic blocks. After the conversion is done the experiment could be easily copied to
another machine and analyzed there.

Usage examples:

$ vtsaview ./exp --re-convert
This example converts raw data in the . /exp directory to a single database.
$ vtsaview ./exp -g f

This example displays functions hotspots with the profiling data in the directory . /exp.

$ vtsaview ./exp -g rva —-f module,my module

This example displays RVAs hotspots for the module with name my module with the
profiling data in the directory . /exp.

$ vtsaview ./exp -g f -er

This example displays functions hotspots with collected events and ratios calculated
based on them.

See Also:
Sampling View (GUI)

6.1.3 Comparing Two Sampling Experiments

Use the vtsadiff command to compare two sampling experiment results. This types
of analysis could be useful if you measure the application performance, optimize the
code, and run the experiment with the same workload to identify the performance
difference against the benchmarks. The vtsadiff command displays the results of the

selected experiments and provides difference in sample count for each event.

Run the vtsadiff command as follows:

23

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

n tel ? > Intel® Performance Tuning Utility 4.0

vtsadiff [experiment 1 options] <experiment dirl> [experiment 2 options]
<experiment dir2> [common options]

Where:

e ([experiment options] list the search directories for modules; these options
are experiment-specific.

e Kexperiment dir>)is an experiment directory containing all *.tb5 files
generated for the specified experiment;

e ([common options] are filtering options for the data view. There are primary
and secondary view options. Secondary options can be used only when
preceded with the corresponding primary option.

In the vtsadiff output, the Clockticks-like event values are represented as the Time
value (in milliseconds). These values approximately correspond to the time spent for
execution of the respective unit (module, function, basic block, and so on). The Time
value is calculated as follows:

Time = Clockticks total value / (CPU frequency * 1000), where CPU frequency is in
MHz.

The Time:Diff column value displays the time difference between the first and second
experiments:

Time:Diff = Expl Time - Exp2 Time.

You can modify the CPU frequency value and analyze how the code execution time
depends on the CPU frequency by using the --cpu-frequency (or -f) option. Or, you
may use this option to specify the CPU frequency for a particular experiment if it was
not properly detected during the data collection. Specify the frequency value -f
<value> before the experiment you change this value for. If you specify the same
frequency for both experiments, specify the -f <value> option after both
experiments.

Usage examples:

$ vtsadiff ./expl ./exp2

This example displays difference at function level for two experiments residing in
subdirectories expl and exp2 in the current directory.

$ vtsadiff /tmp/expl /tmp/exp2 --search-dir bin=/tmp/modules -g m

This example displays difference at module level for two experiments residing in the
directories /tmp/expl and /tmp/exp2. vtsadiff extends the search for binaries to the
directory /tmp/modules for both experiments.

$ vtsadiff --search-dir bin=/tmp/modulesl ./expl --search-dir
bin=/tmp/modules?2 ./exp2 -g b --filter-module vtune

24 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

"] ®
Working with the Command-line Interface < l n te I)

6.2

NOTE:

NOTE:

User Guide

This example displays difference at basic block level. vtsadiff displays basic blocks
that belong to the module with the substring vtune in its name. vtsadiff extends the
search for binaries to the directory /tmp/modules1 for the first experiment and to the
directory /tmp/modules2 for the second experiment.

$ vtsadiff ./expl ./exp2 -g rva --filter-module vtunedemo,uhci hcd

This example displays difference at RVA level. vtsadiff displays addresses that
belong to module(s) with the substring vtunedemo or uhci_hcd in the name.

S vtsadiff ./expl —-f 3000 ./exp2

This example displays difference at function level for two experiments residing in
subdirectories expl and exp2 in the current directory. For the second experiment, the
CPU frequency value is changed to 3000Mhz. The updated Time value is displayed in
the Time(msec) column.

See Also:

Hotspot Difference Views (GUI)
Modifying the CPU Frequency (GUI)

Statistical Call Graph Analysis

6.2.1 Collecting Statistical Call Graph Data

To analyze your application performance using the statistical call graph collector,
configure the data collection session and launch the collector from the command line
as follows:

vtssrun <experiment dir> [options] -- <application> [arguments]

Where:

e <experiment dir> is the directory where the collection results (with *.vtss
extension) are stored;

e [options] are the configuration settings for your experiment;
e <application> is the application to analyze;

e [arguments] are the arguments of the analyzed application.

You may provide a shell or Perl script as an application. In this case, the collector
profiles the shell by itself and all children of the shell process.

To view the profiling results on any machine and speed up the result display, convert
all the collected data to a database file (*.db) as follows:

vtssview <experiment dir> --convert
You can copy/move database file from one platform to another.

25

António Pina

n tel ? > Intel® Performance Tuning Utility 4.0

Usage examples:

$ vtssrun ./exp -- /bin/ps

This example runs the data collection session for the application /bin/ps and stores
data collection files in the . /exp directory.

S vtssrun ./exp -st shell:notrace:trace -st sh:notrace:trace —-

./my_script

This example runs an experiment with a script as an application and disables shell
profiling.

$ vtssrun ./exp -nt —-s gcc:trace,notrace -- make

This example profiles only processes with gcc name launched from make.

$ vtssrun ./exp -nt —-st gcc:trace,trace -- make

This example profiles the gcc compiler and all the processes it launches.

$ vtssrun ./exp -st bash:notrace:trace -st perl:notrace:trace —-- myscript

This example tells the collector to profile all processes except for ‘bash’ and ‘perl’
processes.

$ vtssrun ./exp -sd 20 -d 30 -i 1 -- ./my app

This example runs the data collection session for the application . /my app With
sampling interval equal to 1ms (NOTE: It is limited by OS timer granularity so actual
interval may be higher). The collector launches the application, waits for 20 seconds,
starts data collection for 30 seconds, and then it stops data collection and terminates
the application.

Windows specific usage examples:

$ vtssrun ./exp -ec CPU _CLK UNHALTED.CORE:sa=100000 -- ./my app

This example runs statistical call graph collection for event-based sampling. Note you
may specify only one hardware event. Syntax of —ec option is exactly the same as for
vtsarun command.

$ vtssrun ./exp -a 213

This example attaches to process with PID 213 and runs time-based statistical call
graph collection for it. To stop the collection, press Ctrl+C in the terminal window or
use the -d command in other console.

$ vtssrun ./exp -d 213

This example stops collection for process with PID 213 and the collector detaches from
that process. If no process with the given PID was attached to this experiment, error
message is printed.

See Also:
Profiling Configuration (GUI)
Hotspot Analysis Configuration Settings (GUI)

26 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

"] ®
Working with the Command-line Interface < l n te I)

NOTE:

NOTE:

User Guide

6.2.2 Collecting Data for Specific Code Regions

Use the pause/resume options to focus the profiling on specific code regions. Consider
using these options for long-running server applications.

For example, to profile the myserver application under the workload generated by the
myworkload command, do the following:
1. Start the collector in a paused mode.

$ vtssrun ./exp -p all —-- myserver
Server launches and stabilizes.

2. In another terminal window, resume the profiling of the experiment:

$ vtssrun ./exp -r all

The collector looks into the experiment directory, determines currently running
processes, and resumes profiling of these processes.

3. Launch the myworkload command.

$ myworkload

4. Pause the collection again to ignore further collection.

$ vtssrun ./exp -p all
5. View the results.
$ vtssview ./exp -p

You must specify value for -p command. To pause all processes in experiment
directory, use all value. If the value is not specified, it is interpreted as syntax error.

You may pause/resume a profiling experiment any amount of times and see the
results after each pause command.

You may also pause/resume each running process individually. To see what process
and in which state is currently running:

1. Use the --1ist (-1) command or pass the experiment directory to the collector
command.

$ vtssrun ./exp

2. Pause/resume an individual process by passing PIDs to -p and -r commands.

$ vtssrun ./exp -p 23567 23678

$ vtssrun ./exp -r 23567

You may stop the collection by terminating all running applications, for example:

$ vtssrun ./exp -s

27

António Pina

António Pina

António Pina

n tel ? > Intel® Performance Tuning Utility 4.0

6.2.3 Viewing Statistical Call Graph Data

To view the collected data from the command line, run the vtssview command as
follows:

vtssview <experiment dir> <options>
Where:

e <experiment dir> is the directory where the collection results (with *.vtss
extension) are stored;

e <options> are the view mode and view options. There are primary and
secondary view options. Secondary options can be used only when preceded
with the corresponding primary option.

The command-line viewer displays the collected data in the following levels of detail:

e Flat profile view (--flat-profile | -p) displays the most time-consuming
functions (hotspot functions).

e Call Graph view (-—graph | -q) lists functions, their callers and callees.
e Hot Stack view (--hot-stack | -t) displays a list of call sequences for each
function.

Usage examples:

$ vtssview ./exp -cC

This example opens the directory with the experiment results and converts all data
collection files to a single database. The viewer creates a .db file with converted
results in the specified directory and adds loop detection information to the database.

$ vtssview ./exp -p

This example displays the Elat Profile view with the profiling data in the experiment
directory. The viewer looks for the .db file in the experiment directory and uses it to
show the view. If the viewer cannot find a database, it automatically converts all data
collection files from the experiment directory to a database and uses it to show the
view.

$ vtssview ./exp -gq

This example displays the Call Graph view from a .db file in an experiment result
directory. The viewer automatically converts data collection files to a database, if no
database is found.

$ vtssview ./exp -t

This example displays the Hot Stack view from the experiment result directory. The
viewer automatically converts data collection files to a database, if no database is
found.

$ vtssview ./exp -t —-m m

28 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

"] ®
Working with the Command-line Interface < l n te I)

This example displays the Hot Stack view from the experiment result directory with
mangled function names.
S vtssview ./exp -p -n 5 -s module -F function,main

This example displays the Flat Profile view from the specified experiment directory,
limits output to 5 functions, sorts the table by the Module column, and excludes
functions that contain 'main' string in their name.

$ vtssview ./exp -t -p -g -width function, 50, module, 50

This example displays the Flat Profile, Hot Stack, and Call Graph views from the
specified experiment directory and sets Function and Module column width to 50.
$ vtssview ./exp -t -gq -f module,libc

This example displays the Hot Stack and Call Graph views from the specified
experiment directory and shows information for modules with the 'libc' string in their
name only.

See Also:

Statistical Call Graph View (GUI)

6.24 |dentifying Loops

To view loop data from the command line, use the -1oops (or -1) option. For
example:

$ vtssview ./exp £p =1

This example opens the Flat Profile view from the specified experiment directory and
shows the collected data with timing information fordetected loops.

In the data view, the Intel Performance Tuning Utility displays Total and Self time for
detected loops, where:

e Loop Total time is the time spent in a loop body, including time spent in nested
loops and time spent in functions called from the loop and its nested loops.

e Loop Self time is the time spent in a loop body without including nested loops and
loops located in functions called from this loop.

6.3 Exact Call Graph Analysis

6.3.1 Collecting Call Graph Data

To analyze your application performance using the exact call graph collector, configure
the data collection session and launch the collector from the command line as follows:

User Guide 29

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

[®
l n tel > Intel® Performance Tuning Utility 4.0

NOTE:

vtegrun <experiment dir> [options] -- <application> [arguments]
Where:
e <experiment dir> is an experiment directory where profiling results are
stored;

e [options], specify the configuration settings for your experiment;
e <application> is the application to analyze;
e [arguments] are the arguments passed to the application.

Usage examples:

$ vtcgrun ./data -- mozilla

This example runs the data collection session for the mozilla application and stores
data collection files in the . /data directory.

$ vtcgrun datal -i ignorefile —-- mozilla

This example runs the data collection for the mozilla application and does not profile
auxiliary applications used by mozilla that are specified in the ignorefile file.

$ vtcgrun data -cc -- mozilla

This example only collects data on function calls in the mozil1la application. Timing
information and call graph is not analyzed.

See Also:

Profiling Configuration (GUI)
Call Count Analysis Configuration Settings (GUI)

6.3.2 Viewing Call Graph Data

To view the collected call graph data from command line, run the vtcgview command
as follows:

vtcgview <experiment dir> <options>

Where:
e <experiment dir> is the directory where the collection results are stored;

e <options> are the data collection file and view mode. There are primary and
secondary view options. Secondary options can be used only when preceded
with the corresponding primary option.

You can also view the collected exact call graph data in Eclipse.

Usage examples:

$ vtcgview ./data
This example displays the list of collection results stored in the . /data directory.

$ vtcgview ./datal -p -n 5

30 Document Number: 315953-035US

"] ®
Working with the Command-line Interface l n te I)

NOTE:

6.4

User Guide

This example displays the Flat Profile view from the . /datal experiment directory and
limits output to 5 rows. By default, the data are sorted by total time.

$ vtcgview ./datal -p -n 5 --sort-desc=calls
This example displays the Flat Profile view from the . /datal experiment directory,

limits output to 5 rows, and sorts the table by the calls column in the descending
order.

$ vtcgview datal/20070406135309525557000 27158.ecg --graph

This example displays the Call Graph view for the data collection result stored in the
20070406135309525557000_27158.ecg file. The file name corresponds to the
data:time:PID format. To get the name of a particular result, enter: vtcgview
<resultdir>.

$ vtcgview data --convert --flat-profile my-db-file.db

This example exports the Flat Profile view to the my-db-file.db database file.

Only the Flat Profile view export is supported.

See Also:
Call Count View (GUI)

Memory Analysis

6.4.1 Collecting Heap Profile Data

To collect data on the dynamic memory allocations in your applications, launch the
heap profiler from the command line as follows:

vthprun <experiment dir> [options] -- <application> [arguments]
Where:
e <experiment dir> is the directory where collection results are stored;
e [options] are the data collection configuration settings;
e <application> is the application to analyze;
e [arguments] are the arguments passed to the application.

You can define custom memory allocation/deallocation functions in the
bin/hp.allocators file and profile these functions using the --allocators (or -a)
option. For example:

$ vthprun /results/data -a=/home/users/iptu/bin/hp.allocators -- myapp

31

n tel ? > Intel® Performance Tuning Utility 4.0

The hp.allocators file provides the syntax and an example of specifying the
allocation/deallocation functions. By default (without the --allocators option), the
heap profiler analyzes the following memory allocation/deallocation functions: malloc,
calloc, free, realloc, malloc dbg (defined in the debug version of the Microsoft*
C runtime), free dbg (defined in the debug version of the Microsoft C runtime). Be
aware that an incomplete list of allocators can lead to the wrong results. Thus, if an
application allocates memory using malloc and releases using custom free, the heap
profiler, by default, profiles only malloc but not custom free. This can lead not only
to the wrong report on memory leaks and spacetime but to overlapping of block
addresses and result in a wrong number of allocated blocks. If this happens, the heap
profiler provides an error message.

Usage examples:

$ vthprun /tmp/vtunedemo results --exact=no -- ./vtunedemo

This example profiles the vtunedemo application in the fast mode.

$ vthprun /results/app profile --trace=yes -- ./myapp

This example collects information about heap usage over time during data collection.
$ vthprun /results/data --trace-children=yes -- ./launcher script.sh

This example profiles the application that is launched via the launcher script.sh
script or spawns child processes.

$ vthprun /tmp/res --ignore=apps to ignore.lst --trace=yes -trace-
children=yes -- /home/user/myapp

This example excludes applications listed in the apps_to_ignore.1lst file from
profiling.

See Also:
Profiling Configuration (GUI)
Heap Analysis Configuration Settings (GUI)

6.4.2 Viewing Heap Profile Data

To view the collected heap profile data from command line, run the vthpview
command as follows:

vthpview <experiment dir> [options]
Where:
e <experiment dir> is the directory where collection results are stored;

e [options] are the options for the data view. There are primary and secondary
view options. Secondary options can be used only when preceded with the
corresponding primary option.

The command-line viewer displays the collected data at the following levels of detail:

32 Document Number: 315953-035US

"] ®
Working with the Command-line Interface l n te I)

Time Weighting Information View (--spacetime)

This view shows overall memory usage and helps identify logical memory leaks. It
introduces the spacetime value that links the amount of memory allocated by your
application with the time during which this memory was retained. The spacetime is
calculated as space (in bytes) multiplied by time (in seconds). After fixing top entries
of the report (releasing memory in advance), your application will use less virtual
memory overall.

Memory Footprint View (--footprint)

This view shows the memory footprint over time. It provides a table that consists of a
header enumerating the timestamps for the data listed in the table. Each row in the
table describes the amount of memory allocated at the timestamp by a certain thread.
If the application is multi-threaded, the table includes several rows, one for each
thread. You can use the timestamps enumerated in the header to specify values for
the --begin/--end options of all other views.

Allocation Call Graph View (--allocgraph)

This view displays a hierarchical representation of allocations by call stack. In each
section (separated by a line of dashes), the first listed function is a caller and other
functions are callees (functions called by the caller). The Allocation Call Graph view
provides the following information:

Column Heading Description

Index Index of a function.

Self/Total Contribution of the function and all its children into the whole
memory allocated by the application.

Self % Memory Amount of memory allocated inside the functions directly and
indirectly. The values in parentheses are the percentage
contribution into the total values among the functions from one

section.
Self% Objects Number of allocated blocks.
Name [Index] Callee Function and its callees.

NOTE:

User Guide

Function Summary View (--functions)

This view shows the summary by the functions. Use this view to quickly identify the
number of allocated objects inside the function and estimate amount of allocated
memory.

All options applicable for allocation call graph are applicable for the function summary.

33

[®
(l n tel > Intel® Performance Tuning Utility 4.0

NOTE:

Memory Leaks View (--memleaks)

The view shows the number of retained/not released blocks. By default, it shows
memory that was not returned by the end of the application run. When trace data is
present, you can identify logical memory leaks. To do this, use the -begin and/or -
end options to specify the time period in which all newly allocated memory should be
released. All memory leaks are sorted by the amount of retained/not released
memory. The memory leaks view provides the following information:

e Summary about the retained/not released block
e ID, thread ID, number of bytes, and number of blocks for the critical function

e Call stack where this memory was retained/not returned

Block Size Distribution View (--objects)

This view shows the distribution of memory blocks by their size. The records are
grouped by size of allocated memory blocks. For each byte size in which memory was
allocated, the allocation memory block table shows the number of allocations of that
size (alloc) and the number of retained/not released memory blocks of that size

(retained).

By default, all views show only the first 10 functions, sorted by the amount of
allocated memory. To see all data, use the option --all-data.

Usage examples:

$ vthpview /tmp/ls results

This example displays the default spacetime view.

$ vthpview /tmp/vtunedemo results --list

This example displays all heap profile results stored in the experiment directory.
Consider using this option for multiple runs or when multiple processes were spawned.

$ vthpview /tmp/vtunedemo results —-footprint
This example displays memory footprint over time.
$ vthpview /tmp/ls res --memleaks --csv --csv-delimiter="|"

This example displays the memory leaks view in the CSV format using ‘|’ as a
delimiter.

$ vthpview /tmp/vtunedemo results --allocgraph --begin=1000 --end=5000

This example displays the memory allocation graph view in the time range [1000,
5000].

$ vthpview /tmp/vtunedemo results --meleaks --all-data --csv

This example displays information about all logical memory leaks (top ten, by default)
in the CSV format with the default delimiter.

34 Document Number: 315953-035US

"] ®
Working with the Command-line Interface l n te I)

See Also:
Heap Profiling View (GUI)

6.4.3 Collecting Data Access Results

To analyze data-related problems in your application, configure the data collection
session and launch the collector from the command line as follows:

vtsarun <experiment dir> -dl -ec <data profiling events> [options] [--
<application> [arguments]]

Where:
e <experiment dir> is the directory where collection results are stored;

e <data profiling events> is the list of sampling events required for data
profiling collection. To view the list of events available on your processor,
enter: vtsarun -el.

e [options] are the data collection configuration settings;
e <application> is the application to analyze;
e [arguments] are the arguments passed to the application.

When collecting data on IA-32 and Intel® 64 architecture, enable event multiplexing
to ensure that all events are collected during one application run. To enable event
multiplexing, use the —em option.

NOTE: Event multiplexing is not supported on the processors older than the Intel® Core™ 2
Duo processors.

Usage examples:

$ vtsarun ./exp -dl -em -ec “INST RETIRED.ANY P”,
“MEM_TLOAD RETIRED.L1D MISS”, ”“MEM LOAD RETIRED.L2 MISS” -- ./my app

This example runs data profiling collection session on the Intel Core 2 Duo processor
for the application . /my app. The data collection files are stored in the directory

./exp.

See Also:
Profiling Configuration (GUI)
Hotspot Analysis Configuration Settings (GUI)

644 Viewing Data Access Results

To view the collected data from the command line, run the vtdpview command as
follows:

User Guide 35

[®
(l n tel > Intel® Performance Tuning Utility 4.0

6.5

NOTE:

vtdpview <experiment dir> [options]

Where:
e <experiment dir> is the directory where the collection results were stored,;
e [options] are the options for the data view.

Usage examples:
$ vtdpview ./exp --convert

This example performs explicit conversion of all raw data files in the . /exp directory to
a single database.

$ vtdpview ./exp -granularity function --filter module,my module

This example displays functions hotspots for the my module module with the profiling
data in the . /exp directory.

$ vtdpview ./exp -granularity cacheline --filter process,my process

This example displays cachelines view for the my process process with the profiling
data in the ./exp directory.

See Also:
Data Access View (GUI)

Specifying Search Directories

Each viewer (except for the Heap Profiler and Exact Call Graph) of the Intel
Performance Tuning Utility supports command-line options for specifying search
directories. To specify a search directory, use the --search-dir option. This option
can be used multiple times and has the following format:

--search-dir bin|sym|srclall[:r|p]l=<directory>

This option specifies a search directory for binary (bin), symbol (sym), source (src)
files, or all above (al1l). Additional options can be specified after colon. Use the r
option to enable search in subdirectories. Use the p option to set the high priority to a
search directory.

Search directories you specify affect only the first run of the viewer in the experiment.
To apply new search directories to this experiment, use the --re-convert option.

Usage examples:

$ vtsaview c:\myExperiment -search-dir bin:rp=C:\myProject

This example displays sampling data collection results. To resolve binary file
associations, the c:\myProject directory is searched. The search includes
subdirectories and starts prior to automatic file resolution.

36 Document Number: 315953-035US

"] ®
Working with the Command-line Interface l n tel

User Guide

$ vtsadiff -search-dir src:r C:\MyProjectl C:\Experimentl -search-dir
bin=c:\MyProject2\bin C:\Experiment2 -search-dir
all:rp=C:\CommonFilesForBothExperiments

This example displays difference for two sampling data collection results. To resolve
file associations, the following settings are applied:

e Binary/source/symbol files for both experiments are searched in the
C:\CommonFilesForBothExperiments directory and its subdirectories.

e Source files for the first experiment that are not found on step 1 are searched in
the c:\MyProjectl\ directory and its subdirectories.

e Binary files for the second experiment that are not found on step 1 are searched in
the c:\MyProject2\bin directory.

See Also:
Specifying Search Directories (GUI)
Predefined Search Directories

37

[| ®
l n tel > Intel® Performance Tuning Utility 4.0

/

Working with the Graphical Interface

/7.1

If you are interested only in the graphical interface of the product, you may skip the
Working with the Command-line Interface section. It is easier to use the Intel
Performance Tuning Utility via GUI because the GUI version of the product can
generate for you a command line for the selected collector and open the viewer after
data collection. However, be aware that the following features are available via
command line only:

e pause/resume for sampling and statistical call graph
e attach/detach for statistical call graph on Windows
e detailed loop analysis

e exact call graph data collection and analysis

Profiling Concepts

The performance analysis with the Intel Performance Tuning Utility starts with creating
a new Project where you specify an application as an object of your analysis. You can
treat the Project as a container for the workload you want to profile. Usually, it is an
application, application command-line option, and working directory.

Another important concept is a Profiling Configuration. Profiling Configuration is
orthogonal to the Project concept: they exist in the Eclipse workspace independently of
each other. Profiling Configuration (or just Configuration) is a combination of data
collection settings. You may use one of default configurations predefined by the Intel
Performance Tuning Utility or create your own configuration. By applying a
Configuration to a Project you get the Experiment Result. Experiment Result is what
you get after a data collection session.

Configurations

Configuration 1 Configuration 2

Projects

38 Document Number: 315953-035US

António Pina

"] ®
Working with the Graphical Interface l n te I)

User Guide

Project 1

Project 2 Experiment Result

v | Project3 Experiment Result

What is important is that a custom Configuration you create can be applied to any
Project. So, if you create custom configurations and start analyzing a new application,
all your custom configurations are available to the new Project.

The concepts of Workspace, Project, and Experiment are reflected directly in the file
system. Eclipse workspace is a directory you specify when you start Eclipse for the
first time. Projects are located as sub-directories of the workspace directory.
Experiment directories are located in a project directory.

Profiling with the Intel Performance Tuning Utility consists of the following steps:
1. Create and configure a project.

2. Select a basic configuration or create your own configuration.

3. Run data collection.

4. View the collected results.

You may iterate all these steps several times to analyze the application performance
deeper.

7.1.1 Project

Project identifies a workload that you want to analyze and contains application
settings. A Project can contain one application only.

It is important to differentiate between the Intel Performance Tuning Utility Project
and the VTune analyzer Project. In the VTune analyzer, the Project can contain a
number of Activities where each Activity corresponds to an individual application
workload. In the Intel Performance Tuning Utility, the Project corresponds to one
workload. Think of it as of “something to run”.

To create a new Project:

39

Intel® Performance Tuning Utility 4.0

Click the New Project button arrow and select New Intel(R) PTU Project.
& Intel(R) Performance Tuning UHi

File Edit Mavigate Project Run W

| il | Q- - -

[] Project...
[] Other...

The New Project Wizard dialog box opens.

In the Project name and Location fields, specify the name and location of your
Project. Usually, the name of the Project is the name of the executable you want
to analyze.

Click Next.

In the Application field, enter a full path to the application you want to analyze.
The Working directory field is assigned automatically as you change the
Application field. It defaults to the directory where the application resides.
Change the default working directory, if required.

If you want to launch the application yourself, select the Profile without
launching an application option.

In the Application parameters field, enter application arguments, if necessary.

In the Workload duration field, specify the duration of data collection. The
default session duration is 20 seconds.

Click Finish.
Your project appears in the Tuning Navigator.

Next step is to apply a Profiling Configuration to the newly created Project.

7.1.2 Profiling Configuration

You may use predefined or custom configurations to collect Experiment Results for a
Project.

To use a predefined configuration:

1.
2.

Click the arrow on the g"” Profile toolbar button.

From the drop-down menu, select Profile As.
Another drop-down menu opens.

Select one of the available configurations.
Data collection starts.

You may also select a default configuration by right-clicking a Project node in the
Tuning Navigator and selecting the Profile As cascade menu.

40 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n te I)

/.2

User Guide

ﬁ test
Y unedenel
New r

% Profie as L E Basic Statistical Callgraph

O Profile... .
O Basic Call Count

Renames O Basic Data Access Profiling
Delete) Basic Heap Profiler
&' Refresh F5 O Basic Sampling
0 Intel(R) Core{TM) 2 processor family - Bandwidth
O Intel{R) Core{TM) 2 processor family - Bandwidth Breakdown
O Intel{R) Core{TM) 2 processor family - Contested Access

Properties

0 Intel(R) Core{TM) 2 processor family - Cyde Usage
O Intel(R) Core(TM) 2 processor family - Latency Analysis
Q Intel(R) Core{TM) 2 processar family - Uop Flow
O Working Set
1

Based on the default configuration, you may create your own configuration that would
use, for example, some specific hardware events.

To create/modify a profiling configuration:
1. Click the arrow on the QE"’ Profile button.

2. From the drop-down menu, select Profile....
The Profile dialog box opens.

s
Click the New Launch Configuration button to create a new configuration.

4. From the right pane, select the tab with the type of analysis to perform and modify
configuration settings as required.

Click Apply to save your settings.

6. Click Profile to start data collection.
The collection starts for the Project selected in the Profile project combo box. It
may happen that the current configuration cannot be applied to a particular
Project. In this case, an error message pops up and the Profile button is disabled.

Configuration Settings

There are two types of settings that affect your configuration:

e Analysis settings: To set up analysis settings, use the Profile dialog box and
select the type of analysis you wish to perform for the current configuration.
The following types of analysis are available:

o Hotspot Analysis

o Heap Analysis

41

n tel > Intel® Performance Tuning Utility 4.0

o Call Count Analysis

Click the required tab and modify settings for the existing configuration or
specify them for a new one.

The Profile dialog box also includes the Description tab. For advanced
predefined configurations provided with the Intel Performance Tuning Utility,
the Description tab contains information on each configuration and events it
uses. You may create/modify the descriptions for your own configurations and
exchange them to share performance tuning expertise.

e Configuration-specific project settings

7.2.1 Hotspot Analysis Configuration Settings

The hotspot analysis combines sampling, statistical call graph, and data access
profiling analysis. To select the hotspot analysis for your configuration and edit
configuration settings, check the Enable Hotspot Analysis box.

[glsfalal Ny e Call Count Analysis | Heap Analysis | Description

Enable Hotspot Analysis

() Time-based sampling
Sampling interval, msec:

(%) Event-based sampling

Caonfigured events for CPU: | Intel(R) Core(TM) i7 Processor A4
Event Name sample After LER Filter Add
BR_INST_EXEC.MEAR._CALLS 20000 All Branches

BR_INST_RETIRED.MEAR_CALL_R3 20000 v

[C]enable statistical callgraph Enable loop analysis []Enable data access profiing

Profile project: |test W F‘rnperﬁes...] [Get commands

¢ Time-based sampling: Enable the time-based sampling mechanism.

¢ Sampling interval, msec: Set up the period of sampling for time-based
mechanism.

o Event-based sampling: Enable the event-based sampling mechanism.

¢ Configured events for CPU: For event-based sampling, select the processor you
use to perform the hotspot analysis.

42 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

NOTE:

NOTE:

User Guide

o Event Name column: For event-based sampling, click the Add button to select
events to monitor. Selected events are added to the Event Name column.

o Sample After Value column: Specify the number of events after which the Intel
Performance Tuning Utility interrupts the processor to collect data.

¢ LBR Filter column: Click a row to select a filter for an event and enable the
collection of filtered Last branch records (LBRs). This column is available for Intel®
Core™ i7 processor family only.

« Enable statistical call graph: Check this box to analyze call sequences in your
application.

e« Enable loop analysis: Check this box to have the Intel Performance Tuning Utility
display hints on loops in the functions.

o Enable data access profiling: For event-based sampling, check this box to collect
additional information required to display data access profiling information.

When collecting data profiling information, make sure to select the event multiplexing
option in the configuration-specific project properties. This enables collecting all
needed information in one run, which is especially important when analyzing multi-
threaded applications.

To see the command lines used to collect data with this configuration for the chosen
Project, use the Get Commands button. In case of the event-based sampling
mechanism, command lines depend on the CPU currently selected from the CPU drop-
down list. This feature is useful for generating command lines for a CPU which is
different from the CPU on the host machine.

You can select event-based sampling and statistical call graph analysis in one
experiment. In this case the collection will be run two times.

See Also:

Collecting Sampling Data (CLI)
Collecting Statistical Call Graph Data (CLI)
Collecting Data Access Results (CLI)

7.2.1.1 Configuring for Viewing Call Sites

On the Intel® Core™ i7 processor family, you can create/modify a profiling
configuration to collect and view sampling hotspot data with call sites.

To enable collecting call site data:

1. Create a profiling configuration.

2. From the Hotspot Analysis tab, select Event-based sampling and choose the
required Intel® Core ™ i7 processor from the drop-down menu.

43

7.

To

Intel® Performance Tuning Utility 4.0

Click the Add... button.
The Select events to add dialog box opens.

In the Select events to add dialog box, select events. Make sure to include one
of the following events: BR_INST_RETIRED.NEAR.CALL or
BR_INST_RETIRED.NEAR.CALL_R3.

Click OK.
Selected events are added to the Event Name column in the Hotspot Analysis
tab.

In the LBR Filter column, apply any filter to the selected event.
Click Apply to save your settings.

Click Profile to run the experiment.
The Intel PTU will open the sampling Hotspot view with call site data for hotspot
functions.

2.2 Call Count Analysis Configuration Settings

select the call count analysis for your configuration and edit configuration settings,

check the Enable Call Count Analysis box.

%}

Hotspot Analysis [eERe0 8- =M% Heap Analysis | Description

Enable Call Count Analysis

Applications to ignore during collection
Mandelbrot Sample.exe

Remove

Load list of applications to ignore from file: | | Browse...

Profile project: | test A

Click the Add button to specify applications to ignore during data profiling. You may
also click the Browse button and specify a file listing applications to ignore.

44 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n te I)

See Also:
Collecting Call Graph Data (CLI)

7.2.3 Heap Analysis Configuration Settings

To select the heap analysis for your configuration and edit configuration settings,
check the Enable Heap Analysis box.

B Hotspot Analysis | Call Count Analysis mmascripﬁnn

Enable Heap Analysis

{*) Exact collecton mode
() Fast collection mode

Applications to ignore during collection

Mandelbrot Sample.exe

Remove

Load list of applications to ignore from file: | W | [Bru:uwse. o]

[]Profile spawned child processes [callect trace {overtime information)

Profile project: |tE5t V| [F‘ru:uperties...

o Exact collection mode: Collect detailed data. The collected data is more accurate
but requires more time to collect.

e Fast collection mode: Collect less detailed data. The collected data is less
accurate but requires less time to collect.

e Applications to ignore: List applications to ignore while collecting data.

¢ Profile spawned child processes: Check this box to profile all applications
spawned by the first profiled process.

o Collect trace: Check this box to collect overtime information. It may require more
time to collect.

See Also:
Collecting Heap Profile Data (CLI)

User Guide 45

®
n tel > Intel® Performance Tuning Utility 4.0

7.24 Configuration-specific Project Properties

Sometimes you need to adjust the behavior of a profiling configuration without
changing the configuration itself. Configurations are supposed to be a kind of “recipes
and you are not expected to change them often. But what if a particular collection
mechanism has a parameter that enables you to affect the collection process? To
address this, the Intel Performance Tuning Utility introduces a concept of
configuration-specific project properties. You can set these parameters in the
Advanced Properties section of the project property page:

o

Intel(R) PTU Project Intel(R) PTU Project

”

rTarget
' This computer

{ Remote compuker | Chechk Conmection

r Performance workload

[~ wWorkload duration, sec I 20

LI~_|_

' Launch this application at start of profile

Application: | Dierc'bladeenc-optimizing \bladeenc-0.94,2 | Browse. ..

Application parameters: I -q data2.wav Browse. ..

Working directory: | D:'src'bladeenc-optimizing \bladeenc-0,94,2 | Browse...

™ Profile without launching an application

r Advanced properties

Time-based sampling interval multiplier: I 1.0

Jul | [FIFE

Event-based sampling 'Sample After’ multiplier: I L0

¥ Use event multiplexing

':':’:' CK I Cancel

You can also set configuration-specific properties when creating a new project by
expanding the More... bar:

46 Document Number: 315953-035US

Working with the Graphical Interface

User Guide

& New Intel(R) PTU Project

Workload Details

Spedfy what you want to profile

rTarget
{* This computer

" Remote computer I

Zheck Conneckion

—Performance workload

v workload duration, sec I 20
™ Launch this application at start of profile

Application: |

Erowse., .

Application parameters; I

Ermwse. ..

Waorking directory: |

¥ Profile without launching an application:

Erowse., .

Mo
—Ad:m properties

Time-based sampling interval multiplier:

[T Use event multiplexing

|10

Event-based sampling 'Sample After' multiplier: I 1.0

L] L » ___ JoJ:

< Back

Mexh = | | Einish I

Cancel

The following configuration-specific properties are available:

Time-based sampling interval multiplier. Use this property on the per-project
basis to affect the value of the time-based sampling interval. For example, if you
set the multiplier to 0.1 and, then, run the project with a profiling configuration
configured for the time-based sampling with 20 millisecond interval, the actual

interval will be 20 * 0.1 = 2 msec.

Event-based sampling “"Sample After” multiplier. This property is similar to
the previous one but affects the Sample After value for event-based sampling

configurations.

Use event multiplexing. You can select/deselect check box to enable/disable

event multiplexing for event-based sampling.

47

[| ®
l n tel > Intel® Performance Tuning Utility 4.0

/74

Workspace and Tuning Navigator

The Tuning Navigator displays a hierarchical list of project contents. This panel
enables you to view and manage all projects and related Experiments. To open the
Tuning Navigator, select Window > Show View>Tuning Navigator.

The Tuning Navigator displays two items: Project " - =3
and Experiment:

. - . = =
. B Project includes an application profile that

R) L ﬁ Import Project
contains information about how an application :
-y test

is executed. Typically, Project contains one or Bandwidth Breakdown (2008
more Experiments. Double-click the project Contested Access ’éljljé-lz-
node to expand/collapse its contents. Cyde Usage ’EEIEIStIE-ll:I-l‘:

- (£

. Experiment represents data collection Cycle Usage (2008-12-10-1F
session with a specific configuration and Latency Analysis (2008-12-
provides data collection results. The Intel Latency Analysis (2003-12-1

Performance Tuning Utility creates an

Experiment node automatically when data collection starts. The default name of an
Experiment consists of the configuration name used to collect it and timestamp of
its creation, for example: Basic Sampling (2008-12-11-11-56-08).

You can manage your projects and experiments by creating, renaming, or deleting
them. To rename an experiment, right-click it and select Rename. To delete an
experiment, press Delete or right-click the node and select Delete.

Data Views

Upon the data collection completion, the Intel Performance Tuning Utility automatically
displays experiment results in a data view related to the profiling type. You can also
invoke it for any experiment by double-clicking the Experiment icon. The following
data views are available:

e Sampling view
e Statistical call graph view

e Call count view

e Heap profiling view

e Data access view

For an event-based sampling, click the experiment result node in the Tuning
Navigator to see the Experiment Summary view. The Experiment Summary view
opens at the bottom of the Eclipse window and provides data on the analyzed

48 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

User Guide

application, processor, and event count in user and kernel mode occurred for a
particular event.

You can configure most of the views in the Intel Performance Tuning Utility by using
Window > Preferences... > Intel® Performance Tuning Utility > and selecting a
view you want to configure.

7.4.1 Filtering Controls

The Filter bar located the bottom of each central data view enables filtering the data
presented in the table. The following controls are available:

e Granularity: The hotspot display depends on the granularity level. Function level
is default.
If application modules have debug information, you can rely on functions shown as
hotspots. When debug information is incomplete or missing at all, you may see a
number of <unknown> functions or samples collected on internal functions of a
module might be attributed to exported functions.
Use the Granularity drop-down menu to change the grouping level. For sampling
data, select between Process, Thread, Module, Source, Function, Basic Block,
Relative Address, and Address granularity levels. For statistical call graph, only
Function granularity is available.

e Limit: Use the Limit drop-down menu to focus on the most critical hotspots.
Specify the percent of hotspots to display (95% is default) manually or choose one
of the recommended thresholds from the drop-down menu.

Percent of hotspots indicates the percent of samples collected in a hotspot arranged
in a decreasing order. Selecting a percent threshold filters the data view to display
the hotspots whose total number of samples is lower than the selected threshold of
total samples. The Hotspot view for multiple events is combined from the hotspot
list per each event.

For the statistical call graph, use the Limit drop-down menu to display an absolute
number of hotspots.

e CPU: Use the CPU drop-down menu to view the event count distributed per CPU.
By default, the Total value is selected and the event column displays the total
number of samples collected for this event on all CPUs. To display event count for
each logical CPU, select the Each value. To display event count for a particular
logical processor, select the required CPU number from the drop-down menu (for
example, 3). To view event count for each CPU package, select the Per Socket
value. If the Hyper-Threading Technology is enabled on your system, select the
Per HW Thread value to view the event count per each CPU hardware thread. To
view maximum event value across logical processors, select Max(Each).

In case of incorrect mapping between CPU views, see the Troubleshooting the

Hotspot View section.

49

n tel ? > Intel® Performance Tuning Utility 4.0

e Module: Select the module name in the Module drop-down menu to limit
displayed hotspots to specific module only. Module selection limits the list of
processes in the Process filter control to the processes that loaded the selected
module during the experiment.

e Process: Select the process name in the Process drop-down menu to limit
displayed hotspots to specific process only.
Process selection limits the list of modules in the Module filter control to the
modules that were loaded in the selected process during the experiment.
Process selection limits the list of threads to the threads that were executed in the
selected process during the experiment.

e Thread: Select the thread name in the Thread drop-down menu to limit displayed
hotspots to specific thread only.

7.4.2 Sampling View

The Sampling view consists of the Hotspot view, Events over IP view, and Advanced
Profile view.

74.2.1 Hotspot View

The Hotspot view opens in the central Eclipse window and provides data collection
results in the table format. It displays a hotspot, number of events (or samples) that
hit the hotspot during the experiment, and other related information.

Hotspot is a code region that generated a statistically meaningful number of samples.
In general, a hotspot could be expressed at different levels of source code details (or
granularity), for example, as a module, function, or source code line. Thus, in case of
a hotspot as a function, all events that occurred on instructions of the specific function
are grouped (summed up) together and attributed to the function. If a hotspots is
presented as a loop, all events occurred on the instructions of the specific loop
(including the nested loops) are aggregated to this loop.

The lowest level of detail for a hotspot is the address of one machine instruction.

For sampling data, a hotspot can be presented as a module, function, basic block,
relative virtual address, or virtual address. Hotspot representation is controlled by the
Granularity control located at the filter bar at the bottom of the data view. Select the
required hotspot granularity level(s) to identify the hotspots. For example, VA is the
finest hotspot granularity. It shows hotspots by virtual address. As opposed to the
RVA granularity, it helps differentiate module instances with different load addresses
even within one process and, therefore, may contain more hotspot items.

50 Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

"] ®
Working with the Graphical Interface < l n tel)

NOTE:

User Guide

By default, the hotspot column is the leftmost column of the table. Other columns can
be considered as hotspot attributes, for example: a module where a hotspot function is
located or a function where a hotspot basic block is located.

You can sort the Hotspot view table by any column. By default, it is sorted in the
descending order by one of the <Events> columns.

To identify the total number of samples occurred in several hotspots for a particular
event, select the hotspots and see the Total Selected line value.

Right-click and select the Show Data as pop-up menu command to choose between
the following types of sampling data representation:

¢ Samples: Number of samples collected for the selected event.

¢ Events: Event count which is equal to Samples value * Sample after value for the
selected event.

o 9 of Experiment: Percent of samples with respect to total samples collected
during the entire duration of the experiment.

The Intel® Core™ i7 processor family has specific events that enable advanced
capabilities for experiment analysis. When the EBS profiles include these events, the
sampling Hotspot view displays additional information.

If the EBS profile contains BR_INST_RETIRED.ALL_BRANCHES with the All Branches
LBR filter enabled, the Intel PTU statistically calculates basic block execution counts for
the analyzed application. The sampling Hotspot view displays this data in the BB_EXEC
column when the granularity is Basic Block or Loop.

If the list of events includes BR_INST_RETIRED.NEAR.CALL or
BR_INST_RETIRED.NEAR.CALL_R3 with LBR filters enabled, the sampling Hotspot view
displays call site data for hotspot functions. To view call sites, choose the Function
granularity and click the triangle symbol I at the hotspot function name. For each call
site, the RVA column displays a particular address from where a call to the hotspot
function was made. For hotspot functions, RVA corresponds to the beginning of the
function.

BR_INST_RETIRED.NEAR.CALL or BR_INST_RETIRED.NEAR.CALL_R3 event count can
also serve as function call count approximation. To view call count numbers, switch
data representation to Events.

You can export the current content of the Hotspot view into a comma-separated text
file by using the pop-up menu command. If the experiment contains both event-based
sampling and statistical call graph data and the granularity is set to “Function” the
Hotspot view merges them and shows in one view.

See Also:

51

n tel ? > Intel® Performance Tuning Utility 4.0

Viewing Sampling Data (CLI)
Configuring for Viewing Call Sites

74.2.2 Hotspot View with Loop Granularity

The Intel Performance Tuning Utility can display a hierarchy of loops for the functions
of the binaries compiled with debug information. To view loop information from the
Hotspot view, set the granularity level to Loop.

The Hotspot view displays hot top-level loops, sorted in the descending order. The
Address column of the view displays addresses of basic blocks belonging to a loop.
The Function column shows the name of the function the loop belongs to.

Each loop is indicated by a loop line with a small triangle I in front of the function
name. It contains the address of the loop header basic block that uniquely identifies
the loop in the binary. All events occurred on the basic blocks and nested loops inside
a higher level loop are aggregated to its loop line.

To expand a loop and see its basic blocks and nested loops, click the triangle in the
loop line. The view updates to display next-level nested loops and basic blocks of the
expanded loop. A basic block that belongs to the loop but has not collected any
samples does not appear among the loop basic blocks.

The Intel PTU may display the header block address twice. The first instance denotes
the loop; the second one shows the basic block itself with samples occurred on its
instructions.

Address | Function | Modle | cPu_cuk_UnHALT... ~| L2 LINES IM.SELF.ANY | MEM_LOAD RETIRED.... |
Tox36CC b quantum_toffoli thauantum.exe 60,184 28,792 3,631
0x3FEB I quantum_sigma_x *quantum.exe 38,375 11,561 5,259
0x3D1C 1 P quantum_cnot libquantum.exe 14,498 6,451 857
03k I quantum_swaptheleads libguantum.exe 2,338 9 9
0x3249 + guantum swaptheleads o.. libguantum.exe BO2 343 44
Ox344C = guantum_swaptheleads_o. Aslibguantum.exe 284 113 14
Ox344C quantum_swapthelea. . =® bouantum.exe 205 35 14
x343 & quantum_swapthelea... libquantum.exe 52 13 a
0x 3468 quantum_swapthelea. .. jlibquantum.exe 23 12 [u}
Ox3478 quantum_swapthelea. 5 quantum, exe 4 3 o]
0x3535 I quantum_swaptheleads_o... libquantum.exe 261 118 15
%3313 I quantum_swaptheleads_o... libguantum.exe 257 114 15
0x1EBE I gquantum_gatel. libquantum.exe 380 110 0
0x1EF7 P quantum_gatel. libquantum.exe 119 40 21

1 | An expandable loop line with the header basic block address uniquely
identifying the loop in the binary.

A triangle to expand the loop.

2
3 | A nested loop.
4

A duplicated basic block address indicating the loop and the basic block itself.

5 | A basic block inside the nested loop.

See Also:
Hotspot View

52 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n tel

User Guide

74.23 Advanced Profile View. Automatic Identification of
Performance Issues

The Intel Performance Tuning Utility has a mechanism for an automatic identification
of performance issues. It is based on collecting predefined profiles and calculation of
event ratios.

When a ratio has a value exceeding the predefined threshold, it signals a potential
performance problem. In the Hotspot view, a cell corresponding to the key event of
that ratio is highlighted in pink:

Function | CPU... | CPU_CLK_UMNHAL... | INST _RE... | MEM_LOAD_RETIRED.L2_LIMNE_MISS | BUS_TRAMS_BURST.SELF BUS. 145
z_solve 3,984 2,003 2,118 13 6500
y_solve 2,969 1,485 1,747 63 467 0
¥*_solve 2,830 1,425 1,731 45 472
lhsx 1,978 996 542 18 326
Ihsy 1,969 1,011 589 16 318
lhsz 1,797 900 6503 11 261
<unknown(s)> 1,555 797 1,383 o 20
_kmpc_end_ma... 1,263 636 519 0 a7
adi 1,015 514 465 40 175
_kmp_wait_slaep 977 490 399 1 10
st a1 Qi acc o a3 M

! ¥

§_ Lirmit | vl Gra...ity |Functic v| Process |,-!\|| v| Thread |A|| v| Module: |A|I v| Cpu |I'~'1.a><(E:' v|

Experiment Summary | Console | Memory Hotspots | Tuning MNavigator iR e Rageti 0 i B =0

| Function : compute_rhs - sp.c |

Event Samples Events Issue
CPU_CLK_UNHALTED, CORE 7,480 14,360,000,000
IMST_RETIRED. AMY 4,337 8,674,000,000 Clocks per Instructions Retired - CPI = 1.7247
BUS_TRANS_BURST.SELF 1,125 225,000,000 Bandwidth Limitation = 1,1373

K | , ,000, =
MEM _LOAD RETIRED.LZ LINE MIS5 | 203 | 20,300,000 | L2 load driven misses = 0,2714 glofeats
CPIU_CLK_UNHALTED. CORE max{ICPU) 3,730 7,580,000,000
INST_RETIRED, ANY max{CPL) 2,182 4,384,000,000
MEM_LOAD_RETIRED L2_LINE_MISS max{CPLU) 105 10,500,000
BUS_TRANS_BURST.SELF max{CPL) 575 115,000,000

The Sampling Hotspot view uses a smart column ordering based on the priority of
identified issues and shows the most important event columns on the left. This makes
events signaling potential performance issues more immediately visible. Such an
ordering is especially helpful when a large (predefined) profile configuration containing
many events is used. The limited width of a GUI display cannot show all of them at
once.

The Intel PTU also provides the Advanced Profile Info view. To enable it, select a
function in the Hotspot view and right-click to choose the View Issue Details from
the pop-up menu. This shows values of all the events collected for this hotspot and
annotates those that are recognized as signaling potential issues. The rows of this
view are ordered in the same manner as the columns of the Hotspot view, but use
only the events associated with the selected function. The issue value in the Issue
column is exactly the value of the associated event ratio.

53

n tel ? > Intel® Performance Tuning Utility 4.0

The lower pane shows the Advanced Profile information for the function selected in the
upper Hotspot view window. Highlighting a different function automatically changes
the data in the Advanced Profile view to correspond to the data for the newly selected
function.

To analyze a specific issue, use the buttons located at the right of the Advanced
Profile Info pane:

¢ Explain Issue: Click to view the tooltip with a detailed explanation of the
issue.

e Explain Event: Click to display the description of the selected event.

e Explain Ratio: Click to display the formula for the calculated ratio. This
button is available only if the event ratio was calculated.

Example:

In the figure above, 2 ratios, “L2 load driven misses” and “Bandwidth limitations”,
exceed their threshold values. This identifies potential performance issues in, at least,
four hot functions in the Hotspot view. The Hotspot view indicates this by highlighting
the cells corresponding to MEM_LAOD_RETIRED.L2_LINE_MISS and
BUS_TRANS_BURST.SELF events in pink. It means that four top functions

(compute rhs, z_solve, y solve, x_solve) experience memory problems as front-
side bus saturation and load-driven Level 2 cache misses.

So, to improve the code performance, consider optimizing data layout and/or the way
you traverse through the data.

74.24 Events over IP View

While the Hotspot view displays significant hotspots over the whole experiment, you
might want to see a picture for a specific module. A histogram of Events over IP view
can help you with this.

From the Hotspot view for a sampling experiment, select a row associated with the
module you are interested in and launch the Events over IP view using the pop-up
menu. The Events over IP view opens at the bottom of the Eclipse window and
displays the sample or event distribution per IP range for the selected module and
event of interest. Analyze the histogram to identify major hotspots in a module.

54 Document Number: 315953-035US

"] ®
Working with the Graphical Interface (l n t9|)

NOTE:

User Guide

|

6.8ER IP range: OXC38D - Ox12104 Evens Tont 240 N @ S

4.5E6 h ----------

zleE ‘ ‘
o III 11 A I T || i .|I| I
Ox95C1 Ox96CA OxAB4E OxCE3A

Event | Instructions Retired | V| Process: |AII |V | Module:

The horizontal axis displays relative virtual addresses in the selected module.

If you select a particular process in the Process drop-down menu and All modules for
this process in the Module drop-down menu, the horizontal axis displays virtual
addresses (not relative virtual addresses).

The scale of IPs over horizontal axis is not uniform. All IPs where there are no samples
occurred are omitted.

The vertical axis shows a number of events (or samples). The height of the bar
indicates the total number of events (o samples) occurred on the region of IPs or on a
single IP (this depends on the zoom).

By default, the Events over IP view displays the following summary information: entire
IP region of the module where samples occurred of the module. To zoom into a
specific IP range and get more detailed information per IP address, select a range of
interest and click the 2 Zoom In button. The updated chart displays samples data
for the selected range of IPs. To return to the default summary view, click the

Zoom Out button. To analyze the hottest IPs in the module, select a region and drill-
down to the source code of the highest hotspot by clicking the Source View
button.

The filter bar of the Events over IP view enables filtering the displayed data.

When switching between different experiments, the Events over IP view resets its
context and updates only filter bar items. To refresh a histogram, press the o
Update button in the view-specific toolbar or modify a filter bar selection.

74.2.5 Sampling View Preferences

To configure the sampling view, go to Window > Preferences... > Intel®
Performance Tuning Utility > Sampling View preference page.

55

"] ®
l n tel Intel® Performance Tuning Utility 4.0

You can configure the following preferences:

& Preferences |:|E

| type filter text | sampling View =

General . .
= Processes /Threads merge mode for multi-run experiments:
Help

Install/Update O merge

= Intel{R) Performance Tur ") Merge only processes with the same name

Data Access View (¥ Merge processes and threads based on creation time
Global Search Directo

Hotspot Difference V Show events ratios columns

Sampling Collection Highlight cells based on ratios thresholds

+

Source View
Run/Debug
Team
. . [Restnre Qefaults] [Apply]
7 [0K] [Cancel]

e Processes/Threads merge mode for multi-run experiments: Select
merge criteria for processes/threads.

¢ Show event ratios columns: Check the box to display ratio values in the
sampling Hotspot view.

« Highlight cells based on ratios thresholds: Enable highlighting cells with
key events for ratios exceeding the predefined threshold.

See Also:

Event Ratios
Advanced Profile View

56 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

NOTE:

User Guide

7.4.3 Overtime View

To open the Overtime view, right-click the Hotspot pane and select Show Overtime
View from the pop-up menu. The Overtime view appears at the bottom of the Eclipse
window.

&4 Owertime Visw: Basic Sarnpling (2009-08-03-08-03-01) 53 3 cChartst |1 - | Resolution: 1000 [+ | % G R R B G T O
Granularity: IExperiment 'I Basic Sampling {Z2009-05-03-08-03-01)
MName Color Scale LIELD o
cru_ctk unHaTen THREAD [> -
[] TNST_RETIRED.ANY 10E10 o
[] Het Function
[] Clacks perInstructions Retire,., 90E9 -
1 S0E9
2
70E9 |
GOEY
« m 5
Events][Event Ratios ” Turbo Factor I e
Frequency Mutiplier Histograrm ‘ é ® ‘ @‘)\ Q e J N“ﬂ
30E9 |
4
20E9
10E3
00E0
; ; . . 0 5 i 5 @ = noos & 5
101 102 1.03 1.04 105 Tirra, &
1 | Events/Ratios Selection pane 3 | Overtime Toolbar
2 | Time Charts pane 4 Frequency Multiplier Histogram
pane

The Overtime view displays the sampling data collected during the experiment
chronologically. By default, data for the hottest event is displayed.

Use the Overtime view to:
e compare time distribution of events/ratios;

e analyze changes in CPU operating frequency during the sampling collection
using a ratio between the actual operating frequency and the reference CPU

frequency (turbo factor).

Turbo factor data is useful for processors with Intel® Turbo Boost Technology that can
adjust the operating frequency of the processor cores depending on performance
requirements and energy consumption level. This feature is available starting from the
Intel® Core™ i7 processor family.

57

7.4.3.1

Intel® Performance Tuning Utility 4.0

Events/Ratios Selection Pane

Use the Events/Ratios Selection pane to control and configure the information in the

Overtime view time charts.

Granularity:

Marme

CPU_CLE_UNHALTED, CORE

[] IMST_RETIRED. AMY

Hot Function

[] Clocks per Instructions Retired - CPI

Experiment b d

Color | Scale
- 4
 PUE

1000

11003

Events

|| Event Ratios || Turbo Fackor

Item

Description

Granularity drop-down
menu i

View data distribution for various granularity levels:

Experiment (default)
CPU

Core
Socket
Process
Thread
Module
Source
Function
Basic Block
RVA

To change the default granularity, go to Window >
Preferences > Intel Performance Tuning Utility >
Overtime View preference page and select the required
level from the Default Granularity: drop-down menu.

Events/Ratios table

View events and ratios collected during the experiment.

Check the box in a corresponding row to view the

58 Document Number: 315953-035US

Working with the Graphical Interface

distribution of a particular event/ratio in the time charts.

The Color column of the table defines the color for each
event/ratio displayed in the time charts.

The Scale column defines the scale in which an
event/ratio is displayed. Use the drop-down menu to
change the current scale.

Events button

Click to add/remove events from the list.

Event Ratios button

Click to add/remove ratios from the list.

Turbo Factor button

User Guide

Click to display CPU frequency deviation from the
reference frequency.

See Also:

Time Charts Pane

743.2 Time Charts Pane

The time charts show the distribution of events/ratios and the CPU frequency level as

function of time. This allows

you to identify performance problems in relation to

particular time ranges of your experiment.

2

LIELD —
10E10 —
9.0E9

S0ET

Basic Sampling {2009-08-03-08-03-01)

Time: 5.54s

FOET — CPL CLE_UNHALTED, THREAD: 3.673E9
ST RETIRED.AMNY: 3.918E9

E0EY

SOE9 J

=1 |

20ET

2M0E9

10E9

o.0eQ -

=
-

n tel ? > Intel® Performance Tuning Utility 4.0

1 | The X-axis of the chart displaying time of the experiment, in seconds.

2 | The Y-axis displaying the number of events/ratios collected during a particular
time range.

TIP: For different charts, the Y-axis scale may be different depending on the
event/ratio values displayed in the chart. To compare the event/ratio
distribution for different charts, you can make the scales equal. Right-
click a chart and select Equal Y-axis scales from the pop-up menu. All
scales are equaled by the largest scale.

3 | The graphs in different colors showing event/ratio distribution over time of the
experiment. By default, the Intel PTU displays data as line graphs. To display
data as bar graphs, right-click the chart and select Show Data as > Bars
from the pop-up menu.

For different granularities, a different number of charts may be displayed. By default,
the Intel PTU displays four charts, if they are available for the selected granularity.
Use the Charts: drop-down menu on the Overtime Toolbar to specify the number of
charts displayed at a time.

To select the charts to display:

1. Right-click a chart and choose Select charts... from the pop-up menu.
The Chart Selection dialog box opens listing all the charts available. The
charts currently displayed are highlighted in grey. By default, the charts
are sorted in the descending order, starting from the one corresponding to
the hottest item in the Hotspot pane. If the granularity level for Hotspot
and Overtime views is the same, the order of the charts corresponds to the
order of hotpots in the Hotspot pane.

2. Drag and drop the required chart to the grey area.
The selected chart replaces the one it was dropped onto.

You can compare the over-time distribution of several events/ratios in the chart. The
Intel PTU displays each event/ratio in a color specified in the Events/Ratios Selection
pane, which makes the comparison easy and demonstrative. Hover the mouse over
the chart to see the information on the number of events/ratios detected at a
particular moment.

When you compare event and ratio distribution, the difference in values can be too
great to view the graphs simultaneously. To assess their distribution in relation to each
other, you can change the scale of the graphs by selecting the required value from the
Scale drop-down menu available in the Events/Ratios Selection pane in the same row
with the selected event/ratio.

60 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n te I)

To view changes in CPU operating frequency level during the sampling collection, click
the Turbo Factor button in the Events/Ratios Selection pane. The time charts update
to display turbo factor data:

Basic Sampling (2009-08-03-08-03-01)

1.1E10 — 2

1.0E10

9.0E9

20ET

FOET H

EOET

COET |
3 Time: 9.825
[Turbo Fackar: 0.962345

40E9

30E9

20E7 —

10E9

0.0Er -~

Time, 5

1 | The X-axis displaying time of the experiment, in seconds.

2 | The Y-axis displaying the ratio between the reference frequency of your
processor and the actual operating frequency. The values above 1 indicate
that the available CPUs are running faster than the reference frequency.

3 | The grey bars representing changes in turbo factor over time of the
experiment. Hover over the bar to view the turbo factor value for a particular
moment of the experiment.

See Also:

Events/Ratios Selection Pane
Managing the Overtime View
Frequency Multiplier Histogram Pane
Overtime View Preferences

User Guide 61

n tel ? > Intel® Performance Tuning Utility 4.0

7433 Frequency Multiplier Histogram Pane

During the experiment, the Intel PTU refers to available CPUs at a certain interval to
check the current CPU frequency. The Frequency Multiplier Histogram displays the
operating frequency levels at which your application was running.

Frequency Multiplier Histogram | 2 | @l 'El

[Turbo Factor: 1.035
References; 29087.0

T T T T T T T
1.024 ‘1._'5 1028 1.03 1032 1.034 1036 1038 1L

1 The X-axis displaying the turbo factor data for your processor.

The histogram bars representing the number of references counted at

2 different frequency ranges. The longer the bar, the more references occurred
at this frequency. To see the number of references for an exact turbo factor
value, hover the mouse over the bar.

To view the hotspots that occurred at a particular frequency level only, select this level

and click the I?_il' Filter hotspots by selected turbo factor button above the
histogram. The Hotspot pane updates to include only the hotspots that occurred while
the CPUs were running at the selected frequency. To cancel the filtering, click the ®
Cancel turbo factor filtering button. To restore the default view of the histogram,

use the E{ Zoom Out button.

62 Document Number: 315953-035US

Working with the Graphical Interface

User Guide

7434

See Also:

Time Charts Pane

intel)

Managing the Overtime View

Charts: | 1 Resalution:

-

Managing the Overtime View

You can manage the information displayed in the Overtime view using the controls
located on the Overtime Toolbar.

mon =

| % B2 R | R

Toolbar Item

Description

Charts: drop-down
menu

Specify the number of charts displayed. By default, the
Intel PTU displays four charts if they are available for the
selected granularity.

Resolution: spin
box

Change the chart width, in points. The default width is 1000
points.

s

¥ Load detailed
data for the
selected time
range button

Click to view details for the zoomed-in time range and
restore chart resolution to the default value.

TIP: To automatically load details when the selected time
range is less than a specified value, enable this option
in the Overtime View Preferences.

@ Synchronize
Overtime View
with the current
experiment button

Display overtime data for the experiment in focus.

ﬁ Filter hotspots
by current time
range button

Click to view the hotspots only that occurred during the
time range selected in the chart.

¥ Filter Overtime
view by selected
hotspots button

Click to view the time range when a particular hotspot
occurred. The Frequency Multiplier histogram and the time
charts update to display only the information related to the
hotspot currently selected in the Hotspot pane.

¥ cancel time
filtering button

Click to cancel the applied filtering.

&l Zoom in to
selection button

Click to view a selected time range in more detail.

TIP: To automatically load details when the selected time

63

Intel® Performance Tuning Utility 4.0

range is less than To automatically zoom in when
selecting a time range, right-click the time chart and
enable the Use mouse selection to zoom in option
in the pop-up menu.

El Zoom Out
button

Click to view a larger time range with less detail.

You can use hot keys to manage the display of the selected time range:

e CTRL+Up/CTRL+Down - magnify/minify the view.

e CTRL+Right/CTRL+Left - scroll the graph right or left.

e F5 - load detailed data for the selected range.

See Also:

Time Charts Pane

7435

Overtime View Preferences

To configure the Overtime view, go to Window > Preferences... > Intel®
Performance Tuning Utility > Overtime View preference page.

64 Document Number: 315953-035US

Working with the Graphical Interface

User Guide

& Preferences

oy o OO e O O g O |

- General

-Agent Controller

-Ant

-Help

-Install/Update

- Intel(R) Performance Tuning Utility
- Data Access View

-- Global Search Directories
- Hotspot Difference View
- Owertime View

- Sampling Collection

- Sampling View

- Source View

- ¥IF Reporter

H- lava

t- Plug-in Development
t- Profiling and Logging
- Run/Debug
2|
H

- Team

f- WindowBuilder

Overtime View

Default Granularity:

[” Load detziled data for the selected range

when the selected ranage is (%6 of the experiment): I 10

|¥ Enable data caching

IExperiment VI

Restore Defaults | Apply |

OK I Cancel |

e Default Granularity: Use this drop-down menu to select the granularity level
for the time charts. The default value is Experiment.

e Load detailed data for the selected range when the selected range is
smaller (% of the experiment): Check this box to automatically load
detailed data when zooming in to a time range making up less than the
specified percent of the experiment. The default value is 10 percent. When
data is reloaded, the chart resolution reaches the value specified in the

Resolution spin box on the Overtime Toolbar.

¢ Enable data caching: Check this box to cache data every time you query
overtime data from the experiment database. This enables faster data loading
next time you open the Overtime view with the same parameters (granularity,
filtering, and others). When this option is on (default), the Intel PTU reloads
this data from cache saved in <experiment dir>/cache_overtime directory.
The event selection is also stored in cache.

See Also:

Time Charts Pane

Managing the Overtime View

65

[®
l n tel > Intel® Performance Tuning Utility 4.0

NOTE:

744 Statistical Call Graph View

The statistical call graph view consists of the Hotspot view, Caller/Callee view, and
Hotpath view.

7.4.4.1 Hotspot View

Like the sampling Hotspot view, the statistical call graph view displays hotspots and
the number of events (or samples) occurred in the hotspot during an experiment. In
the statistical call graph Hotspot view, a hotspot is presented as a function.

For the statistical call graph experiment, the Hotspot view contains more data than
just hotspots. For each hotspot, it displays aggregated stack data that tells you what
the call sequences were when a sample occurred in the hotspot. In the data table,
each hotspot is a row with an embedded tree. Expanding the selected function hotspot
displays callers of the selected hotspot function, then callers of the first caller(s), and
SO on.

In the statistical call graph Hotspot view, the sample values provided in the Samples
column for a hotspot and underlying stack items are different. For hotspots, it is a
number of samples occurred in the hotspot function. For stack functions, it is a
number of times when the function was detected on the stack restored for the hotspot.

You can export the current content of the Hotspot view into a comma-separated text
file by using the pop-up menu command.

744.2 Caller/Callee View

The Caller/Callee view opens at the bottom of the Eclipse window. It displays function
call information only for statistical call graph collection if the Hotspot view is active in
the main window, otherwise, it is empty.

The Caller/Callee view displays all callers and callees of a function selected in the
Hotspot view. As soon as you focus on another function in the Hotspot view, the
Caller/Callee view is updated. The name of the focus function is in bold. The caller
functions are located above the focus function. The callee functions are located below
the focus function. To move a caller/callee function to a focus, double-click its name in
the list.

This view in reconstructed from the statistical stack data displayed in the Hotspot
view, which means that information in this view is also only statistically correct.

66 Document Number: 315953-035US

Working with the Graphical Interface

3 caller / Callee x Consaole

intel)

Function Hint| Module Total samples | Self samples B
o VDMPEG::DecodeBlock_C 4y VirtualDub.exe 162 86|
o VDMPEG::DecodeBlock Y 4 VirtualDub.exe 271 154 |
o VDMPEG::CopyPredictionFor... & VirtualDub.exe 3 3

VDMPEG::DecodeBlockNonPr... | & |VirtualDub.e...
B2 isse_jdct_intra M VirtualDub.exe 56 53

Bl isse_idct_nonintra My VirtualDub.exe 135 4
Bs _ security_check_cookie 4y VirtualDub.exe 2 z E

The Caller/Callee view displays the following data:

Total samples

Self samples

Caller function

Total number of samples occurred
directly in the focus function and
all its callees when it was called
from this caller function

Number of samples occurred directly
in the focus function when it was
called from this caller function

Focus function

Total number of samples occurred
directly in this function and total
samples of all its callees.

Number of samples occurred directly
in this function when called from all
callers.

Callee function

Number of total samples for the
callee function when it was called
from the focus function.

Number of samples occurred directly
in this callee function when it was
called from the focus function.

User Guide

Be aware that samples information in the Caller rows is related to the focus function.
Namely, samples information of a caller function shows samples of the focus function
when it is called from the caller function. The Caller/Callee view enables you to deduct
distribution of the focus function work that it did for different callers.

The Intel Performance Tuning Utility enables you to detect recursion in your code by
using the statistical call graph. A function is identified as recursive on a stack if it
appears several times on this stack. So, a function can appear both as recursive and
non-recursive in different stacks.

Self Samples of a recursive function is a sum of Self samples of all instances of this
function on a stack. Total Samples of a recursive function is a sum of Self Samples of
all instances of this function on a stack and all their children.

67

n tel ? > Intel® Performance Tuning Utility 4.0

Recursive functions are marked with the #® Recursion cycle hints in the Hostspot,
Hotpath, and Caller/Callee views. In the Caller/Callee view, repeated callers/callees
(that could appear in case of recursion) are folded into a single caller/callee.

7443 Hotpath View

The Hotpath view opens to the right of the Hotspot view when it shows statistical call
graph experiment results. The Hotpath view displays the most performance-critical
path for the hotspot function selected in the Hotspot view.

The first row in the Function column provides the name of a hotspot function. The list
below hotspot function shows the caller functions that contributed the most number of
samples while calling the previous function in the list.

The Samples column shows the number of samples collected in the hotspot function.
For caller functions, the Samples column shows the number of samples collected in
the hotspot function when it was detected on the part of stack from the selected caller
function to the hotspot function.

Function selection in the Hotpath view re-focuses the Hotspot view to the same
function, and vice versa.

7444 Hint Icons
There are hint icons that may appear for a hotspot in the statistical call graph Hotspot
view:
Icon Description
iy Function has a loop that falls into top hot loops category.
A Function is called from the one of the hot loops. The caller function
with a loop may not be necessarily an immediate parent function.
wR Recursive function.

Top hot loops are defined as top 20% loops and evaluated as total samples per loop.
This means that samples for all nested loops are summed up.

See Also:
Viewing Statistical Call Graph Data (CLI)

Identifying Loops (CLI)
Filtering Controls (GUI)

68 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n te I)

NOTE:

7.4.5 Call Count View

The Call count view opens in the central Eclipse window and displays a limited set of
exact call graph data: a function name, module name, and call count, which is a
number of times the function was called.

To view the call count data collected from the command line in the graphical interface,
go to File > Import and select the Import Intel(R) PTU Experiment from the
wizard.

See Also:
Viewing Call Graph Data (CLI)

7.4.6 Heap Profiling View

The Heap profiling view opens in the central Eclipse window and displays the following
data:

User Guide

Column Description

Function Name of the function.

Hint Recursion hint icon.

Module Name of the module the function belongs to.

Spacetime Spacetime value.

Leaked memory Amount of memory (in bytes) not returned to the heap when the
application exited.

Leaked objects Number of memory blocks not returned to the heap when the
application exited.

Memory allocated Amount of memory (in bytes) allocated by the application in this
function and its callees in the call stacks during the application
run.

Objects allocated Number of blocks allocated by the application in this function
and all function callees in the call stacks during the application
run.

See Also:

Viewing Heap Profile Data (CLI)

7.4.7 Data Access View

If you collected data using the Basic Data Access Profiling configuration or configured
data memory related events by yourself and checked Enable data access profiling
check box in the Profile configuration dialog box, you are prompted to choose
between the Data Access view and Sampling Hotspot view when opening the
experiment results.

Extending the Sampling Hotspot view, the Data Access view presents data memory
hotspots as well as code hotspots. The Data Access View shows data for the process

69

®
n tel Intel® Performance Tuning Utility 4.0

that collected most of the data referenced in the experiment. You can choose another
process in the filter bar or view data for all processes together. Viewing data for all the
processes together is useful if many processes have shared memory space.

The Data Access view consists of the Filter toolbar, Hotspot pane, Memory Hotspots
pane, Memory Access and Latency histogram pane. By default, the Hotspot pane and
Memory Hotspots pane appear at the end of data collection. To open the Memory
Access and Latency Histogram, right-click the Hotspot pane and choose Memory
Access and Latency Histogram from the pop-up menu.

The Data Access view shows “raw” sampling events and metrics calculated from the
raw events, for example, total number of references and number of accessed
cachelines. The Data Access view also provides extended filtering capabilities that
enable displaying data memory hotspots only for specific code sub-sets and vice versa.

When you open several Data Access profiling views, the Memory Hotspots and Memory
Access and Latency histogram panes synchronize with the Hotspot pane in focus.
However, if collected events do not provide precise latency information, the Latency
Histogram is empty.

& Intel(R) Performance Tuning Utility - 2008-06-25-12-25-16 - Eclipse Platform
Fle Edit Navigate Project Run Window Help

Ei- Q- 5 | el perfo... |
3 2008-06-25-12-25-15 1% =0
Function | Module Collected Data Refs LiCMisses | Ava....ncy | Total Latency INST_RETIRED...d data refs) | MEM_LOAD..L1D MISS | C..2[P..5 | MEM_ A
compute_rhs spa.exe 24,825,300,000 209,300,000 5 131,259,000,000 23,910,000,000 705,400,000 8,203 4,604 209,91
y_solve spa.exe 10,222,400,000 115,600,000 5 61,102,000,000 9,838,000,000 268,800,000 5,896 4,190 115,61
x_solve spa.exe 9574500000 54500000 L 4 43751000000 9,310,000,000 209,600,000 4,606 3,485 54,91
z_solve spa.exe §,907,600,000 139,200,000 7 62,438,000,000 8,578,000,000 190,400,000 5,715 3,877 139,21
westombs ntosk...exe 4,929,500,000 500,000 3 15,703,000,000 4,816,000,000 113,000,000 252 201 S
Thsx spa.exe 4,259,300,000 36,100,000 5 22,245,000,000 4,144,000,000 79,200,000 1,651 1,372 36,11

A
< | B
Total Selected: 4,226,700,000 34,700,000 5 21,783,000,000 4,116,000,000 76,000,000 34,700,
Granularity [Functan | Process [spa.exe | Thread [al v Modue [l v| Fiterbyselecton P B R (D

mﬂ Memary Access and Latency Histograms £3 Memory Access Bin Size: @{ Q =)

2008-06-25-12-25-16

Description Value
Low VA displayed Ox0]
High VA displayed OxFFFED00D
Max Reference ... 2529
Humber of bins 1277 w ‘u
Bin Size 54K I L. [W No latency data to show
Filter None L1 I S)
< | &)« I 3

Experiment Summary | Console IE‘MEmofyHctspcts x Tuning Navigator Topby |Collected DataRefs | =0

2008-06-25-12-25-16 Granularity |Global Data Objects |

Variable Name | Start Address | End Address [Size (oytes) | Module Collected Data Refs | LLC Misses | Tota..ency - [Cacheines = [Pages = | MEM_LOAD RETRED.LID MISS_ | 1A

Ihs 0x01f85828 Ox03ef32a0 32,955,000 spa.exe 13,846 2826 757,872 13,533 5,640 2616

ths 0x0Dec1ads 0x0193b900 10,985,000 spa.exe 13108 2,762 748,966 12,517 2,579 3,820

u 0%0410bd40 0x04b85b68 10,985,000 spa.exe 3,975 1,016 273818 (43923 2,020 1,563

<unknown(s)> -1 <un..wn> 29,348 506 232,479 481 313 2,779

rho_i 0x01d6d1d8 0x01f857e0 2,197,000 spa.exe 420 70 19,894 417 289 192

vs 0x04d9F050 0x04fb7658 2,197,000 spa.exe 255 61 16,567 253 200 105

speed | ox01b53fa8 | 0x01d6csbo| 2,197,000 spa.exe | 121 3] 12,795 121 107 47|

as 0x04b85bcB OxD4d9eldd 2,197,000 spa.exe 245 46 12,503 236 196 58

we NN&1faRR NWAS2ARATN 2107 NON <na eva 168 az 11 2R3 18R 1an a ¥

i | >

Total Selected: 121 49 12,795 a7

1 | Hotspot pane 3 | Memory Access and Latency
Histogram pane

70 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n te I)

2| | Filter bar 4 | Memory Hotspots pane

7.4.7.1 Hotspot Pane

The Hotspot pane of the Data Access view is similar to the Sampling Hotspot view.
But, in this Hotspot pane, the Intel Performance Tuning Utility calculates data
memory-related metrics from sampling events and presents them in the table.

The code regions, such as functions and basic blocks with high values in the Data
Refs (data references), Total Latency, and Average Latency columns have major
impact on the performance. To sort the columns by the values in a certain column,
click on the column header.

By default, the metrics values are shown as number of events. To change the value
metric to samples right-click and select Samples from the pop-up menu.

To drill-down to the Source view of the selected code region, follow these steps:
1. Set the granularity level to Function or RVA

2. Double-click the required function or address or use the View Source pop-up
menu.

74.7.2 Memory Hotspots Pane

The Memory Hotspots pane has a notion of Granularity similar to the code Hotspot
pane. The granularity could be Cachelines and Global Data Objects. To switch
between cachelines and global data objects, use the Granularity control on the top
left of the Memory Hotspots pane.

When Granularity = Cacheline, the pane shows memory chunks with the highest
number of references from the code. The size of the chunks in this pane is aligned to
the size of the processor cache line size. Therefore, they are called cachelines. Each
chunk corresponds to one cacheline that loaded to the CPU cache as a whole. For IA-
32 and Intel® 64 architecture, the cacheline size is 64 bytes. For the Intel® Itanium®
architecture, the cacheline size is 128 bytes.

The metrics in the Memory Hotspots pane are shown as samples.
By default, the Memory Hotspots pane displays 200 hottest cachelines. To change the
number of cachelines displayed, go to Window > Preferences >Intel®

Performance Tuning Utility > Data Access View.

When in the cacheline granularity, the Memory Hotspots pane provides information on
the accessed memory offsets within the cacheline and the list of threads and functions

User Guide 71

n tel ? > Intel® Performance Tuning Utility 4.0

that accessed a specific offset. To view this data, click the small triangle P in the
cacheline address.

The Memory Hotspots pane displays the cachelines based on the criteria selected in
the Top by drop-down menu. By default, this selects the 200 cachelines with the most
collected data references. You can change the criteria to select the top lines by: LLC
misses, Average Latency, Total Latency, Contention, or by any of the precise memory
access events that were used in the profile. The Contention condition is defined as the
number of references by secondary threads. This is evaluated with the difference of
(total references — references by the primary thread), where the primary thread for
each line is the thread with the most references to that line.

If you change the granularity to global data objects, the Memory Hotspots pane shows
global data objects defined in the modules of the focus process and associate them
with metrics corresponding to events collected on these objects.

Console | Caller f Callee EMemoryHotmots x Experiment Summary | Tuning Mavigator 2 Top by |Contention v =0

2008-06-20-03-4 3 Granularity |Cachelines w
Cacheline Address [Offset / Thread / Function | Collected Data Refs MEM_LOAD_RETIRED.L 1D_MISS | Total Latency Avg. Latency | Contention | Li#
I 0x100466c0 17 1 58 3 5
- eafd40 24 21 219 5 3
= wrfset:0x30(48) 12 12 120 10 a
w Thread:00001330(0012) 12 12 120 10 a
lhsz 12 12 120 10 a
- Offset:0x28(40) 5 5 50 10 0
P Thread:00001830(0012) 5 5 50 10 a
w Offset:0x38(56) 3 3 30 10 a
P Thread:00001830(0012) 3 3 30 10 a
P Offset:0x18(24) 2 1 13 3 a
b Offset:0x08(3) > 0 & 3 0
[0x00325200 20 7 356 4 3
[0x053eabd0 19 16 169 5 3
I 0x053eca80 7 2 35 3 3
[0x00322180 2 32 3 3
b feenn s on L] o] El k] v
< ¥

1 | Triangle to expand/collapse the cacheline address

2 | Top by drop-down menu to query and sort the cachelines by events

3 | Granularity control to switch between cachelines and global data objects

7473 Data Access and Latency Histogram Pane

The histogram view opens at the bottom of the Eclipse window and consists of two
charts and a data summary. The chart on the right shows a number of references
occurred with a specific latency value. This chart is empty if no events providing
precise latency information are collected. Such events are present on the Intel®
Itanium processors family only. The chart in the middle shows data reference

72 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

distribution over memory virtual space. The grid on the left provides summary
information on the data presented by the histogram. This chart is also referred to as
the Memory Access histogram.

Grarlacky |Fnction | Process [Savesxs w0 Theead | A ~ | Modde kereil2dl v Flterbyselecton "R R R

BTSN P Dty Bocass Pt ogram B Turing Mpator il sabtes w3 GL) +% -2

Description ke | } 2 3
L VA chigdied a0

Figh VA digleed LFFPFPADPEGFOZA40
M ider o AOO000

Biarrbeer of s 55

[& Lrybes

Fiter
Lown WA daplayed (a
Figh VA displeed O TFREGOG0

Murbsr of s 71 120 e 2,500,000
1
o e i e e e 1 0 1
il N FEE [0B o] A I R) R N B) B o Y |
i F - ¥
1 | Histogram summary 3 | ZoomIn/ZoomOut buttons to

magnify/minify the histogram view

2 | Drop-down menu to change current | (4 | Distance legend
bin size

The X-axis of the histogram displays memory locations. The Y-axis displays the
number of memory references. Grey bars show references for the whole process. Blue
bars show references according to the current filter setting. Thus, on the figure above,
blue bars show references for the kernel132.d11 module selected in the Module drop-
down menu above.

The histogram presents memory locations in bins. A bin represents a continuous
virtual memory chunk, of fixed size, and sums all references made to the addresses it
covers. One bar represents one bin. The size of a bin can differ from the size of a
cacheline (64 or 128 bytes) up to 16 Mbytes. The bin address space is defined by the
start address and size. To change the level of details shown for a memory region,
change the bin size in the histogram. The bigger the bin size is, the less number of
bins is shown for the same fixed region.

Bins without any memory references are omitted from the histogram. This may cause
different distance between adjacent bins.

The distance legend under the bars represent the spatial distribution of the bins.
Different shades of green, white, or black indicate spatial separation:

e Black bars indicate regions that are separated by more than 1GB

User Guide 73

n tel ? > Intel® Performance Tuning Utility 4.0

e White bars indicate adjacent regions

e Green bars indicate regions that are not adjacent, but the space between them
is less than 1GB. Darker shades of green indicate a larger space

Hover the mouse over a memory chunk to see a tooltip with the summary information
on this chunk. To get information about a particular memory region, select the
required region by pressing the mouse button and dragging the cursor over the
memory axis. You can also filter the code hotspots for a particular region using the

filtering options.

7474 Filtering the Data Access View

The Data Access view filtering options consist of standard and advanced view-specific
options. The standard options include the Process, Thread, and Module controls
residing on the central filterbar that enable displaying the code and memory hotpots
for a specific process, thread, or module.

Granularity | Function |« | Process | iexplore.exe w | Thread | Al w | Module | Al w

Data access filtering helps you analyze specific source code or assembly instruction(s)
responsible for high memory latencies or for data reference peaks. To do this, drill-
down to the Source view and analyze the exact code associated with specific data
address access, high latencies, or, in general, any reference peak(s).

For advanced filtering, select items either in the code Hotspot pane, Memory Hotspots
pane, or a region on the Data Access and Latency Histogram pane and use the Filter
by Selection buttons on the filterbar. These buttons enable filtering code hotspots by
selection in the data pane or histogram, and vice versa.

Filter by selection q Z

Use the advanced filtering options to highlight only those memory references that
were made by specific module(s), thread(s), function(s), or separate instructions. And
vice versa, select memory hotspots (data object or cacheline(s)) or a memory region
to filter the hotspots that affected the selected memory. To return to the default non-

filtered state, click the x Cancel All Filters button on the filterbar.

74.7.5 False Sharing Hints

False sharing is one of the typical problems that limits application performance on
multiprocessor systems. False sharing happens when processors write to a shared
cacheline but not at the same location. As a result, the cache coherence protocol

74 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n tel

User Guide

makes each processor invalidate a cacheline and forces the cacheline reload at each
write.

The Data Access analysis identifies possible false sharing candidates by monitoring
different offsets of the same cachelines accessed by different threads. The cachelines
identified with high probability as false-shared are highlighted in pink in the Memory
Hotspots pane.

b Thread:OOOONGFC(0007) 2,000, 000 {0, 2% 3 6,000,000 (0.1%) Functions: 1
- OFff)
b Thread:00000bS0{000S) 2,000,000 {0.2%) 3 £,000,000(0.1%) Functions: 1

3| 6,000,000/

Cacheline Address | Offset § Thread [Function | Refs (% Tokal) | Ay, Lakency | Total Latency €., | Contributors

I Ox000000000000FG6E0 §,000,000 {0.7... 3 24,000,000 (0.... Offsets: 1 Threads: 1

=~ 0x000000014011e380 4,000,000 {0.4... 3 13,400,000 (0.... Offsets: 3 Threads: 3
- Offset:0%20(32) 2,000,000 {0,2%:) 3 6,000,000 (0.1%) Threads: 1

P Offset:0x38(56) 200,000 {0.0%:) 10 2,000,000 (0,0%) Threads: 1
> 0x000000014007a480 4,000,000 {0.4... 3 12,000,000 (0.... Offsets: Z Threads: 1
I» 0x0000000140156c80 4,000,000 {0.4... 3 12,000,000 (0.... Offsets: 1 Threads: Z
> 0x000000014007b380 4,000,000 (0.4... 3 12,000,000 (0.... Offsets: 2 Threads: 2
Total Selected: 2,000,000 {D.2... 3 6,000,000 {0.1...
See Also:

Viewing Data Access Results (CLI)

7.4.8 Source View

For better understanding of a performance problem, it is important to associate a
hotspot with the source code and exact machine instruction(s) that caused this hotpot.
To do this, you can use the Source view.

You can drill-down to the Source view as follows:

e From the Hotspot view, do one of the following:

o Right-click the required hotspot and select the Drill-down to source
view pop-up menu command.

o Set the granularity level to Function, Basic block, or Address and
double-click a hotspot.

e From the Events over IP view, select a region of IPs and press the Source
View button.

e From the Caller/Callee view, right-click and use the pop-up menu.

In the current version, the Source view displays only the function the selected hotspot
belongs to.

75

[®
l n tel > Intel® Performance Tuning Utility 4.0

NOTE:

The Source view contains the following panes: Source, Disassembly, and Control Flow
Graph. These panes are synchronized with each other so that selecting a line or basic
block in one pane highlights corresponding line(s) or basic block(s) in the others. For
example, selecting an assembly instruction in the Disassembly pane highlights a
corresponding code line in the Source pane and a related basic block in the Control
Flow Graph.

The Source and Disassembly panes display accurate information provided that:

e Your code is compiled with the debug information and debug information is written
correctly in the binary file on Linux or debug information file (or symbol file) on
Windows.

e Source code file exists.

If the source file is unavailable, only Disassembly pane is displayed. If there is no
correct debug information or symbol file is unavailable, the disassembly view might be
incorrect. In this case, the Source view uses heuristics to define function boundaries in
the binary module.

The information available from the Source view helps you find all local hotspots within
a function and identify code sections that require optimization. Navigate between
hotspots using the Hotspot navigation buttons.

Press Ctrl-F to search for a text pattern in the source or assembly code, bookmark all
occurrences of this text, and iterate over them.

7.4.8.1 Source Pane

The Source pane displays source code of the function, line information, and number of
processor events (or their samples) associated with a code line.

In the Source pane, code lines of the selected hotspot function are displayed in blue
while the other code in the source file is displayed in black. For black regions, no

information is provided.

To export the Source pane content to a comma-separated text file, right-click and use
the pop-up menu.

76 Document Number: 315953-035US

. ®
Working with the Graphical Interface l n tel

Source
Line | Source Samples |
14 for(i = 3.0; i < 1000000; i += 2.0) 44

pi += 4.0 f i;

o

20 return pi; L
21 }
22 void funca (void) { printfivpr = %fym", funcc... =
| Total Selected: 250

748.2 Disassembly Pane

Disassembly pane displays assembler instructions for the selected hotspot function
grouped by basic blocks. The basic block lines are marked in bold. You can
expand/collapse basic blocks by right-clicking the Disassembly pane and selecting the
Expand/Collapse All command from the pop-up menu.

To export the current view to a comma-separated text file, also use the pop-up menu.

addracs | Line | Assambiy | misT pETREDANY P | MEM_.. | MEM OIS
Cec729 1345 Jadd rl5.08h
0777 3% omp rl5.rld
07730 1345 jnge compute rhe+04didh
+ Block 210 compute_rhs+04ee6:
0u7736 1345 lea r14, QWORD FTR [rl2+rbp=8]

lea rbp. QWORD FTE [rl124rl0=8]

] 0 PTRE [rld + |
mOvaps xmml3, XHHUORD PTR [rap+0ldlaBh]

0477568 1347 divpd wmml3, xmnd 2

750 1348 movsd xmmll HHUORED FTR [rl4 + . LOx2. .. s}

07766 1399 movhpd gmmll MHHUORD PTR [x14 + . LOx.

0x776F 1350 movsd xmmb, HHWORD PTR [rl1d + . LiOx3e. .. 2

7778 1350 movhpd xomE, HHUORD PTR [rl4 + L0x3. .. k|

x7781 1351 movsd ¥mm%. HHUORD PTR [rld4 + LOx41.

0x7784 1351 movhpd wmm¥, HHUORD PTR [ri1d 4+ .Loxd. . . hed)
£ id ¥

. Source line number

Basic block name or Relative Virtual Address of instruction

User Guide 77

Intel® Performance Tuning Utility 4.0

3 | Assembly code of instruction (instruction name and parameters)

4 | Number of samples occurred during instruction or basic block execution

S | Number of samples occurred during the execution of the selected instructions

If you collected the experiment using the Enable data access profiling option, you
can view the statistics for register values for any instruction or a set of instructions
that have samples for precise events. To do this, select an instruction (or a set of
instructions), right-click and select the Show registers values statistics menu item
from the pop-up menu:

04D push rei BB
0aD02 push rbp 198
04AD03 push rhe- Eaz
14004 =ub rS]Flegislers Stats -
022008 mov rh] Mame | tdin | (G | Average | Std. Dew
0xAD0E mow rh:irax h3kgE4R0TE R3E3R450TR R3E9R450TR a
04011 mow ri! rhe B3E9645028 B3E9645028 B369645028 1]
08D mow EpIRL: 5369644464 5369644860 5369644658 184
rdx 5369645032 5369645032 S369645032 1]
0xAD17 | mov Tal i 1 18432 1143 3350
novsrd rdi 3 3 g I}
W rhp 5369645024 5369645024 5369645024 1]
I5p 41347504 367057072 221775021 93548022
nov rll g 5369645028 5369645025 5369645025 0
noy rli M@ 5369645024 B369645024 5369645024 1]
movsed 0 B369644952 5369644992 5369644392 1]
novesd 1 5369645016 5369645016 5369645016 1]
M2 18432 184467440737035515... 1253096358903611392 4641EN 216271772672
lea rd: 13 41350488 41380704 41380623 104
noy ric 14 5369644464 B3EI644860 S36IE44658 184
nowv W
=hl rd: Click outzide or press <Esci to close
mow r9d,01h 24

N ATTATI TP P oA o

For each general purpose register, minimum, maximum, average and std. dev. values
are shown.

On Core™ i7 systems running an application compiled for Intel® 64 architecture
systems, it is possible to use this option to display statistical metrics of the function
integer arguments, when they are passed through registers in accordance with the
calling conventions for the OS (different for Windows* and Linux*). You can do this by
collecting the BR_INST_RETIRED.NEAR_CALL or BR_INST_RETIRED.NEAR_CALL_R3
event and using only the instructions with these precise events.

Loop trip count metrics can also be extracted from the registers statistics view. If the
BR_INST_RETIRED.ALL_BRANCHES or BR_INST_RETIRED.CONDITIONAL event is
captured, enabled for data access profiling (capturing register values with the events),
then the register values at the first instruction of the loop and the disassembly for the
comparison logic controlling the terminating conditional branch (end of the loop) can
be used to determine the trip count value. Most counted loops are compiled to
compare a loop index with a maximum value which is held in a register. Even for non-

78 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

User Guide

counted loops (for example, while loops), there is almost always an induction variable
in the loop logic and the mean value of the induction variable will be half the average
trip count.

7483 Control Flow Graph

Control Flow Graph (CFG) displays the function execution flow, where each node
indicates a basic block. Control Flow Graph is always displayed for one function only.
To view the Control Flow Graph, click the Control Flow Graph button at the top of
the Source View window.

Each node has a “thermometer” bar at the bottom. It displays the ratio of number of
events (for the Event of Interest) occurred during execution of this basic block to the
number of events occurred during execution of the hottest basic block of this function.
For the hottest basic block, the whole “thermometer” bar is filled in red.

Control Flow Graph represents the flow of function Control Flow Graph
execution by means of connectors (edges) between
nodes. Most of graph edges are shown as solid Bleck D
lines. If a basic block ends with a call instruction, i
the edge to the next block is shown as a dotted
line.

Block &

You can zoom in/out the Control Flow Graph by

using the pop-up menu commands. T

The selected basic block is colored in grey or in
saturated blue when CFG is in focus. The caller and ¥
callee blocks are highlighted in light blue and light Block 3

green respectively. \ /

Basic block tooltip shows assembly instructions Block 4
contained in the block with event values. Press F2 =
to retain the tooltip on the screen. You can scroll

extensive basic blocks or copy the content to Block 5
clipboard by using the tooltip menu.

7484 Source View Preferences

When drilling down to the Source view, the Intel Performance Tuning Utility checks for
the debug information. If it is incomplete or missing, the Mode Selection dialog box
opens and prompts you to specify the viewing mode for the target function. The Intel
Performance Tuning Utility uses the following modes in case of incomplete debug
information:

79

n tel ? > Intel® Performance Tuning Utility 4.0

¢ Source file and disassembly recovered from debug line information. In this
mode, the Intel Performance Tuning Utility restores the disassembly boundaries
based on the available debug line number information of the source file. This mode
is available and recommended if information about symbol size is missing in the
module but line information exists. This mode enables viewing a source file in the
Source view.

e Pseudo function heuristically determined by/from disassembly. Use this
mode if there is no debug information found for the module. In this mode, the Intel
Performance Tuning Utility uses an algorithm to restore function boundaries from
the static analysis of disassembly.

+ Fixed range of disassembly. Use this mode if there is no debug information
found for the module. In this mode, the Source view opens with a region
surrounding the target address. The default range size is 1024 bytes of code. A
larger portal size enables viewing a larger area that is more likely to include
functions. However, it takes longer to load. This mode is recommended if pseudo
function mode gives inadequate results.

Select a preferred mode for the selected function. If you want to make this mode
default for all functions in the project, select the Use these values as defaults and
never show this dialog for this project again check box. You may also select any
of these modes as default from the Source View preference page. To access this
page, go to Window>Preferences> Intel® Performance Tuning Utility> Source
View.

The Source View preference page enables you to set up a preferred assembly syntax
style for the Disassembly view on Intel® 64 and IA-32 architecture. To do this, click
the corresponding radio button to select between Intel® and AT&T* syntax style.
Intel® syntax is used by default.

7485 Mapping Files

When you request to open the Source view, the Intel Performance Tuning Utility tries
to locate the binary file and source file corresponding to the selected hotspot and open
source code file with the disassembly section of corresponding region in the binary file.
To proceed with disassembly and define hotspot function boundaries, the Intel
Performance Tuning Utility requires a symbol file. If some of the files cannot be
located during automatic resolution and search directories look-up while drill-downing
to the source, the Map <...> File dialog box opens.

80 Document Number: 315953-035US

"] ®
Working with the Graphical Interface l n te I)

User Guide

£ Map Symbol File X

The following symbol file referred in the module is not Found:
nksakrnl.pdb

Choose file from a different location:
|]

[]Add directary ko the project search directaries list

Skip] [Cancel

Use this dialog box to specify the correct filename and full path to it. To add the
directory you specified to the corresponding Directory search group, select the Add
directory to the directories search list check box. You may also choose Skip if no
such a file is available. In this case, the Source view runs a heuristic algorithm to
define function boundaries.

If a source file cannot be found, the Map Source File dialog box opens. To locate the
file, you can either specify a path to the correct source file or click the Assembly
Only button. In the latter case, only Disassembly and Control Flow Graph pane opens.
You may choose to skip this dialog box for all unresolved source files by selecting the
Never show this dialog for this project again (show assembly only instead)
check box. Only Disassembly view will be available.

By default, the Source view may find a wrong (or modified) version of the source file.
In this case, press SHIFT while drilling down from a previous view to the Source view.
The Source view prompts you to specify the source file location and this is your
responsibility to provide the correct source file related to the experiment.

During module resolution, the Intel Performance Tuning Utility compares the
modification date for the binary and source file. If the source file is modified later than
the binary file, the Source File Changed dialog box opens and prompts you to
specify the source file to use. If you want the Intel Performance Tuning Utility to
always choose the latest source file, select the Never show this dialog for this
project again (always use changed file instead) check box.

You can control the module resolution dialog boxes via the Source View property
page. To access the property page, right-click the project in the Tuning Navigator
and select Properties of... > Intel(R) PTU Project > Source View. This page
enables you to disable the selected types of the module resolution dialog boxes and
use the default options instead.

81

n tel ? > Intel® Performance Tuning Utility 4.0

749 Hotspot Difference Views

After you measured the performance of your application and optimized the code, you
may run an experiment with the same workload and identify the performance
difference against the benchmarks. The Intel Performance Tuning Utility provides an
option to compare two sampling results of selected experiments and view the
difference in sample count (or time for Clockticks) for each event.

To compare results of two sampling M\: =il

experiments, select the required —~ Ig =
experiments from the Tuning Navigator, =
right-click and select Compare =& sample

g 2007-01-15-20-40-28
2007-01-22-15-55-07

Experiments from the pop-up menu. The
Hotspot Difference view opens.

Each hotspot line in the Hotspot Difference

view displays difference between HeiF el SpEEs

Experiment 1 and Experiment 2 for each Fename
event as follows: :
-y svstermwi Delste
<Difference Value> = <Experiment Repeat...
#1 Value> - <Experiment #2 Value>
Re-conyverk
The time difference is evaluated in #'| Refresh F5

milliseconds as this allows comparing the m
performance of two different Intel® microprocessors, running at different frequencies.

You can expand a hotspot line to view experiment specific data: the first row provides
event values for Experiment 1 and the second row - for Experiment 2.

You can filter the Hotspot Difference view to focus only on the functions with the
defined threshold difference. From the Delta drop-down menu on the filterbar, select
a threshold value. The Hotspot Difference view updates to include only the hotspots
with the difference not smaller than the defined threshold, by absolute value.

Lgi Biasic-Sampling-2009-08-25-18-04-17 - Basic-Sampling-2003-08-25-18-06-55 &3
Function Madule | Time(msec) | usT_RETIRED.ANY
I test_if vtunedemo.exe rd 1 -10
I test_memset vtunedemo.exe 11 -16
I divd_rout vtunedemo.exe [-19
- test_ifl vtunedemo.exe -18 36
Basic-5ampling-2009-05-25-18-04-17 157 287
Basic-3ampling-2009-05-25-18-06-55 175 251
IF CmUnRegisterCallback ntoskrnl.exe 4 -10
I get_fpsr msvcr3od.dll 9 10
J Granularity IFunction "I Process | all j Module I.D.II j Delta I 10 vl

82 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

NOTE:

User Guide

Double-click a hotspot line in bold to drill down to the Source Difference view that
displays the sample count difference between Experiment 1 and Experiment 2 for each
code line of the selected function.

Address and basic block granularity is available for identical binaries only. Different
binaries are automatically excluded from the view. Function and module granularity is
available for both identical and different binaries.

To drill down to the experiment specific Source view of the selected function, double-
click the corresponding row under the hotspot function.

7.4.9.1 Modifying the CPU Frequency

With the Hotspot Difference view, you can analyze how the CPU frequency change
affects the code execution time. Typically, the CPU frequency is automatically detected
during the data collection. But sometimes it is impossible to detect the frequency
properly or you may want to know the performance of your system/application with a
different frequency. In this case, you can modify the CPU frequency using the Hotspot
Difference view pop-up menu and analyze the Time(msec):Diff column value. The
Time(msec) value is calculated as Clockticks total value / (CPU frequency * 1000)
and corresponds to the time spent for execution of the respective unit (module,
function, basic block, or instruction). The Time(msec):Diff value is a difference
between Experiment 1 and Experiment 2: Time(msec):Diff = Expl Time - Exp2 Time.

To specify a different frequency value for an experiment(s):

1. Right-click the Hotspot Difference view and select the Override CPU Frequency
pop-up menu command.
The Override CPU Frequency dialog box opens.

2. Modify the CPU frequency value for both or one of the experiments and click OK.
The Time values in the Hotspot Difference view are recalculated according to the
formula.

See Also

Comparing Two Sampling Experiments (CLI)

74.9.2 Handling Modules with Identical Names

In the Hotspot Difference view, you may want to combine modules with the same
name into one ignoring the paths to the modules. The performance data for the new
alias module presents the summed up data from the combined modules. This
technique could be useful, for example, if you compare experiments with identical
workload collected on different systems.

To automatically combine modules with identical names into one, go to the
Preferences>Intel® Performance Tuning Utility>Hotspot Difference View and

83

®
n tel > Intel® Performance Tuning Utility 4.0

select the Treat such modules as the same module option in the Handling
modules/functions with identical names section.

7493 Comparing Functions with Identical Names

From the Hotspot Difference view, you can compare functions from the same source
files but different modules. This option could be useful for compiler regression
analysis. Thus, you can compile the same source file twice with different compiler
options and, then, compare the same functions by drilling down to the Source view
from the Hotspot Difference view. In this case, the Source view displays a single
source pane and two assembly panes for each module: Assembly (for 1st exp.) and
Assembly (for 2nd exp.). The Control Flow Graph is not available.

[3p 2007-07-22-00-09-51 - 2007-07-22-00-10-17 B vtunedemo.c X =8
[Su:uurce] [.ﬁ.ssemblv(lst exp.]l] [.ﬂ.ssembly (znd exp.}] & D 9 a9 [i]
L...|SDurce |T |I | ~
166 < Show the speedup of a local walue
167 for(i = 0; 1 < 100; 1i++) 3
168 I =5
Global Te=st_if putp = 1%2: 4
170 test_1fl(ia. ib, ic, 903 2
171 T h
Total Selected: -1 -2
Address | L... | Aszembly (1sk ex... | T... | I... |A Address | L... | Aszembly (2nd ... | T| I|
- Block 16 testmain+015ah: - Block 5 169 testmain+045h: 1 3
0x1BB4 169 mow C 0x1105 169 mow C 1
Ox1BC0 169 and L k1107 169 and
0x1BCE 169 Jns L 01104 169 add
- Block 17 testmain+0167h: — 01100 169 cmp ... 1
0x1BC7 169 dec Eax 0x1110 169 mowv L. 1
0x1BCS 169 o A 0x1116 169 Jnge L. 1
Ox1BCE 169 inc 28
= Block 18 169 testmain+016ch: 1 1
Ox1BCC 169 mow S 1 %
Total selected (... 1 Total selected... 1 3

Selecting lines in the source pane filters corresponding basic blocks in the assembly
panes. You can export the selected source lines from the source pane and filtered
basic blocks in the assembly pane to a CSV file via the Export selected source and
associated basic blocks option of the pop-up menu. The CSV file will include three
spreadsheets separated by headers.

84 Document Number: 315953-035US

"] ®
Working with the Graphical Interface < l n tel)

7.5

User Guide

Specifying Search Directories

You can specify the search directories in the Project Search Directory page and
Global Search Directory page. Typically, you use the global search directory list to
specify directories specific for your machine, for example, a directory that contains
PDB symbol files for system libraries. The project search directory list is usually used
for directories specific to the current project, for example, a directory where the
project sources are located. Project search directories are always treated as high
priority.

To access the Project Search Directories property page, right-click the project
name in the Tuning Navigator and select Properties of... > Intel(R) PTU Project
> Project Search Directories.

& Preferences

= Intel(R) PTU Project Project Search Directories
Project Search Directories
Source View
Show directories for: |Binary files »
Directories
=
C:\WINDOWS \system32 Add...

Current selection details:
Directory: | C:\Program Files
[*]5earch in subdirectories:

Binary files

Project binary search directaries are used for resalving module file associations.
If the project directories do not have files in search, global directories are used.

[Resb:ure Qefaults] [Apply]

(7 [Ok H Cancel]

85

[®
l n tel > Intel® Performance Tuning Utility 4.0

TIP:

NOTE:

Lists of the global directories are controlled via the Global Search Directories
preference page. To access this preference page, go to Window>Preferences>
Intel® Performance Tuning Utility>Global Search Directories.

Importing Data

You can import existing experiments and projects that were created in other
workspaces using the GUI, or from the command-line interface.

To import the experiment into a specific project in your workspace:
1. Copy the experiments into the project directory in the workspace.
In case you have no projects in this workspace, create a new empty project.
2. Open Intel(R) PTU and the Tuning Navigator.
Select the project into which you copied the data.
4. Press F5.

You will see all the copied experiments under the project node.

You can also import an experiment into the current workspace using File > Import >
Import Intel(R) PTU Experiment dialog box. When the importing process finishes,
the experiment appears in the Tuning Navigator under the Import Project node.

You can analyze the data with the hotspot view at this stage.

If you need access to binary, symbol or source files to perform the analysis, you
should define search directories for the analyzed data. For your convenience, group
the experiments, collected on the same workload, under one project directory. This
grouping enables you to define the search directories for all the experiments once in
the project properties. Otherwise, you can set search directories for each experiment
separately as predefined search directories.

To import a whole project created in another workspace, select File > Import >
General > Existing Projects into Workspace. In this case the original project
settings are preserved.

If you want to import several projects from the same location, set this location as the
root directory in the Import dialog box.

If you collected the data using the GUI, you can find the location of project or
experiment by switching to the Resource perspective:
1. Select Window > Open perspective> Resource.

2. In the opened Navigator right-click the required node and select Properties from
the pop-up menu.

86 Document Number: 315953-035US

"] ®
Collecting and Analyzing Data on Different Systems l n tel >

Collecting and Analyzing Data on
Different Systems

8.1

NOTE:

User Guide

With the Intel Performance Tuning Utility you can collect data on one machine and
analyze them on another machine. Computer used to collect data is called a collection
machine. Computer used to analyze the collected data is called an analysis machine.

Each data collection and analysis session includes the following steps:
1. Collect data.
2. Convert data.

3. Copy the collected data to the analysis machine and analyze it.

Collecting Data

During data collection session raw data are gathered to the experiment directory.

You may choose to collect data either using the graphical interface or command-line
interface:

e In the GUI, you can collect the data using a predefined Configuration (for example,
Basic Sampling) or create your own.

e In the command-line interface, use the vt*run commands to collect data. For
example:
$ vtsarun <experiment dir> -s -- <application> <application arguments>

You may want to use the Intel Performance Tuning Utility GUI to generate the
command line for collection.

Converting Data

Raw data gathered during the data collection should be converted to a database.
Symbols resolution, attributing performance data to various levels of analysis
granularity (modules, basic blocks, functions, classes) are particular phases of data
conversion process.

87

[| ®
(l n tel > Intel® Performance Tuning Utility 4.0

NOTE:

8.3

Data conversion should be performed on the collection machine. To have the data
conversion process working correctly on the analysis machine, copy all the modules
referenced by the experiment to the analysis machine and configure search directories
properly using the --search-dir option.

In the GUI, you do not need to explicitly convert the data because it is done
automatically upon the data collection completion.

In the command-line interface, convert the collected raw data so that the data can
now be moved to another machine. The command for data conversion must
correspond to the vt*run command used for collection. For example:

$ vtsaview <experiment dir> --convert

Copying Data to the Analysis Machine

If you want to analyze the data using the command-line interface, copy the
experiment directory from the collection machine to the analysis machine and use
vt*view tools.

If you want to analyze the data from the GUI you should copy and import your data.
See Importing Data for more information.

To be able to drill-down to the source and disassembly on the analysis machine, you
need to make sure that the original modules, symbols, and sources can be found. To
view hotspot data only, conversion step is enough.

Consider using one of the following strategies to point to modules, symbols, and
sources:

e Specifying search directories

e Using predefined search directories

It may be useful to read the whole chapter File Resolution to fully understand how it
works. This can be critical for converting and analyzing data on a machine different
from the machine where collection was performed.

88 Document Number: 315953-035US

Troubleshooting

9

Troubleshooting

User Guide

9.1 Troubleshooting the Hotspot View

Symptom: When sampling on multi-processor machine, the collector reports incorrect
mapping between logical processor number and corresponding processor socket, core
and HW thread. Data provided in the Per Socket and Per HW Thread views is
incorrect.

Solution: You may provide correct mapping in the cpumapping.txt file. The file
format is the following:

<cpu_num>,<cpu_node>,<socket_ num>,<core num><hw_thread num>

<cpu num>,<cpu node>,<socket num>,<core num><hw thread num>

This example of the cpumapping.txt file content defines mapping for a system with 8
logical processors:

#cpu, node, socket, core.hw_thread
0,0,0,0,0
1,0,0,1,0
2,0,1,0,0
3,0,1,1,0
4,0,2,0,0
5,0,2,1,0
6,0,3,0,0
7;,0,3,1,0

You can place the cpumapping. txt file to the following locations:

e Experiment result directory. First, the sampling viewer searches for the
cpumapping.txt file in the experiment result directory. It is recommended to place
the file to this directory if you analyze data collected on a different system.

e <install dir>/bin directory. If the Intel Performance Tuning Utility doesn’t find
the cpumapping.txt file in the experiment result directory, it searches in the
<install dir>/bin directory. It is recommended to place the file to this directory
if you collect and analyze data on the same machine.

89

90

Intel® Performance Tuning Utility 4.0

Document Number: 315953-035US

Appendix A: Command-line Reference

Appendix A: Command-line Reference

NOTE: To get the most recent command-line reference, enter vt* -help.
Table 1 vtsarun Options
Primary Options
--version | -V Display product version nhumber.
--help | -h | ? Display help message and exit.
Secondary Options

--cpu | -c <cpu name>|<cpu alias> Specify processor to configure collection for or
display events available.

--cpu-list | -cl Display currently supported processors.

--events-list | -el Display events to monitor.

--modifiers-list | -ml <event name> Display modifiers/constraints available
for the specified event.

--start | -s Enable EBS sampling collection.

--dry-run | -n Print configuration on the output without
running real sampling collection.

--cpu-mask | -cm <cpus> Specify CPU(s) to collect data on. For example,
mask "1-3,7,9-12" means that only CPUs 1 to
3,7,9to 12 are sampled.

--avail-cpu-mask | -am <cpus> Specify currently available CPU(s) to collect
data on. For example, mask "0-1,4" means
that only CPUs 0 to 1 and 4 are sampled.

--duration | -d <num> Specify duration of sampling collection.

—--sampling-delay | -sd <delay> Specify number of seconds to delay sampling
while application is being executed. For
example, if you set duration to 10 seconds (-d
10) and delayed sampling on 5 seconds (-sd
5), the collector waits for 5 seconds and then
collects data during 10 seconds.

—ec <event parameters> Specify collection parameters for a particular
event. Event parameters syntax:

"<event name>"[:<modifier
name>=value] [/<constraint name>=
{[:<modifier name>=valuel}l, ...

—-stop Stop EBS collection.

—~pause Pause EBS collection.

——resume Resume EBS collection.

-—data-latency | -dl Enable data latency specific profiling.

--event-multiplexing | -em [-dts <time Multiplex events while performing sampling

slice per event group in milliseconds>] collection.

User Guide 91

António Pina

António Pina

António Pina

António Pina

António Pina

intel.

Table 2

vtsaview Options

Intel® Performance Tuning Utility 4.0

Primary Options

--help | -h

Display help message and exit.

--version | -V

Display product version humber.

Secondary

Options

--convert | -c

Put raw data to database.

--summary

Display summary information for the
experiment.

--threshold | -t = <value>

Display heaviest hotspots contributing to the
experiment in total >= <value> percent of
samples. Threshold <value> is an integer from
1 to 100. Using a threshold enables you to filter
out hotspots with minor contributions to the
experiment and focus on the hotspots with
larger contributions.

For example, set 90% (-t=90) to view the
hotspots contributing to at least 90% of the
experiment in total.

--granularity | -g = <value>

Define hotspot granularity. Supported values
are va, rva, basicblock(b), function (f),
source (s), module (m), thread(t),
process (p) .

—-—filter | -f =

<column>,<string>.

Print data that contain defined substring in the
specified <column>. Supported columns are
function, thread, process, and module.

--FILTER | -F <column>,

<string>,..

Print data that do not contain defined substring
in the specified <column>. Supported columns
are function, thread, process, and module.

--rows-limit | -n = <value>

Limit the number of output rows to specified
value. Default is 100. To see the heaviest
hotspots in an experiment result, use the --
threshold(-t) option.

Note: This option is ignored when used with --
threshold (-t).

--aggregate | -a = <level>

Group the output by <level>. Supported
values are thread (t), process (p), and
experiment (e).

--sort | -s = <column>

Sort the output in the descending order.
Supported columns are function, thread,
process, module, and event name.

--event-ratios | -er

Show event ratios.

--SORT | -S = <column>

Sort the output in the ascending order.
Supported columns are function, thread,
process, module, and events name.

--show-events-as | -sea = <value>

Specify format of events values. Supported
formats are s (samples), t (totals), and
p (percents) . Default is samples.

—--re-convert

Delete the existing database and rebuild it from
raw data applying new search directories and
binary/symbuol files location.

--cpu=<value>

Specify how to display sample count for an

92

Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

Appendix A: Command-line Reference

intel.

event distributed per processor. Possible values
are:

total - for all processors in one column
(default);

each - for each logical processor;
per-socket - for each processor socket;
per-ht - for each hardware thread;

<nl>, <n2>, ... - for specified logical
processors;

max-each - for maximum value across logical
processors.

--search-dir=<value>

where <value> is <all |
sym[:<p |

bin | src |

r>]>=<directory>

In <directory>, search files of the specified
category: binary files (bin), source files (src),
symbol files (sym), or all above (all).
Additional options are the following:

: r for recursive search;

:p for high search priority (for example, lookup
by absolute name).

--view-overtime=<value>

View over-time data for separate time ranges
of the experiment. <value> is the number of
time points dividing the time of the experiment
into separate time ranges.

--view-overtime-mode=<value>

Specify the over-time display mode. Possible
values are:

rate — display events per second metrics for
each time point (default);

raw - display the total number of events
collected up to the time point from the start of
the experiment.

This option works with the view-overtime
option only.

—-filter-time=<value>

Filter output by specified time range. By
default, time is displayed in milliseconds. Use
ns suffix to specify time in nanoseconds. Option
format:

--filter-time start time,end time

--filter-turbo=<value>

Filter output by specified turbo factor range.
Option format:

--filter-turbo start,end

--turbo-histogram

Display Frequency Multiplier histogram.

Table 3

vtsadiff Options

Primary Options
--help | -h Display help message and exit.
--version | -V Display product version nhumber.
--granularity | -g <level> Define hotspot granularity. Supported values

are va, rva, basicblock(b), function(f),
source (s), module (m), thread(t),
process (p) . function is default.

Secondar

y Options

—-filter-module <modulel>[,moduleZ2,..]

Filter collected data by module name.

--filter-process <processl<[,process2,..]

Filter collected data by process name.

User Guide

9

3

Table 4

intel.

Intel® Performance Tuning Utility 4.0

--filter-thread <threadl>[,threadZ2,..]

Filter collected data by thread name.

--filter-function
<functionl>[,function2,..]

Filter collected data by function name.

--module-dir | -m <dirl>[,dir2,..]

Search modules in the directories list
<dirl,dir2,.>.

——CsVv

Provide output in the comma-separated view
format.

--csv-delimiter <delimiter>

Specify a delimiter in the comma-separated
view format. \t delimiter is default.

--show-clockticks

Show clockticks as samples. Time in ms is
shown by default.

--ignore-module-paths

Ignore module paths.

--sea, --show-events-as=<value>

Show events according to specified <value>:
s (samples) Or e (events).

-—-delta=<value>

Display only hotspots for the compared results
with the difference exceeding the defined value
for at least one event.

vtssrun Options

Option Description

--help | -h Display help message and exit.

--version | -V Display product version humber.

--interval | -i <value> Set sampling interval in milliseconds. Default
<value> is 10 ms.

--notrace | -nt Do not profile processes by default. To select
individual processes, use the -s option.

--signal | -g <signum> Change the signal for pause/resume. By
default, the pause/resume options use system
signal 35.

--bind | -b Resolve dynamically linked symbols at startup.
This option can be helpful if application hangs
under profiling.

--strategy | -s <name>[HOW] Specify how to profile a process <name>.

How can be:

:notrace | nt[,children | c] - do not
profile the process, but profile its children
:trace | t[,children | c] - profile the
process and its children (default)

:notrace | nt[,nochildren | nc] - do not
profile the process and its children

:trace | t,nochildren | nc - profile the
process but do not profile its children

--log level | -e <value> Set logging level. Possible values are:
CRITICAL, ERROR, WARNING, INFO, TRACE.
CRITICAL is default.

SEEERED Display profiling status of running processes in
an experiment.

--pause | -p [PID [PID...]] Pause profiling of [PID] or entire experiment

if a1l is specified instead of PID. Use this
option to focus data collection on specific code

Document Number: 315953-035US

António Pina

António Pina

António Pina

António Pina

Appendix A: Command-line Reference

intel.

sections. If you launch an application with this
option, the statistical call graph collector starts
the experiment in a paused state.

—--resume | -r [PID [PID...]]

Resume profiling of [PID] or entire
experiment if all is specified instead of PID.

--stop | -s

Stop data collection and terminate profiled
applications.

--duration | -d

Set duration of profiling collection in seconds.

--sampling-delay | -sd <seconds> Specify the number of seconds to delay

sampling while the application is executing.
Default is 0 seconds.

Windows-specific Options

-—-attach | -a <PID>

Attach to process with the specified PID.

--detach | -dt <PID>

Detach process with the specified PID. Use -dt
all command to detach from all processes

--event-config | -ec

See the same option for vtsarun. Note that
only one event can be provided to statistical
call graph collector.

Table 5 vtssview Options
Primary Options

--help | -h Display help message and exit.

--version | -V Display product version nhumber.

--convert | -c Convert raw data collection files to a single
database file.

-—-flat-profile | -p Open Flat Profile view.

--graph | -g Open Call Graph view.

--hot-stack | -t Open Hot Stack view.

--aggregate | -a=<level> Aggregate the output data by <level>:

t - by thread;
p - by process;
e - by experiment.

--get-by-id <ID> Get data by defined <I1D>.

--print-debug-info Display debug information.

e Print all data in CSV format.

—~loops | -1 Display loops.

Secondary Options

--rows-limit | -n <number> Display top <number> of hotspot functions.

--sort | -s <column name> Sort the table by <column name>. By default,
columns are sorted in the descending order.
Supported columns are total, self, function,
thread, process, and module.

--SORT | -S=<column name> Sort the Flat Profile or Hot Stack views in the
ascending order by <column name>. Supported
columns are total, self, function, thread,
process, and module.

--function-decoration | -m Choose the function decoration form: mangled

(mangled|m) | (demangled|d) or demangled.

User Guide 95

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

António Pina

Table 6

Table 7

Intel® Performance Tuning Utility 4.0

--filter | -f <column
name>,<substring>|[,<column
name>,<substring>[, ... 1]

Display the data for functions that contain a
defined substring in the specified <column
name>. Supported columns are function, thread,
process, and module.

--FILTER | -F <column
name>,<substring>[,<column
name>,<substring>[, ... 1]

Display the data for functions that do not
contain a defined substring in the specified
<column name>. Supported columns are
function, thread, process, and module.

--width | -w <column name>,<number>[,
<column name>,<number>[,...]]

Set width for <column name>. Supported
columns are index, total, self, function, thread,
process, module.

--flat-profile-format <column
name>:<width>:<column name>:<width>:...

Set Flat Profile view columns order and width.
<width> can be <number> or a combination of
<number>.<align>. For example:

function:15:process:15:
module:20:total:10:self:10.right

--cg-view-format <column
name>:<width>:<column name>:<width>:...

Set Call Graph view columns order and width.
Supported columns are function, thread,
process, and module.

--hotstack-view-format <column
name>:<width>:<column name>:<width>:...

Set Hot Stack view columns order and width.
Supported columns are function, thread,
process, and module.

—-—-re—-convert

Delete the existing database and rebuild it from
raw data applying new search directories and
binary/symbol files location.

vtcgrun Options

Option Description
--ignore | -i <file> Do not profile applications listed in the <file>.
Use this option to reduce collection overhead
and focus on an application of interest only.
--callcount | -cc Collect data on function calls only.

vtcgview Options

Option

Description

--help | -h | ?

Display help message and exit.

--version | -v

Display product version nhumber.

--graph | -g

Display call graph view.

--flat-profile | -p

Display or export flat profile view.

--module | -m

Display module view.

--merge-threads | -mt

Merge all threads into one.

--group-by-threads | -bt

Display each thread separately.

—-—-convert

Convert all trace files to a database file in the
directory specified with the <experiment dir>
argument.

—--re—-convert

Delete the existing database and rebuild it from
raw data applying new search directories and

Document Number: 315953-035US

Appendix A: Command-line Reference

intel.

binary/symbol files location.

--rows-limit | -n <value> Limit the number of output rows to specified
<value>.

--sort-asc | -s Specify columns for sorting in the ascending
order.

--sort-desc | -S Specify columns for sorting in the descending
order.

--verbose | -V Print additional information while collecting
data.

--quiet | -Q Print as little information on data collection as

possible.

--flat-profile-format

Set the flat profile view columns width and
adjustment. Possible columns are: total, self,
calls, name, thread, module, process, pid, rva,
number-of-parents, number-of-callees. For
example:
name:30.left:self:20.left:total:30.left:
calls:15.eft:module:20.left:process:30.
left:pid:10.center

--cg-view-format

Set the call graph view columns width and
adjustment. Possible columns are: index, total,
self, calls, name, thread, module, process, pid,
rva, number-of-parents, number-of-callees. For
example:
index:10.center:total:20.left:self:20.
left:name:30.left:thread:10.center:
calls:10.center:module:30.1left

--module-view-format

Set the module view columns width and
adjustment.

-C | --config-file

Specify configuration file. By default, it is taken
from the current directory.

——CsVv

Output in csv format.

--csv-delimiter

Specify csv delimiter.

Table 8

vthprun Options

Option

Description

--trace | -t=no | yes

Set yes to collect trace of all allocations and
releases with time stamps. Set no to compress
information on all allocations during the whole
application run. Trace enables analyzing a
period of time and identifying logical memory
leaks.

NOTE: Trace data may generate large result
files.

--ignore | -i=<file>

Do not profile applications listed in <file> and
reduce overhead due to concentrating only on
applications of interest.

--trace-children | -c=no|yes

Set yes to profile all child applications. Set no
(default) to focus on the first executed
application only.

--exact | -e=nolyes

Set yes to enable precise profiling on IA-32

User Guide

97

Table 9

Table 10

intel.

Intel® Performance Tuning Utility 4.0

systems. Set no to enable the fast mode
profiling and reduce overhead of data
collection.

--allocators | -a=<file>

Profile memory management functions defined
in the file <file>. Exact mode only.

vthpview Options

Primary Options

--spacetime Show time weighting allocated memory.
--footprint Show the heap usage over the time.
--allocgraph Show memory allocation for all the children of
a function.
) Show allocation data on the number/size of

--functions . .
allocated objects and memory in every
function.

——memleaks Show allocated memory not freed before the
end of the application or timestamp specified
with the -end option.

--objects Show information about allocated memory
based on block size.

——list List th_e result_s and applications names for the
experiment directory.

Secondary Options
——all-data Show all data generated by the view. By

default, all views show top 10 items sorted by
amount of allocated memory.

--begin=<value>

If data contains a trace, display the data subset
starting from the specified <value> of time.
See the value in the footprint view.

--end=<value>

If data contains a trace, display data up to the
specified <value> of time. See the value in the
footprint view.

——CSV

Provide output in the CSV format.

--csv-delimiter=<symbol>

Specify a non-default delimiter for CSV output.
TAB is default.

vtdpview Options
Options Description

--help | 2 | h Display help message and exit.

--version | -V Display product version humber.

--convert | -c Convert raw data collection files to a single
database file.

--re-convert Delete the existing database and rebuild it from
raw data applying new search directories and
binary/symbuol files location.

--threshold | -t <value>

Display output data threshold in percents. 95 is
default.

98 Document Number: 315953-035US

Appendix C: Glossary i n te I @

--granularity | -g <value> Display data according to granularity level
<value>. Supported values are process,
thread, module, function (default), and
cacheline.

Aggregate the output data by <ievel>:
--aggregate | -a <level> t - by thread

p - by process (default)

e - by experiment

--column-delimiter | -cd <value> Specify a delimiter in the comma-separated
view format. \t delimiter is default.

--filter | -f <column Display the data for functions that contain a

name>, <substring>[, <column defined substring in the specified <column

name>, <substring>[, ...] name>. Supported columns are thread, process,
and module.

--FILTER | -F <column Display the data for functions that do not

name>, <substring>[, <column contain a defined substring in the specified

name>, <substring>[, ... 1] <column name>. Supported columns are
thread, process, and module.

--cacheline <value> Filter output by the specified cachelines.

--latency <value> Filter output by the specified min/max latency.

--data-address <value> Filter output by the specified address range.

--rows-limit | -n <value> Limit the number of output rows to the

specified value. 100 is default.

Appendix C: Glossary

EBS (Event-based Sampling)

Sampling collection when program is interrupted based on PMU event counter
overflow.

Basic Block

A straight-line piece of code that starts with a jump target and ends with a jump. Basic
blocks form nodes in the Control Flow Graph.

Bottleneck

A bottleneck is an area in your code that consumes a visible fraction of the whole
application execution time and potentially could be optimized to take less time.
Bottlenecks appear as hotspots in the Hotspot view. All bottlenecks are hotspots but
all hotspots need not necessarily be bottlenecks.

Clockticks

The event that initiates time-based sampling by setting the counters to count the
processor's clockticks. Processor clocktick is the smallest unit of time recognized by

User Guide 99

[®
(l n tel > Intel® Performance Tuning Utility 4.0

the processor. The term is also used to indicate the time required by the processor to
execute an instruction.

Experiment Result

A file system directory that contains the results of a data collection session. In the
Tuning Navigator pane, Experiment Result nodes appear under Project nodes. When
created from GUI, Experiment Result directory also contains configuration details
about how this Experiment was created. It enables you to repeat a particular
experiment from GUI.

Hotspot

A section of code that took a long time to execute. Some hotspots may indicate
bottlenecks and can be removed, while other hotspots inevitably take a long time to
execute due to their nature.

Instructions Retired

The event that indicates the number of instructions that retired or executed
completely. This does not include partially processed instructions executed due to
branch mispredictions.

PMU (Performance Measurement Unit)

Special unit on CPU that is responsible for measuring various events occurring on the
CPU during program execution.

Precise Events

Precise events are events for which the exact instruction addresses that caused the
event are available. Some events for the Pentium(R) 4 processor are precise events.

Profiling Configuration

Set of data collection settings that can be applied to a Project to get Experiment
Results.

Project

Includes workload specification that contains information on how an application is
executed. Eventually, Project contains one or more Experiment Results.

Recursion cycle

100 Document Number: 315953-035US

Appendix C: Glossary :i n te I ®>

User Guide

Recursion is a programming method in which a function calls itself or another function
that directly or indirectly calls the original function. Recursion cycle is a function
sequence that is repeated several times.

Reference frequency

A constant frequency equal to the frequency of the time-stamp counter read by the
RDTSC instruction. The RDTSC change between sequential interrupts for the core
frequency on a single processor is used for calculating the turbo factor value. Starting
from the Intel® Core™ i7 processor family, the actual operating frequency of a core
(on a single processor) can differ from the reference frequency, depending on
performance requirements and energy consumption level.

Sample After Value

The frequency or the number of events after which the Intel Performance Tuning
Utility interrupts the processor to collect a sample during EBS.

Self time

Time (microseconds) spent inside a function, including time spent waiting between
execution activities. It does not include time spent in calls to other instrumented
functions.

TBS (Time-based Sampling)

Sampling collection when program is interrupted based on the OS timer.
Total time

Time (microsecond) elapsed between the time a function starts execution until the
time it terminates execution. This is the sum of this function's Self Time and all its
callees Total Time.

Turbo Factor

A ratio between the actual operating frequency and the reference CPU frequency. If
the turbo factor value is below 1, the available CPUs are running slower than the
reference frequency. If it is above 1, the CPUs are running faster than the reference
frequency. Turbo factor data is useful for processors with Intel® Turbo Boost
Technology that can adjust the operating frequency of the processor cores depending
on performance requirements and energy consumption level. This feature is available
starting from the Intel® Core™ i7 processor family.

101

	Disclaimer and Legal Information
	Revision History
	Contents
	1 About the Intel® Performance Tuning Utility
	2 Data Collection
	2.1 Sampling
	2.2 Statistical Call Graph
	2.3 Exact Call Graph
	2.4 Heap Profiling
	2.5 Data Access Profiling

	3 Profiling Experiment
	4 File Resolution
	4.1 Automatic File Resolution
	4.2 Search Directories
	4.3 Predefined Search Directories
	4.4 File Search Order

	5 Event Ratios
	5.1 Modifying / Creating Ratios

	6 Working with the Command-line Interface
	6.1 Sampling Hotspot Analysis
	6.1.1 Collecting Sampling Data
	6.1.2 Viewing Sampling Data
	6.1.3 Comparing Two Sampling Experiments

	6.2 Statistical Call Graph Analysis
	6.2.1 Collecting Statistical Call Graph Data
	6.2.2 Collecting Data for Specific Code Regions
	6.2.3 Viewing Statistical Call Graph Data
	6.2.4 Identifying Loops

	6.3 Exact Call Graph Analysis
	6.3.1 Collecting Call Graph Data
	6.3.2 Viewing Call Graph Data

	6.4 Memory Analysis
	6.4.1 Collecting Heap Profile Data
	6.4.2 Viewing Heap Profile Data
	6.4.3 Collecting Data Access Results
	6.4.4 Viewing Data Access Results

	6.5 Specifying Search Directories

	Working with the Graphical Interface
	7.1 Profiling Concepts
	7.1.1 Project
	7.1.2 Profiling Configuration

	7.2 Configuration Settings
	7.2.1 Hotspot Analysis Configuration Settings
	7.2.1.1 Configuring for Viewing Call Sites

	7.2.2 Call Count Analysis Configuration Settings
	7.2.3 Heap Analysis Configuration Settings
	7.2.4 Configuration-specific Project Properties

	7.3 Workspace and Tuning Navigator
	7.4 Data Views
	7.4.1 Filtering Controls
	7.4.2 Sampling View
	7.4.2.1 Hotspot View
	7.4.2.2 Hotspot View with Loop Granularity
	7.4.2.3 Advanced Profile View. Automatic Identification of Performance Issues
	7.4.2.4 Events over IP View
	7.4.2.5 Sampling View Preferences

	7.4.3 Overtime View
	7.4.3.1 Events/Ratios Selection Pane
	7.4.3.2 Time Charts Pane
	7.4.3.3 Frequency Multiplier Histogram Pane
	Managing the Overtime View
	7.4.3.5 Overtime View Preferences

	7.4.4 Statistical Call Graph View
	7.4.4.1 Hotspot View
	7.4.4.2 Caller/Callee View
	7.4.4.3 Hotpath View
	7.4.4.4 Hint Icons

	7.4.5 Call Count View
	7.4.6 Heap Profiling View
	7.4.7 Data Access View
	7.4.7.1 Hotspot Pane
	7.4.7.2 Memory Hotspots Pane
	7.4.7.3 Data Access and Latency Histogram Pane
	7.4.7.4 Filtering the Data Access View
	7.4.7.5 False Sharing Hints

	7.4.8 Source View
	7.4.8.1 Source Pane
	7.4.8.2 Disassembly Pane
	7.4.8.3 Control Flow Graph
	7.4.8.4 Source View Preferences
	7.4.8.5 Mapping Files

	7.4.9 Hotspot Difference Views
	7.4.9.1 Modifying the CPU Frequency
	7.4.9.2 Handling Modules with Identical Names
	7.4.9.3 Comparing Functions with Identical Names

	7.5 Specifying Search Directories
	7.6 Importing Data

	8 Collecting and Analyzing Data on Different Systems
	8.1 Collecting Data
	8.2 Converting Data
	8.3 Copying Data to the Analysis Machine

	9 Troubleshooting
	9.1 Troubleshooting the Hotspot View

	Appendix A: Command-line Reference
	Appendix C: Glossary

