
Parallel Rendering with Radiance

Lúıs Paulo Santos∗

Dep. de Informática – Universidade do Minho
Braga – Portugal

e-mail: psantos@di.uminho.pt

Alan Chalmers
Dept. of Computer Science – University of Bristol

Bristol – United Kingdom
e-mail: alan@compsci.bris.ac.uk

July 10, 2003

Abstract

Interactive global illumination at interactive rates is still an unachieved goal for medium to
large complexity scenes and high fidelity illumination models, such as the one used by Radiance.
In order to achieve this goal several different optimization approaches must be exploited, including
parallelism, perceptual issues and low–level optimizations. This work concentrates on developing a
parallel message passing prototype of Radiance’s renderer targeted towards producing animations.
This prototype is used to study scalability issues and perceptual optimizations that will reduce
rendering times and will, hopefully, be unnoticed by the viewer. The preliminary results obtained
suggest that efforts should concentrate on reducing idle times due to suboptimal load distribution
and indirect irradiance calculation times. Also psychophysical experiments and perceptual metrics
should be carried on, in order to assess the impact of selective rendering on perceived quality.

1 Introduction

High fidelity interactive rendering is one of the main objectives pursued by the computer graphics
community. However, if both specular and diffuse inter reflections are included on the illumination
model, the time required to render scenes with medium to high complexity precludes such objective.

In order to sustain the frame rate required for human interaction the rendering tasks and image quality
must be adapted such that a perceptually ”correct” image is rendered within the time constraints.
This adaptation may evolve along several axes:

• include image perception techniques to allow selective resolution and rendering quality for dif-
ferent regions of the image according to their perceptual importance;

• fine tune the code and data structures to the underlying architecture, such that computer re-
sources, such as instruction pipelines, caches, etc., are fully exploited;

• use parallel computers to speed up rendering times by effectively distributing the workload
among the available resources.

∗Work done as a Visiting Fellow at the Dept. of Computer Science – University of Bristol – United Kingdom, partially
supported by grant SFRH / BPD / 11622 / 2002 of the Portuguese Fundação para a Ciência e Tecnologia

1

The current work focuses on this latter axis. It takes place within the context of a broader ”Rendering
on Demand” research project, whose goal is to provide high quality global illumination rendering of
highly complex scenes through the Web. The goals of the current work are to assess the computational
costs and main obstacles associated with parallel global illumination, propose approaches to solve some
of these problems and provide an initial code structure to implement a parallel renderer. A parallel
version of the Radiance lighting visualization renderer rpict has been developed with the aim of:

• provide insight to how Radiance code is structured and how can it be effectively rewrote as a
parallel application;

• profiling Radiance rendering algorithm, in order to understand its time costs structure;

• understand how these costs scale with the size of the underlying parallel system;

• provide a faster renderer which can be used transparently in place of the standard rpict.

One of Radiance’s main contribution to global illumination is the way indirect irradiance is computed
and accounted for in the illumination model. Although Radiance strives to reduce this computation
requirements by reconstructing the indirect contribution from a sparse set of samples, it still represents
a major percentage of the whole rendering time. In strict accordance with Amdahl’s Law this work
concentrates on this particular cost and suggests some techniques to reduce this cost.

2 Radiance

Radiance is a physically based global illumination image rendering and analysis system. It consists
on a large number of different tools, including object modelling, format conversion, rendering, image
processing and displaying. The renderer is a eye-forward ray tracer, with extensions to efficiently solve
the rendering equation [7] under most conditions.

Radiance emphasis is on lighting visualization, rather than photorealism, although the latter occurs
as a consequence of the former. Lighting visualization focuses on rendering images that correspond
closely to what would be seen in reality (limited to the accuracy of the geometric and goniometric
model [6]), whereas photorealism focuses on rendering images that ”look real”, but which may be very
different from the corresponding real scene.

To ensure physical accuracy computations are performed in physical quantities, radiance being the
selected metric since all other lighting metrics can be computed from this one. The illumination model
includes the most common mechanisms of light interaction with objects such as specular, diffuse and
directional-diffuse reflection and transmission in any combination and up to any level. Participating
propagation mediums are also supported. Accurate models of light sources and generic materials are
included with Radiance standard distribution. The renderer combines deterministic and stochastic
ray tracing techniques in order to achieve the best balance between speed and accuracy [4, 21, 24].

Radiance author, Greg Ward Larson, presents the following main design goals:

Accurate calculation of radiance and luminance – Luminance is a photometric quantity that
represents the quantity of visible radiation, as perceived by an average human, passing through
a point in a given direction, measured in candela/m2. The radiometric equivalent of luminance
is radiance, which represents the radiant energy flowing through a point in a given direction,
measured in watts/(steradian.m2). Radiometric quantities are not weighed according to the
average human eye sensitivity as their photometric equivalents. Spectral radiance simply adds
a wavelength dependence to radiance [3]. Radiance (the software) produces predictions of the

2

distribution of these values in modelled environments, therefore enforcing its physically based
nature.

Modelling of both electric and day light – In order to model electric light accurately a variety
of luminaires’ models are included, built from measured or calculated output distribution data
from light fixtures. Modelling daylight accurately implies following the initial intense radiation
from the sun and redistributing it through its reflections from other surfaces and scattering from
the sky – Radiance includes a tool to generate sky light distributions according to the geographic
position and day time.

Support for a variety of reflectance models – The accuracy of the global illumination calcula-
tion depends critically on the accuracy of the used local illumination model, since this determines
how light will be reflected, absorbed or transmitted by each surface. Radiance includes several
different surface material types, each based on approximations to the actual physics of light
interaction, rather than derived for algorithmic convenience. One of these types allows the user
to completely specify the bidirectional reflectance distribution function (BRDF).

Support for complicated geometry – Radiance data structures were carefully designed in order
to avoid exponential memory and/or processing complexity growth with the number of surfaces.

Take input from CAD systems – Recognizing that CAD systems are the most adequate and
widespread geometric modelling tools, converters are supplied with Radiance to import models
from a variety of such systems with minimal user intervention.

2.1 Illumination Model

Radiance uses recursive eye forward ray tracing to evaluate an adapted version of Kajiya’s rendering
equation [7, 21, 22, 24] at each intersection point, as specified by equation 1.

Lr(θr, φr) = Le(θr, φr) +
∫ 2π

0

∫ π
2

0
Li(θi, φi)f(θi, φi, θr, φr)| cos(θi)| sin(θi)∂θi∂φi (1)

where:

θ is the polar angle measured from the surface normal
φ is the azimuthal angle measured about the surface normal
Lr(θr, φr) is the reflected radiance
Le(θr, φr) is the emitted radiance
Li(θi, φi) is the incident radiance
f(θi, φi, θr, φr) is the bidirectional reflectance distribution function (steradian−1)

On an ideal world, with infinite resources or time, the most elegant solution to this integral would
be to use uniform stochastic sampling (Monte Carlo), by randomly spawning rays across a significant
number of directions. However, in the real world, the convergence would be so slow that this solution
is impractical. This is because Monte Carlo sampling relies on a stochastic process that requires too
many samples to find local maxima in:

incident radiance – arriving both from primary light sources, such as the sun and light fixtures,
and from virtual light sources, such as mirrors1;

1To account for light reflected from highly specular surfaces Radiance may designate these as virtual light sources,
therefore moving these calculations to the direct component of the integral evaluation.

3

the BRDF – such as the specular reflection and/or transmission directions.

These local maxima are often localized in small solid angles, compared to the sampling hemispheric
domain, therefore they would require an huge number of sampling rays in order to be found and
appropriately accounted for.

”The key to fast convergence is in deciding what to sample by removing those parts of the
integral that can be computed deterministically and gauge the importance of the rest so as
to maximize the payback from our ray calculations [21]”

This is what most ray tracers (Radiance included) do. Shadow rays are spawned explicitly towards
light sources and specular rays are spawned near2 the mirror angle for reflective materials and in the
refracted direction for dielectric surfaces, such as glass (see figure 1).

Figure 1: Example of a BRDF and local illumination model maxima

By removing these local maxima from the integral, variance between samples is reduced at a compar-
atively reduced cost. This approach was introduced at the same time as ray tracing by Whitted [25].
The remaining of the integral accounts for diffuse interreflections, i.e., Lambertian contributions from
non self-emitting surfaces. Most ray tracers approximate this component with a constant ambient
term, but this results in flat shaded areas inappropriate for lighting visualization (figure 3).

Indirect Irradiance Calculation and Caching

Computing diffuse interreflections amounts to stochastically sample the hemisphere centered on the
intersection point, carefully avoiding the direct and specular directions so that the same radiance is
not accounted for twice. This is the integral of radiances over the hemisphere (see equation 2), which

Figure 2: Sampling the hemisphere centered on the intersection point

is not dependent on direction. This physical quantity is referred to as irradiance and is measured in
2Radiance stochastically distributes specular rays about the mirror and transmitted directions to increase accuracy

[4].

4

watts/m2. Its photometric equivalent is illuminance, measured in Lux. The important point to note
is that, since it is not dependent neither on incident nor on reflected directions, this value is view
point independent.

E =
∫ 2π

0

∫ π
2

0
Lind(θi, φi) cos(θi) sin(θi)∂θi∂φi (2)

where:

θ is the polar angle measured from the surface normal
φ is the azimuthal angle measured about the surface normal
E is the indirect irradiance
Lind(θi, φi) is the indirect incident radiance

The indirect irradiance is calculated spawning a few hundred rays over the hemisphere in an uniformly
weighted, stratified Monte Carlo sampling:

E = (
π

M ∗N
)

M−1∑

j=0

N−1∑

i=0

L(θj , φi) (3)

where:

E is the indirect irradiance
L(θj , φi) is the indirect incident radiance in direction (θj , φi)

(θj , φi) = (arcsin
√

j+Xj

M , 2π k+Yk
N)

Xj , Yk are uniformly distributed random variables in the range (0,1)
M ∗N is the number of samples, with N ≈ πM

The cost of computing indirect irradiance at each point is prohibitive, since it requires spawning
hundreds of rays to reduce variance to acceptable levels. However, since indirect irradiance changes
gradually over surfaces and is view independent, it is possible to compute it extensively only at a few
points and interpolate its value over neighbouring pixels to obtain a result that is smooth and accurate
at a modest cost. Radiance follows this approach, searching for previously computed irradiance values
in the neighbourhood of each intersection point and interpolating if successful; if no previous values
are cached, then the extensive computation is performed. The domain of validity of each computed
irradiance value depends on the user selectable accuracy and on the local geometry. To accurately
interpolate among several irradiance values, or to extrapolate whenever only one value is available,
information on how irradiance changes as a function of point location or surface orientation is also
used in the form of the gradient of the irradiance function. The gradient is available at no cost from
the hemisphere sampling process and allows the use of a second order interpolation function, rather
than a linear one, resulting in more accurate predictions.

Although irradiance values are view–independent, for each scene only the values required for the
current view are computed, since this process is triggered on demand whenever for a new intersection
point no valid precomputed neighbours are available.

Radiance uses an octree based caching scheme to store indirect irradiance values. These values may be
stored on a file to be used on posterior renderings of the same scene, such as, for instance, in different
frames of an animation, dramatically reducing rendering times. It should be noted that irradiance
values are independent of the view point, but they are not independent of the scene geometry, there-
fore can not be reused if this changes. For further details about Radiance’s illumination model and
particularly about indirect irradiance calculation, caching and interpolation see [21, 22, 23, 24].

5

2.2 Rendering Parameters

Radiance renderers accept a large number of parameters. Many of these can be set, and even adaptively
tuned in runtime, in order to balance the quality of the final image with the rendering time. A
comprehensive subset of such parameters is presented in the following tables.

Comment Quality
Low Medium High

-dt Sets the threshold for selective shadow testing. 0.2 0.1 0.05
-dc Sets the certainty for selective shadow calculations. 0.25 0.5 0.17

Table 1: Parameters for adaptive light source testing.

Comment Quality
Low Medium High

-ds Sets the ratio for area light sources subdivision. 0.0 0.3 0.01
-dc Sets the degree of jittering. 0.0 0.5 0.6

Table 2: Parameters for area light sources subdivision.

Comment Quality
Low Medium High

-dr Sets the depth of virtual light sources creation. 0 1 3
-dp Sets the number of pretesting rays. 128 512 4096

Table 3: Parameters for virtual light sources.

3 Parallel Radiance

To achieve the ultimate goal of rendering high fidelity animations at interactive rates using Radiance’s
global illumination model, the structure of time costs associated with executing this algorithm must
be well understood. A prototype parallel version of rpict (Radiance renderer) has been developed
with the aim of:

• profiling Radiance rendering algorithm, in order to understand its time costs structure;

• understand how these costs scale with the size of the underlying parallel system;

• provide a faster renderer which can be used transparently in place of the standard rpict.

3.1 Related Work

The standard Radiance distribution exploits coarse-grained parallelism on both distributed and shared
memory architectures [24]. For single frames an image space decomposition is used, which uses different
processes to render different subregions of the image. Tasks are assigned to processes on a demand–
driven fashion, processes getting more work whenever they get idle. A NFS shared file is used to control
task assignments. On shared memory SMP systems several processes are launched using fork() UNIX
system call and rpict -PP command line switch. On distributed memory systems rpiece is used to

6

Comment Quality
Low Medium High

-st Sets the coefficient threshold for specular sampling. 0.5 0.1 0.01
-sj Sets the degree of jittering. 0.0 0.7 1.0

Table 4: Parameters for specular sampling.

Comment Quality
Low Medium High

-av Sets the constant ambient value. – – –
-aw Sets the ambient weight. 0.0 0.0 0.0
-ab Sets the number of ambient bounces. 0 1 ?
-ad Sets the number of rays used to sample the hemisphere. 64 512 1024

Sets the number of ambient supersamples when a given
-as area of the hemisphere exhibits high variance. 0 64 512

Sets the ambient accuracy.
-aa (maximum error for indirect irradiance interpolation). 0.4 0.2 0.08
-ar Sets the ambient resolution. – – –
-af File name to store indirect irradiance values. – – –

Table 5: Parameters for indirect irradiance.

control several different rpict processes. Indirect irradiance values are shared among processes using
an ”ambient” file (-af command line switch). This file sits on a NFS server and is written and read
by every process whenever it has computed a predetermined number of irradiance samples. Global
sharing among all processes is thus achieved, drastically reducing computation times. For animations
time space decomposition is applied, using multiple rpict processes, each rendering complete frames.
Indirect irradiance values can still be shared using an ambient file. A general animation control
program, ranimate, is provided, which distributes frames across many processors. Frame coherence
may be exploited by interpolating between frames, using pinterp.

The standard Radiance approach does not use any parallel programming special library, relying only
on UNIX fork() and NFS to launch, coordinate and communicate among coarse grained processes.
Although the availability of NFS is not a problem on all main UNIX distributions, some file lock
managers are not designed for fast and frequent shared file access, leading to high inefficiencies when
the number of parallel processes exceeds a certain system dependent number. Koholka et al. [8]
developed a parallel version of Radiance on top of MPI. This also a demand–driven master–slave image
space decomposition, although dynamic partitioning is employed to assure a correct load balancing
towards the end of the computation – at the beginning of the computation relatively large subregions
of the image are sent to the workers, but these subregions become smaller with the progress of the
calculation; near the end the tasks are so small they can be executed fast enough to get a good load-
balance in most cases. Instead of using a NFS shared ambient file to communicate diffuse interreflection
values, blocks of 50 such values are broadcasted to all other slaves. Blocks of values are used instead of
single values to reduce communication, although this may result in more extensive indirect irradiance
calculations being performed. They report efficiencies above 80% using up to 20 processors, when the
scenes’ complexity is large enough. Results are presented only for still images.

Robertson et al. [11] developed an MPI–based parallel version of Radiance for real time interactive
walkthroughs. An image–space decomposition demand–driven master/slave architecture is used. Am-
bient values are communicated by each slave processing element (PE) to an ambient master processor,
which the returns to the slave PE ambient values accumulated from other processors – broadcasts are

7

avoided and PEs only communicate new ambient values after a certain number of them has computed.
To further reduce communication, PEs compress their subimages prior to sending them to the master.
In order to achieve interactive frame rates, these system exploits frame coherence by using a point-
cloud method: the 3D positions of primary rays intersections with the scene are retained (together
with the respective shading result) in scene coordinates and reprojected into the viewing coordinate
systems of subsequent frames. The authors claim that a walkthrough using the point cloud maintains
a high degree of accuracy for a large number of frames, since the viewpoint rarely changes by a large
extent. A pixel reuse rate of 85% .. 98% is achieved, but the authors goal of 10 frames per second is
still far away, even without indirect irradiance computations although a 64–processor Cray T3E was
used. Furthermore, geometric reprojection is prone to geometric and specular shading artifacts. There
is, however, a trend towards caching of previously computed geometric and shading information. For
details see [15, 16, 17, 19, 18, 20].

Reinhard et. al [10] developed a parallel version of rpict over PVM. This version is targeted towards
very complex scenes, whose description does not fir into a single processor local memory. The scene
description must thus be distributed across the system. Each processor holds a resident working set
of objects and caches those objects that are required by the work in hand. An hybrid scheduling is
used, tasks being subdivided into two different types:

Data–driven tasks are processed by the processors that hold the objects required to intersect and
shade rays. The tasks migrate among processors in order to be matched with the required data.

Demand–driven tasks are assigned to a processor whenever it has no work assigned. Data required
to intersect and shade rays is remotely fetched from the processors holding it.

Data driven tasks may cause large load imbalances, while demand driven tasks may require a lot of data
communication. Therefore, tasks are designated demand driven if they exhibit high ray coherence, such
as bundles of primary and shadow rays, and designated as data driven otherwise. Hybrid scheduling
provides the opportunity to render large scenes. Data driven tasks assure background workload, while
demand driven tasks keep the load balanced. The resulting efficiency is not exceptionally high, but
is not strongly dependent on the number of processors resulting in reasonable scalability up to 80
processors.

3.2 System Architecture

The computation of each pixel in ray tracing is completely independent of all other pixels: ray tracing
is, therefore, embarrassingly parallel and well suited for image space decomposition. This is the
approach taken in the current version of parallel Radiance. Each processing element is a rpict
process, which reads all scene data and all previously computed ambient values from the file system,
therefore replicating all data items at each process address space. A master process subdivides the
image plane onto a number of regions and assigns these regions (tasks) to the processing elements on
demand3. The number of tasks is larger that the number of processing elements to provide for load
balancing. Load imbalances may occur due to the different requirements of each image region and
different processing power across the processing elements. Tasks get progressively smaller towards the
end of each frame computation, in order to achieve better load balance.

The rendering times can be reduced by exploiting coherence among the different pixels. Radiance
explores coherence by interpolating indirect irradiance samples (ambient values) among neighboring
points, rather than extensively computing this component at each intersection point. The sequential
version of Radiance shares ambient data between different frames by storing computed values on an

3In the current version these regions are horizontal slabs with the same width as the final image, reducing the amount
of available parallelism and locality within each task. Future versions will have tasks of arbitrary width.

8

ambient file, which is read in by later executions of Radiance, thus avoid recomputing them. Ambient
values are also shared among different processing elements rendering different regions of an image,
by sharing the ambient file on a NFS server and regularly writing out locally computed values and
reading in remotely computed ones. This NFS–based approach exhibits very poor scalability. An
ambient master/slave version was developed, where slave PEs send ambient values to an ambient
master process in blocks of NA values, using MPI message-passing functions. The ambient master
stores these new values in the ambient file and returns to the PE ambient values computed by other
processors. This approach avoids locks to the ambient file, since only the master accesses it; the master
can, however, become a bottleneck, as in all centralised approaches.

A master/slave architecture is used both to allocate tasks in a demand-driven approach and to col-
lect/distribute indirect irradiance values. The same process is used as a master for both these roles.
The number of processes to launch is always one more than the number of intended working slaves.
On all experiments presented throughout this report only the number of working PEs is reported on
tables and graphics and used to compute metrics such as speed–up and efficiency.

The parallel version of Radiance is referred to as prpict, standing for ”parallel rpict”. General
changes to Radiance standard distribution are documented in appendix A. mpich 1.2.5 was used
and the code compiled using gcc version 2.96 and the -O2 optimization level. Experiments were
performed on a network of 21 workstations, each with an AMD Athlon XP 1800+ processor, running
at 1533 MHz, with 512 MB of memory. The workstations are connected by a fully switched 100
Mbits/s FastEthernet. These workstations are used by the Department’s undergraduate students, but
experiments were carried out during the night to minimize interferences.

3.3 Performance Analysis

The experimental data reported throughout this section was obtained using with the Gallery Art scene
described in chapter 3 of [24] (figure 3). All indirect irradiance calculations were performed using 2
levels of ambient bounces and the image resolution is 512x512 pixels.

(a) No ambient calculation (b) Constant ambient term (c) 2 ambient bounces

Figure 3: The Art Gallery scene

3.3.1 Scalability with NFS ambient values sharing

Figure 4 depicts the execution time, speed–up and efficiency as a function of the number of slave
processing elements for the following rendering settings: no ambient calculations (no amb), no ambient
calculations sharing (no share), new ambient file (new amb) and existing ambient file (amb). The

9

mechanism used to share and store the ambient (indirect irradiance) values is a NFS shared ambient
file. The following conclusions can be made from these graphics:

(a) Execution Time

(b) Speed–up (c) Efficiency

Figure 4: Art Gallery – NFS execution times and speed–up

• If ambient computations are disabled, performance scales quite well until 11 PEs (for this par-
ticular scene), but the efficiency drops below 80% if the number of slaves is further increased.
This is because ray tracing is an embarrassingly parallel algorithm, but there is not enough work
to keep all slaves busy until the end of the computation.

• If ambient computations are performed, but no mechanism for sharing such values among PEs
is enabled, then scalability is quite poor and efficiency drops below 70% for 4 PEs and below
45% for 20 PEs. This is because the PEs are performing too much replicated work to compute
overlapping indirect irradiance samples.

• If an ambient file is used the NFS system starts thrashing when the number of slaves increases.
With a new ambient file this happens with only 4 PEs, since it is being written very often, while
if the file already exists 6 PEs may still be used, since the access rate is lower. With larger
number of PEs the execution times grow exponentially.

The execution times decrease significantly when an ambient file is used, but the exponential cost of
an NFS shared file render this technique ineffective when more than 6 processors are used.

3.3.2 Scalability with message passing ambient values sharing

To avoid the NFS bottleneck a different scheme was used to share and store ambient values. The
master process, which distributes work on demand to slaves, also acts as an ambient master. The

10

ambient master initially reads ambient values stored in the ambient file and broadcasts them to all
slaves. After computing NA new ambient values a slave PE will communicate these values to the master
and receive whichever new values have been computed by other slaves. Collective communications
are thus avoided, although the ambient master might become a bottleneck. This strategy is labelled
”CTR” throughout this report, standing for centralized.

Figure 5 depicts the execution time, speed–up and efficiency as a function of the number of slave PEs.
This strategy scales quite well, achieving an efficiency of 82% with 16 PEs and 78% with 20 PEs, when

(a) Execution Time

(b) Speed–up (c) Efficiency

Figure 5: Art Gallery – CTR execution times and speed–up

new ambient values are being computed (this represents the most common and most time consuming
situation).

The number of ambient values each PE must compute before synchronizing with the master, NA,
must impact on the overall performance. If NA is small synchronization occurs frequently, increasing
the communication volume and the burden on the centralized server, but the number of computed
ambient samples is minimized, since these values are often distributed to all PEs. If NA is large the
number of ambient samples computed by each PE increases, but the burden on the communication
medium and ambient server is reduced. The impact on application performance, measured in terms
of execution time, depends on many factors:

cost of computing each ambient sample – the higher this cost, the smaller should NA be. This
value depends on the scene being rendered, the computer system used and the rendering param-
eters;

communication costs – these depend on the latency (t0) and bandwidth (r∞), as seen by the
application, i.e., including packing and unpacking times, protocol conversion times, network
contention, etc.; NA should increase with both t0 and r∞;

11

contention on the central server – if contention gets too high, then NA should be increased in
order to free the server.

Figure 6 shows the execution times and number of ambient samples calculations for different ambient
block sizes with 16 slave PEs. It can be seen that for this particular scenario better results are achieved
with NA = 1. It is also evident that execution time is highly correlated with the number of extensive
ambient computations. All results presented on this report were obtained with NA = 20, except where
explicitly said otherwise.

(a) Execution Time (new file) (b) Ambient Samples (new file)

(c) Execution Time (existing file) (d) Ambient Samples (existing file)

Figure 6: Art Gallery – execution times and nbr. of ambient samples as a function of NA (16 PEs)

The ideal value of NA will be different for different computer systems, for different scenes and can
even change in time for the same computer system and scene – it is dependent on the view point and
system utilization. An adaptive policy that dynamically changes NA may thus be appropriate.

An optimal parallel algorithm would always achieve linear speed–up. However, in the real world,
parallel computing introduces additional costs which prevent the speed–up from growing linearly.
These costs are associated with: suboptimal distribution of load across the computing resources,
replicated work, communication overheads and parallelism management. In order to better understand
why prpict is not achieving linear speed–ups, the time it takes to execute different parts of the
algorithm was measured:

• Specular includes all computations required to intersect and shade rays not related with the
indirect irradiance calculations; this includes primary rays, specularly reflected and transmitted
rays and shadow rays and is denoted by Tspec;

12

• Ambient includes all computations associated with rays originating in ambient sub-trees (it
includes all types of rays, except primary ones); this metric is denoted by Tamb;

• Idle, Tidle, includes all idle times, i.e., times when a PE had no work assigned, either because
it was waiting for a new task or because no further work was available but some PEs were still
busy.

Rather than presenting these measurements for some particular PE, figure 7 presents the sum of such
measurements across all slaves – these are referred to as aggregated metrics and are denoted by TAgg

spec ,
TAgg

amb , TAgg
idle . Ideally the aggregated time should be constant and independent on the number of PEs,

therefore resulting in linear speed–up. Any increase in aggregated times represents a penalty, while
any reduction represents an added benefit that would allow the application to achieve super linear
speed–up. Figure 7(a) presents aggregated times when ambient computations are being performed

(a) No share (b) New ambient file

(c) Existing ambient file

Figure 7: Art Gallery – Aggregated times

but not shared among PEs, figure 7(b) presents the same measurements when ambient values are
shared and figure 7(c) presents these metrics when ambient values computed during a previous render
are being used (resulting in more interpolations and less extensive ambient computations). TAgg

spec is
fairly constant due to the embarrassingly parallel nature of ray tracing. Idle times, however, increase
with the number of PEs, making the case for a more efficient load distribution strategy [12, 13]. TAgg

amb

behavior depends on the sharing strategy used. If ambient computations are not being shared, this
metric increases linearly with the number of PEs. This is due to replicated work. If ambient values are
shared, then there is still a sublinear increase with the number of PEs, which, together with increasing
idle times is responsible for the suboptimal speed–ups depicted in figure 5. Figure 8 illustrates the
relationship between TAgg

exec and the number of extensive ambient computations performed. As the
number of processes increases, the number of extensive ambient computations also increases (due to
suboptimal sharing), causing a closely correlated increase on aggregated execution times (correlation
factors: 0.9999 for no share, 0.9901 for new amb and 0.9659 for amb).

13

Figure 8: Art Gallery – Number of ambient computations and aggregated execution time

3.4 Highlights

The experiments and results reported suggest the following improvements to prpict:

Improve load distribution – Tidle ∝ NPEs, therefore appropriate scheduling strategies are required
to increase performance;

Dynamically adapt NA – to achieve an efficient trade-off between distribution time and ambient
values extensive sampling time;

Improve TAgg
amb – which is still ∝ NPEs; this is closely related to the previous item, and should be

the subject of further research.

4 Animations and Adaptive Indirect Irradiance

One goal of this research is to render walkthroughs at interactive rates (25 fps), which amounts to
render successive frames of the same scene with slightly varying view points. rpict (and prpict) can
render successive frames using options -o and -S and by providing a list of viewing parameters in the
view file.

On walkthroughs ambient computations are expected to require a large percentage of the rendering
time on the first few frames of the walkthrough and whenever the 3D subregion of the world projected
onto the screen changes significantly due to movement of the view point. Since the actual set of
extensively computed ambient samples is view–dependent, if the view changes and new objects become
visible then new ambient samples have to be calculated.

Figure 10 shows the execution and aggregated ambient times for a walkthrough in the Art Gallery
Hall (figure 9)4. No major changes in the set of objects projected onto the screen occur during the
walkthrough 63 frames. The animation was rendered with both high and low ambient accuracy,
aa=0.125 and aa=0.575, respectively. Independently of the ambient accuracy, the first few frames
take an huge amount of time to complete (the time axis have logarithmic scales) compared to the
remaining frames due to indirect irradiance computation. Since there are no previously computed
ambient values, the number of extensive ambient computations is huge. The same happens if the set
of screen projected objects changes significantly.

The above described phenomenon prevents the renderer from maintaining a fixed frame rate, since the
computational requirements are concentrated on a few frames. Additionally, the computational weight
of indirect irradiance calculations constitutes a major obstacle to achieve interactive frame rates.

4The animations discussed in this report can be found in http://www.di.uminho.pt/psantos/Bristol2003

14

Figure 9: Art Gallery Hall

(a) Execution Time (b) Aggregated Ambient Computation Time

Figure 10: Art Gallery Hall Animation Time Measurements

Besides the obvious need to speed up these computations, it may be possible to reduce the frequency
with which they are required, i.e., increase the interpolation/sampling ratio while maintaining the
same perceptual quality. This ratio can be increased by enlarging the domain of validity of each
ambient sample. Radiance’s ambient accuracy option, -aa, controls the diameter of this domain of
validity. This is actually the inverse of accuracy, since the larger its value the larger the tolerance
to interpolation errors. By increasing this parameter the domain of validity of each ambient sample
is enlarged, resulting in less extensive sampling, but larger errors. Each ambient computation time
could also be reduced by varying the number of rays that are spawned to sample the hemisphere. The
samples, however, would have varying accuracy, which would prevent their reutilization on posterior
frames.

Three complementary criteria are proposed to both distribute ambient calculations across several
frames and reduce the time required to perform these computations, while maintaining perceived
quality:

time varying accuracy – the computational requirements of ambient calculations can be spread
across the first few frames of an animation, by starting with a large tolerance error and progres-
sively reduce it; hopefully, the viewer will not be able to notice the reduced quality of initial
frames, since they rapidly converge towards an higher quality solution; the same criterium applies
when the set of objects projected onto the image planes varies significantly;

15

moving direction dependent accuracy – ambient values are cached in order to be reused on the
next frames; accuracy should be larger on those regions of the image that will also be seen on
the next frames; regions that will not be looked at again can be rendered with less quality; the
viewer will not notice this degradation on quality, since these regions will not be displayed long
enough;

perceptually guided accuracy – perceptual metrics, such as inattentional blindness [1, 2] and
saliency [26], can be used to predict which regions of the image will attract the viewers at-
tention and should, therefore, be rendered with higher quality;

A few experiments were performed to study the first criteria. Work currently being done includes
further refinement of this criterium and a more thorough specification and implementation of the
others. Assessment of the impact of these techniques on the perceptual quality of the final animation
is also required, using both psychophysical experiments [9] and perceptual metrics, such as the Visual
Differences Predictor (VDP).

4.1 Time Varying Ambient Accuracy

The -ax command line option was added to prpict to enable time adaptive ambient accuracy. It takes
three arguments: the initial and final error tolerances and a constant step, which is subtracted from
the current tolerance at each new frame until the final value is reached. The art gallery animation was
rendered with -ax 0.575 0.125 0.0075. The initial and final error tolerances are 0.575 and 0.125,
the same as the low and high quality renderings of figure 10. The animation has 63 frames, higher
quality being reached at frame 61, i.e., 2.4 s after the beginning of visualization at 25 fps. The 3
last frames have the same absolute quality has the high quality animation. Figure 11 presents the
execution and aggregate ambient computation times.

(a) Execution Time (b) Aggregated Ambient Computation Time

Figure 11: Art Gallery Hall Animation Time Measurements with Time Varying Accuracy

The execution times are effectively reduced and more constant: while the high quality animation
execution time varies by two orders of magnitude, the adaptive one varies only by one order of
magnitude while still converging to the same final solution. However, the initial maximum and the
peaks after frame 50 can still prevent the renderer from maintaining a constant frame rate. This
criterium alone does not seem able to uniformly distribute indirect irradiance computation costs across
a few initial frames.

The ambient accuracy time adaptation is perceivable on the animations: shading and shadows due
to indirect irradiance change until they converge to the final solution. Although validation using psy-

16

chophysics experiments and perceptual metrics is required, observation suggests that the adaptation
is too noticeable. This may be due to the time elapsed until final quality level is reached on this
particular experiment: 61 frames or 2.4 seconds. This interval can be made shorter by increasing the
step in -ax; this will certainly increase the initial maximum and smooth the peak visible after frame
50. This last peak suggests that the number of ambient calculations increases non linearly with accu-
racy. This being true the adaptation step should not be constant: it should be larger for high error
tolerances and smaller for high accuracies. Experiments are required to corroborate this hypothesis.

4.2 Moving Direction Dependent Accuracy

4.3 Perceptually Guided Accuracy

4.4 Highlights

Three criteria are proposed to both reduce and spread ambient computation costs across several
frames in an animation by dynamically adjusting ambient calculation accuracy. Experiments were
performed only for time varying accuracy. Results suggest that although both execution time and
frame computation time variance are reduced, this criterium alone can not effectively distribute am-
bient computation times across several frames. Nevertheless, an ambient accuracy adaptation scheme
with a non–constant step should be tried to verify whether frame computation times get more uniform.

The adaptation process is noticeable on the rendered animations. The time interval between initial
and final accuracy should be made shorter. Perceptual metrics and psychophysics experiments are
required to verify these results.

5 Conclusions

A parallel prototype of Radiance’s rpict has been developed with the primary aims of getting in-
sight into Radiance’s code structure, propose a skeleton for a parallel version and study scalability
issues. The ultimate goal of this research is to achieve interactive rendering frame rates, by exploiting
parallelism, low-level optimizations and perceptual issues.

The prototype prpict is an image space decomposition, message passing, demand driven, totally
replicated data parallel application. Although quite good efficiencies are achieved, there is still the
need for further improvements. Particularly, the execution time is closely correlated with the time
spent computing indirect irradiance values. This time should be minimized to the maximum possible
extent, without sacrificing perceived quality. This could be achieved by: reducing the number of such
extensive computations, reducing the cost of each computations and effectively sharing these values
across space and time. Also processor’s idle times due to suboptimal load distribution should be
minimized.

Three criteria are proposed to both distribute ambient computation times across several initial frames,
rather than just the first one, and to reduce this cost. These criteria are: time varying accuracy, moving
direction dependent accuracy and perceptually guided accuracy. Only the time varying ambient
accuracy criterium has been implemented and tested. Although it smoothes ambient computation
times, they are still far from uniformly distributed and the adaptation process is perceivable on the
final animations. Further experiments are required in order to test with smaller adaptation time
intervals and with a decreasing accuracy convergence step.

These criteria impact on the final animations and on the viewer’s perception of selective and adaptive
rendering quality must be assessed using psychophysics experiments and perceptual metrics.

17

5.1 Future Work

The following issues, closely related to the work presented on this report, must be handled briefly:

1. run experiments with a smaller accuracy adaptation time interval and with a decreasing accuracy
convergence step, in order to reduce accuracy adaptation perception;

2. perform psychophysics experiments and use perceptual metrics to quantify the impact of selective
rendering on perceived quality;

3. design, implement and evaluate an efficient mechanism to compute and share ambient values, in
order to reduce Tamb significantly;

4. verify prpict robustness and integration with the remaining Radiance tools, particularly rad
and ranimate, and promote its use by the graphics community.

During the course of this work several issues, which can hinder the viability of interactive rendering
with Radiance’s illumination model, became clear:

• Radiance’s code and data structures are not suited for parallel interactive ray tracing; in fact,
rpict is tailored towards rendering single frames, not animations; an alternative system archi-
tecture must be designed, which integrates issues such as frame coherence, perceptual metrics,
parallel computing, alternative illumination techniques, asynchronous rendering and visualiza-
tion, etc.; the ”RoD” group at Bristol is working on this;

• perceptual metrics are being studied to predict where the user attention is focused, so that
rendering quality is better on those regions; perceptual knowledge can also be used to create
artifacts, either visual or audio, to distract the user’s attention from very expensive to compute
regions; this issue must be further researched;

• a lot of flickering is noticeable in an animation due to the stochastic nature of distributed ray
tracing; some solution must be found to reduce this flickering, such as using quasi-random
deterministic processes instead of random stochastic ones [5];

• additional artifacts are introduced on the animation by the tone mapping process; since each
frame is tone mapped independently, as if the viewer was completely adapted to that frame
luminance level, small changes between frames may result in different mappings, causing a
sudden change in brightness on the animation; these issue is currently being studied, in order to
implement a time dependent tone mapping to reduce such fluctuations in brightness, which are
not perceived in real life.

A Parallel Radiance’s Code Roadmap

This text presents the code changes done to Radiance 3.5 in order to implement the parallel version
of rpict (prpict) presented and discussed in the previous sections. This text is based on [14].

prpict is an image space decomposition, message passing, demand driven, totally replicated data
parallel version of rpict, as described in chapter 3. It was developed using mpich 1.2.5, although
any other distribution of MPI should compile with no problems. To run prpict with mpich, using N

18

processes (N − 1 processing elements), use the following command:

mpirun -np N <path>/prpict <comand line options>

MPI might be unable to find Radiance programs on their standard directories. If error messages are
displayed, related to the application being unable to find the modelling tools, such as xform, genprism,
etc., create symbolic links to these tools in all subdirectories used by your scene description.

The following files were modified:

prpmain.c
Substitutes rpmain.c
Includes MPI, timers and statistics initialization.
Calls different routines depending on the process rank.
-PP option has been removed.
-ax option has been added.

prpict.c
Substitutes rpict.c
Contains rpict() - function running on the slave nodes.
Basically is an adapted version of the sequential rpict(), except
that the region to be rendered is received as a message from the master.

ambientCTR.c
Substitutes ambient.c
Includes timing and statistics.
Includes checkambient() - create a new ambient file.
If running on the master process (rank 0) accesses the ambient file
and collects/distributes ambient values from/to all PEs

Table 6: prpict - Changed source code files

master.c
Added - runs on the master node (rank 0)
Distributes work the the slaves on demand.
Partitions the image on several regions (tasks)
Collects the results and saves them onto stdout
Receives AMBSYNC messages from PEs in order to
synchronise the indirect irradiance (ambient) cache

Table 7: prpict - Added source code files

References

[1] K. Cater, A. Chalmers, and P. Ledda. Selective Quality Rendering by Exploiting Human Inat-
tentional Blindness: Looking but not Seeing. In VRST’02, Hong–Kong, China, November 2002.
ACM Press.

[2] K. Cater, A. Chalmers, and G. Ward. Detail to Attention: Exploiting Visual Tasks for Selec-
tive Rendering. In Eurographics Symposium on Rendering, Leuven, Belgium, June 2003. The
Eurographics Association.

19

[3] A. Chalmers, S. Daly, A. McNamara, K. Myszkowski, and T. Troscianko. Image Quality Metrics.
SIGGRAPH’2000 – Course 44, July 2000.

[4] R. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. In SIGGRAPH, pages 137–145,
January 1984.

[5] K. Dmitriev, S. Brabec, K. Myszkowski, and H. Seidel. Interactive Global Illumination using
Selective Photon Tracing. In Debevec and Gibson, editors, Eurographics Workshop on Rendering,
pages 25–36, Pisa, Italy, June 2002. ACM Press.

[6] D. Greenberg. A Framework for Realistic Image Synthesis. Communications of the ACM,
42(8):44–53, August 1999.

[7] J. Kajiya. The Rendering Equation. In ACM SIGGRAPH, volume 20, pages 143–150, Dallas,
USA, August 1986.

[8] R. Koholka, H. Meyer, and A. Goller. MPI-parallelized Radiance on SGI CoW and SMP. In
Parallel Computation, 4th International ACPC Conference, number 1557 in LNCS, pages 549–
558, Salzburg, Austria, 1999. Springer-Verlag.

[9] R. Kosara, C. Healey, V. Interrante, D. Laidlaw, and C. Ware. User Studies: Why, How and
When? IEEE Computer Graphics and Applications, pages 20–25, July 2003.

[10] E. Reinhard, A. Chalmers, and F. Jansen. Sampling Diffuse Inter Reflection within a Hybrid
Scheduling Ray Tracer. Journal of Parallel and Distributed Computing Practices, September
2000. Special Issue on Parallel and Distributed Computer Graphics.

[11] D. Robertson, K. Campbell, S. Lau, and T. Ligocki. Parallelization of Radiance for Real Time
Interactive Lighting Visualization Walkthroughs. In ACM/IEEE Conference on Supercomputing,
Portland, OR, USA, 1999. ACM Press.

[12] L. Santos and A. Proenca. A Bayesian RunTime Load Manager on a Shared Cluster. In 1st
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’2001),
pages 674–679, Brisbane, Australia, May 2001. IEEE Computer Society.

[13] L. Santos and A. Proenca. A Systematic Approach to Effective Scheduling in Distributed Sys-
tems. In VECPAR’2002 – 5th Int. Meeeting on High Performance Computing for Computational
Science, pages 813–825, Porto, Portugal, June 2002.

[14] Luis Paulo Santos. Radiance 3.5 - Source Code & Data Structures Road Map. Dep. de Informatica
- Universidade do Minho, Braga, Portugal, May 2003.

[15] M. Simmons and C. Sequin. Tapestry: A Dynamic Mesh-based Display Representation for Inter-
active Rendering. In Proceedings of the Eurographics Workshop on Rendering Techniques, pages
329–340. Springer-Verlag, 2000.

[16] M. Stamminger, J. Haber, H Schirmacher, and H. Seidel. Walkthroughs with Corrective Textur-
ing. In Proceeding of the Eurographics Workshop on Rendering Techniques, 2000.

[17] P. Tole, F. Pellacini, B. Walter, and D. Greenberg. Interactive Global Illumination in Dynamic
Scenes. ACM Transactions on Graphics, 21(3):537–546, 2002.

[18] B. Walter, G. Drettakis, and D. Greenberg. Enhancing and Optimizing the Render Cache. In
Proceeding of the Eurographics Workshop on Rendering Techniques, pages 37–42, 2002.

[19] B. Walter, G. Drettakis, and P. Parker. Interactive Rendering Using the Render Cache. In
Proceeding of the Eurographics Workshop on Rendering Techniques, pages 235–246, 1999.

20

[20] G. Ward and M. Simmons. The Holodeck Ray Cache: an Interactive Rendering System for
Global Illumination in Nondiffuse Environments. ACM Transactions on Graphics, 18(4):361–
398, October 1999.

[21] Gregory Ward. The RADIANCE Lighting Simulation and Rendering System. In SIGGRAPH’94 -
21st International Conference on Computer Graphics and Interactive Techniques, pages 459–472.
ACM Press, 1994.

[22] Gregory Ward and Paul Heckbert. Irradiance Gradients. In 3rd Annual Eurographics Workshop
on Rendering, Bristol, UK, 1992.

[23] Gregory Ward and F. Rubinstein. A ray tracing solution for diffuse interreflection. Computer
Graphics, 22(4), 1988.

[24] Gregory Ward and Rob Shakespeare. Rendering with Radiance: the art and science of lighting
visualization. Morgan Kaufmann, 1998.

[25] T. Whitted. An Improved Illumination Model for Shaded Display. Communications of the ACM,
23(6):343–349, June 1980.

[26] H. Yee, S. Pattanaik, and D. Greenberg. Spatiotemporal Sensitivity and Visual Attention for
Efficient Rendering of Dynamic Environments. ACM TRansactions on Graphics, 20(1), January
2001.

21

