
Embree – Path Tracing
Luís Paulo Santos, April , 2018

This tutorial with Embree will modify a copy of the viewer tutorial’s code:
1. Download the file VI2_EmbreeT4_device.cpp made available on the web site and copy it to

$EMBREE_SOURCES$/tutorials/viewer/
2. Modify your Visual Studio solution or Makefile or even CMake file, such that the viewer

project (included in the tutorials) compiles VI2_EmbreeT4_device.cpp instead of
viewer_device.cpp

3. Go to your $EMBREE_SOURCES$/tutorials/common/scenegraph/ folder and rename the

materials.h and obj_loader.cpp files (e.g., to materials_original.h and

obj_loader_original.cpp).

4. Download the new files materials.h and obj_loader.cpp from the web site into folder

$EMBREE_SOURCES$/tutorials/common/scenegraph/;

5. Build the viewer tutorial.

We will also use a modified version of the Cornell Box distributed with Embree. This is different

from the previous Cornell Box therefore:

6. Download cornell_box_VI2_Specular.zip and extract it, making sure that the respective

files (containing the cornell_box_VI2_Specular model, with extensions .obj, .mtl and

.ecs) become available in the $TUTORIALS_BUILD$/models folder, where

$TUTORIALS_BUILD$ is the pathname of the folder where the viewer executable file is

stored.

7. Verify your installation by opening a shell and from the $TUTORIALS_BUILD$ folder

executing
 viewer –c models/cornell_box_VI2_Specular.ecs

Note as this progressive path tracing renderer converges to an image with interesting light

transport phenomena. In particular, it includes diffuse indirect light transport, clearly visible in

the ceiling, which is no longer rendered as black and contains color bleeding effects.

1. Analysing the path tracer code
Open the VI2_EmbreeT4_device.cpp file, locate the pathTrace() method and carefully go

through it. You will see that it has the following basic structure:

pathTrace (RTCRay& ray, int depth) {

 dg, material = intersected_geometry_and_material_respectively;

 color = 0. ;

 if (material_is_diffuse) color += direct_illumination();

 if (depth < MAX_DEPTH) {

 if (material_is_diffuse) {

 sec_ray = cosineSampleHemisphere(&pdfDirection);

 trace (sec_ray);

 L = pathTrace (sec_ray, depth++);

 color += π * material_Kd * L; } // see NOTE1 below

 if (material_has_specular_reflection) {

 sec_ray = SpecularReflectionRay();

 trace (sec_ray);

 L = pathTrace (sec_ray, depth++);

 color += material_Ks * L; } // see NOTE2 below

 if (material_has_specular_transmission) {

 sec_ray = SpecularTransmissionRay();

 trace (sec_ray);

 L = pathTrace (sec_ray, depth++);

 color += material_Kt * L; } // see NOTE2 below

 }

 return (color);

}

NOTE1: the multiplication by the cosine and the division by the pdfDirection do not

appear because cosine weighted hemisphere sampling has been used, therefore

pdfDirection == cosine!

NOTE2: since these are specular phenomena there is one and only one relevant

direction, therefore its probability is 1 and there is no division!

A few comments on this code are required:

1. It uses a maximum depth criterion to stop the recursion. We know this is a biased

solution (i.e., it does not converge to the correct value). Russian Roulette will be used

instead below.

2. It directly samples the light sources (direct illumination). So it is not following a single

path, but branching (creating new paths) in the direction of the light sources. This is a

common approach that greatly increases the renderer convergence rate. Within the

Monte Carlo slang this is referred to as next event estimation.

3. It can create up to three additional rays (diffuse, specular reflection and specular

transmission). So this is not exactly tracing a single path: we are allowing multiple paths

to be created at each intersection point!

Run the renderer again, change it to full screen mode (press ‘f’) and after allowing some time

for Embree to tune its internal parameters write down the frame rate.

2. Stochastically select the BRDF component
Remember that for each pixel multiple (many) primary rays will be shot. Therefore it is possible

to avoid sampling all the 3 BRDF components diffuse, specular reflection and specular

transmission). We can stochastically select one of these 3 components, render it (avoiding

branching into multiple paths) and then, very important, divide the returned radiance by the

probability with which you selected that BRDF component.

Uniform distribution
Here I am proposing that you use a uniform distribution, i.e., the same probability is assigned to

each of the BRDF components, independently on their values. Here is the high level algorithm:

if (depth < MAX_DEPTH) {

 r = RandomNumber();

 if (r<=0.333f) {

 do diffuse reflection … }

 else if (r<=0.667f) {

 do specular reflection … }

 else {

 do specular transmission … }

 color += L / 0.333f; // see NOTE3 below

}

NOTE3: we are dividing by 0.333 (or multiplying by 3) because only 1 out of 3 BRDF

components was evaluated!

Change the method code to include this enhancement and build the tutorial. Run the renderer

again, change it to full screen mode (press ‘f’) and after allowing some time for Embree to tune

its internal parameters write down the frame rate. Also assess the noise level compared to the

previous version.

Importance sample
For each BRDF component use probability proportional to its magnitude relatively to the other

components. Here is the high level algorithm:

if (depth < MAX_DEPTH) {
 r = RandomNumber();
 // create BRDF CDF
 float Kd_max = reduce_max(material->Kd);
 float Ks_max = reduce_max(material->Ks);
 float Kt_max = reduce_max(material->Kt);
 const float K_normalizer = Kd_max + Ks_max + Kt_max;
 if (K_normalizer < 1e-2f) return (color);
 Kd_max /= K_normalizer;
 Ks_max /= K_normalizer;
 Kt_max /= K_normalizer;
 if (r<= Kd_max) {

 BRDF_weight = Kd_max;

 do diffuse reflection … }

 else if (r<= Kd_max+ Ks_max) {

 BRDF _weight = Ks_max;

 do specular reflection … }

 else {

 BRDF_weight = Kt_max;

 do specular transmission … }

 color += L / BRDF_weight; // see NOTE4 below

}

NOTE4: we are dividing by the probability with which this given BRDF component was

selected, which is proportional to its magnitude relatively to the other components!

Change the method code to include this enhancement and build the tutorial. Run the renderer

again, change it to full screen mode (press ‘f’) and after allowing some time for Embree to tune

its internal parameters write down the frame rate. Also assess the noise level compared to the

previous version.

3. Russian roulette
Our path tracer is following paths of fixed length (MAX_DEPTH == 3, in the code). This is a biased

approach that never converges to the true solution. Let’s change the code such that Russian

roulette is used instead. Below you have a pseudo-code suggestion, which you should use

instead of the current ”if (depth < MAX_DEPTH) {“ conditional construct:

#define continueProb .1f
const float RR_weight = 1.f / continueProb;

// continue the random walk ?
bool continueWalk = (RandomSampler_get1D(sampler) < continueProb);
if (continueWalk) { …

The code above definitively decides on the recursion termination (and consequently on the path

length) depending on a random value. However, if used as is the result will be very wrong. The

%fact that we decide that only continueProb*100% of the paths continue and the others

terminate, has to be compensated by multiplying the contributions of the paths that were

continued by the number of those that potential paths that were not continued; the number of

such potential paths that never happen is 1.f/continueProb .

Therefore, whenever you add a path segment’s contribution (L) to color, you have to multiply

by RR_weight (or divide by continueProb, as you which):

color += RR_weight * L / BRDF_weight;

Change the method code to include this enhancement and build the tutorial. Run the renderer

again, change it to full screen mode (press ‘f’) and after allowing some time for Embree to tune

its internal parameters write down the frame rate. Also assess the noise level compared to the

previous version. In particular, play with different values of the continuation probability and

assess its impact on both performance and image quality.

