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MODULE 1.2


The Modeling Process 

Introduction 

The process of making and testing hypotheses about models and then revising designs 
or theories has its foundation in the experimental sciences. Similarly, computational 
scientists use modeling to analyze complex, real-world problems in order to predict 
what might happen with some course of action. For example, Dr. Jerrold Marsden, a 
computational physicist at CalTech, models space mission trajectory design (Marsden). 
Dr. Julianne Collins, a genetic epidemiologist (statistical genetics) at the Greenwood 
Genetics Center, runs genetic analysis programs and analyzes epidemiological studies 
using the Statistical Analysis Software (SAS) (Greenwood Genetics Center). Some of 
the projects on which she has worked involve analyzing data from a genome scan of 
Alzheimer’s disease, performing linkage analyses of X-linked mental retardation fami­
lies, determining the recurrence risk in nonsyndromic mental retardation, analyzing 
folic acid levels from a nutritional survey of Honduran women, and researching new 
methods to detect genes or risk factors involved in autism. Scientists in areas such as 
cognitive psychology and social psychology at the Human-Technology Interaction 
Center of The University of Oklahoma perform research on the interaction of people 
with modern technologies (Human-Technology Interaction Center). Some of the stud­
ies involve “strategic planning in air traffic control” and “designing interfaces for effec­
tive information retrieval from collections of multimedia.” Buried land mines are a 
serious danger in many areas of the world (Weldon et al. 2001). Scientists are using a 
combination of mathematics, signal processing, and scientific visualization to model, 
image, and discover land mines. Lourdes Esteva, Cristobal Vargas, and Jorge Velasco-
Hernandez have modeled the oscillating patterns of the disease dengue fever, for which 
an estimated 50 to 100 million cases occur globally each year (Esteva and Vargas 1999). 

Definition Modeling is the application of methods to analyze complex, 
real-world problems in order to make predictions about what 
might happen with various actions. 
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Model Classifications 

Several classification categories for models exist. A system we are modeling ex­
hibits probabilistic or stochastic behavior if an element of chance exists. For ex­
ample, the path of a hurricane is probabilistic. In contrast, a behavior can be deter­
ministic, such as the position of a falling object in a vacuum. Similarly, models can 
be deterministic or probabilistic. A probabilistic or stochastic model exhibits ran­
dom effects, while a deterministic model does not. The results of a deterministic 
model depend on the initial conditions; and in the case of computer implementation 
with particular input, the output is the same for each program execution. As we see 
in Module 9.2 on “Simulations” and other modules, we can have a probabilistic 
model for a deterministic situation, such as a model that uses random numbers to es­
timate the area under a curve. 

Definitions A system exhibits probabilistic or stochastic behavior if an 
element of chance exists. Otherwise, it exhibits deterministic 
behavior. A probabilistic or stochastic model exhibits random 
effects, while a deterministic model does not. 

We can also classify models as static or dynamic. In a static model, we do not 
consider time, so that the model is comparable to a snapshot or a map. For example, 
a model of the weight of a salamander as being proportional to the cube of its length 
has variables for weight and length, but not for time. By contrast, in a dynamic 
model, time changes, so that such a model is comparable to an animated cartoon or 
a movie. For example, the number of salamanders in an area undergoing develop­
ment changes with time; and, hence, a model of such a population is dynamic. Many 
of the models we consider in this text are dynamic and employ a static component as 
part of the dynamic model. 

Definitions A static model does not consider time, while a dynamic 
model changes with time. 

When time changes continuously and smoothly, the model is continuous. If time 
changes in incremental steps, the model is discrete. A discrete model is analogous 
to a movie. A sequence of frames moves so quickly that the viewer perceives 
motion. However, in a live play, the action is continuous. Just as a discrete sequence 
of movie frames represents the continuous motion of actors, we often develop dis­
crete computer models of continuous situations (Voinov 2003). 

Definitions In a continuous model, time changes continuously, while in 
a discrete model time changes in incremental steps. 
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Steps of the Modeling Process 

The modeling process is cyclic and closely parallels the scientific method and the 
software life cycle for the development of a major software project. The process is 
cyclic because at any step we might return to an earlier stage to make revisions and 
continue the process from that point. 

The steps of the modeling process are as follows: 

1. Analyze the problem 
We must first study the situation sufficiently to identify the problem pre­
cisely and understand its fundamental questions clearly. At this stage, we de­
termine the problem’s objective and decide on the problem’s classification, 
such as deterministic or stochastic. Only with a clear, precise problem identi­
fication can we translate the problem into mathematical symbols and develop 
and solve the model. 

2. Formulate a model 
In this stage, we design the model, forming an abstraction of the system we 
are modeling. Some of the tasks of this step are as follows: 

a. Gather data 
We collect relevant data to gain information about the system’s behavior. 

b. Make simplifying assumptions and document them 
In formulating a model, we should attempt to be as simple as reason­
ably possible. Thus, frequently we decide to simplify some of the fac­
tors and to ignore other factors that do not seem as important. Most 
problems are entirely too complex to consider every detail, and doing 
so would only make the model impossible to solve or to run in a rea­
sonable amount of time on a computer. Moreover, factors often exist 
that do not appreciably affect outcomes. Besides simplifying factors, 
we may decide to return to Step 1 to restrict further the problem under 
investigation. 

c. Determine variables and units 
We must determine and name the variables. An independent variable 
is the variable on which others depend. In many applications, time is an 
independent variable. The model will try to explain the dependent 
variables. For example, in simulating the trajectory of a ball, time is an 
independent variable; and the height and the horizontal distance from 
the initial position are dependent variables whose values depend on the 
time. To simplify the model, we may decide to neglect some variables 
(such as air resistance), treat certain variables as constants, or aggre­
gate several variables into one. While deciding on the variables, we 
must also establish their units, such as days as the unit for time. 

d. Establish relationships among variables and submodels 
If possible, we should draw a diagram of the model, breaking it into 
submodels and indicating relationships among variables. To simplify 
the model, we may assume that some of the relationships are simpler 
than they really are. For example, we might assume that two variables 
are related in a linear manner instead of in a more complex way. 
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e. Determine equations and functions 
While establishing relationships between variables, we determine 
equations and functions for these variables. For example, we might de­
cide that two variables are proportional to each other, or we might es­
tablish that a known scientific formula or equation applies to the 
model. Many computational science models involve differential equa­
tions, or equations involving a derivative, which we introduce in Mod­
ule 2.3 on “Rate of Change.” 

3. Solve the model 
This stage implements the model. It is important not to jump to this step be­
fore thoroughly understanding the problem and designing the model. Other­
wise, we might waste much time, which can be most frustrating. Some of the 
techniques and tools that the solution might employ are algebra, calculus, 
graphs, computer programs, and computer packages. Our solution might 
produce an exact answer or might simulate the situation. If the model is too 
complex to solve, we must return to Step 2 to make additional simplifying 
assumptions or to Step 1 to reformulate the problem. 

4. Verify and interpret the model’s solution 
Once we have a solution, we should carefully examine the results to make 
sure that they make sense (verification) and that the solution solves the origi­
nal problem (validation) and is usable. The process of verification deter­
mines if the solution works correctly, while the process of validation estab­
lishes if the system satisfies the problem’s requirements. Thus, verification 
concerns “solving the problem right,” and validation concerns “solving the 
right problem.” Testing the solution to see if predictions agree with real data 
is important for verification. We must be careful to apply our model only in 
the appropriate ranges for the independent data. For example, our model 
might be accurate for time periods of a few days but grossly inaccurate when 
applied to time periods of several years. We should analyze the model’s solu­
tion to determine its implications. If the model solution shows weaknesses, 
we should return to Step 1 or 2 to determine if it is feasible to refine the 
model. If so, we cycle back through the process. Hence, the cyclic modeling 
process is a trade-off between simplification and refinement. For refine­
ment, we may need to extend the scope of the problem in Step 1. In Step 2, 
while refining, we often need to reconsider our simplifying assumptions, in­
clude more variables, assume more complex relationships among the vari­
ables and submodels, and use more sophisticated techniques. 

5. Report on the model 
Reporting on a model is important for its utility. Perhaps the scientific report 
will be written for colleagues at a laboratory or will be presented at a scien­
tific conference. A report contains the following components, which parallel 
the steps of the modeling process: 

a. Analysis of the problem 
Usually, assuming that the audience is intelligent but not aware of the 
situation, we need to describe the circumstances in which the problem 
arises. Then, we must clearly explain the problem and the objectives of 
the study. 
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b. Model design 
The amount of detail with which we explain the model depends on the 
situation. In a comprehensive technical report, we can incorporate 
much more detail than in a conference talk. For example, in the former 
case, we often include the source code for our programs. In either 
case, we should state the simplifying assumptions and the rationale for 
employing them. Usually, we will present some of the data in tables or 
graphs. Such figures should contain titles, sources, and labels for 
columns and axes. Clearly labeled diagrams of the relationships 
among variables and submodels are usually very helpful in under­
standing the model. 

c. Model solution 
In this section, we describe the techniques for solving the problem and 
the solution. We should give as much detail as necessary for the audi­
ence to understand the material without becoming mired in technical 
minutia. For a written report, appendices may contain more detail, such 
as source code of programs and additional information about the solu­
tions of equations. 

d. Results and conclusions 
Our report should include results, interpretations, implications, recom­
mendations, and conclusions of the model’s solution. We may also in­
clude suggestions for future work. 

6. Maintain the model 
As the model’s solution is used, it may be necessary or desirable to 
make corrections, improvements, or enhancements. In this case, the modeler 
again cycles through the modeling process to develop a revised solution. 

Definitions The process of verification determines if the solution works 
correctly, while the process of validation establishes if the sys­
tem satisfies the problem’s requirements. 

Although we described the modeling process as a sequence or series of steps, we 
may be developing two or more steps simultaneously. For example, it is advisable to 
be compiling the report from the beginning. Otherwise, we can forget to mention 
significant points, such as reasons for making certain simplifying assumptions or for 
needing particular refinements. Moreover, within modeling teams, individuals or 
groups frequently work on different submodels simultaneously. Having completed a 
submodule, a team member might be verifying the submodule while others are still 
working on solving theirs. 

The modeling process is a creative, scientific endeavor. As such, a problem we 
are modeling usually does not have one correct answer. The problems are complex, 
and many models provide good, although different, solutions. Thus, modeling is a 
challenging, open-ended, and exciting venture. 
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Exercises 

1.	 Compare and contrast the modeling process with the scientific method: 
Make observations; formulate a hypothesis; develop a testing method for the 
hypothesis; collect data for the test; using the data, test the hypothesis; ac­
cept or reject the hypothesis. 

2.	 Compare and contrast the modeling process with the software life cycle: 
Analysis, design, implementation, testing, documentation, maintenance. 
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