
Evaluation of the communication performance

on a parallel processing system

Lu��s Paulo Santos V��tor Castro Alberto Proen�ca

Dep. Inform�atica, Universidade do Minho,
4719 Braga Codex, PORTUGAL
e-mail: psantos@di.uminho.pt

Abstract. This article presents an evaluation study of point-to-point
and collective communication performance on a parallel processing sys-
tem, a 16 node Parsytec PowerXplorer, using three di�erent communi-
cation environments: PARIX, PVM and MPI.

1 Introduction

Most current massively parallel processing systems (MPP) are distributed mem-
ory message passing computers. Applications developed to run on these machines
commonly use three types of communication: point-to-point, collective commu-
nication and collective computation [1, 2]. These communication operations in-
cur costs which include software overheads (communication and synchronization
protocols), hardware latencies and message delays (network and memory con-
tention).

This article presents a systematic study of communication costs on a 16
node Parsytec PowerXplorer with three di�erent communication environments:
PARIX [3], PVM [4] and MPI [2, 5]. The tests were performed assuming the
user view of the whole computer system through a high-level language, i.e., a
particular software interface to a given computer architecture [6, 7].

This work used the methodology presented by Hwang and Xu [1] for col-
lective operations, which is a generalization of Hockney's model [8]. Most of
the recommendations of the PARKBENCH Committee on Parallel Benchmarks
[6, 7] are also considered.

Quantifying the costs of communication operations has several advantages.
As the understanding of these operations increases, informed decision making
during the design and/or execution of parallel applications becomes feasible,
and it is easier to identify weaknesses on communication libraries and/or on the
workload distribution strategies.

2 Scienti�c foundations

Roger Hockney proposed the following model for communication times in point-
to-point operations [7, 8]:

t(n) = t0 +
n

r1
(1)

where n is the length in bytes of the user data �eld in the message, t0 is the
startup time (or latency) and r1 is the asymptotic bandwidth which is the
maximum achievable bandwidth when the message length approaches in�nity.

The message length required to achieve a performance of r1=2 is given by

n 1
2
= t0 � r1 (2)

and is known as the half performance length. n 1
2
can also be seen as the length

of the message that could be sent during the startup time. In practice, n 1
2
is a

good measure of the message length needed to approach r1.
The pair of (r1; n 1

2
) parameters completely characterizes the performance

of a given operation. For long messages (n � n 1
2
) the startup time may be

neglected and only r1 is needed, while for short messages (n � n 1
2
) only the

startup time t0 is necessary, although usually the speci�c performance (�0 = t�1
0
)

is used instead.
Xu and Hwang [1] generalized this model for collective operations involving

p nodes. The time to complete a communication is given by

t(n; p) = t0(p) +
n

r1(p)
(3)

where t is still a linear function of message length n, but the startup time t0(p)
and the asymptotic bandwidth r1(p) are both functions of the number of nodes
p involved in the communication. The half-performance length is given by

n 1
2
(p) = t0(p) � r1(p) (4)

An additional metric, the aggregated asymptotic bandwidth R1 was derived.
R1 is the ratio of the total number of data bytes transmitted by all nodes to the
total time needed to execute the operation, as n approaches in�nity. For a point-
to-point communication R1 = r1; for broadcast, gather, scatter, reduction and
scan R1 = p � r1; for the total exchange R1 = p2 � r1.

3 The environment

All experiments were performed on a 16 node PowerXplorer from Parsytec. Each
PowerXplorer node contains a Motorola PowerPC 601 80 MHz RISC micropro-
cessor for computation and an Inmos T805 30 MHz Transputer for communi-
cation. Both processors are closely coupled via shared memory. The nodes are
interconnected via a 2-dimensional grid using the Transputer links (a 4*4 grid
in this particular system).

PARIX 1.3.1 (PARallel extensions to unIX) is the operating system actually
being supplied with the PowerXplorer [3]. PARIX provides, among other services,
message routing and multi-user partitioning of the 2D grid of processors. A
partition is a set of processors that are exclusively allocated to one user. PARIX
ensures that simultaneous users of di�erent partitions will not conict with each
others.

Two synchronous point-to-point communication modes o�ered by PARIX
were evaluated: virtual links which require that the communicating processes
are connected via a pre-established virtual link, and random communication

which does not require the de�nition of virtual links but, for messages longer
than 1024 bytes, one virtual link is internally established due to performance
reasons. PARIX does not o�er direct support for collective operations.

PowerPVM 1.1 [4] is a dedicated implementation of PVM 3.2.6 on PARIX
systems from Parsytec. The following communication operations were evaluated:
asynchronous point-to-point (pvm send /pvm recv), broadcast and bar-

rier synchronization. Broadcast is a collective communication; the broadcast
message is not sent back to the sender, so R1 = (p � 1) � r1. The barrier is a
collective computation; de�ning the message length makes no sense, its time to
completion is given by the startup time. The time for bu�ers initialization and
message packing was not considered for any of the PVM operations.

PowerMPI 1.1 [5] is a dedicated implementation of the MPI 1.0 standard for
Parsytec systems running PARIX. The following communication operations were
evaluated: point-to-point standard mode (MPI Send/ MPI Recv), broad-
cast, gathering and scattering, all-to-all exchange (MPI Allgather), bar-
rier synchronization, data reduction and scan (pre�x-reduction). The last
three operations are collective computations; only small message lengths are con-
sidered (4 bytes for single-precision oating point), consequently, t is given by
the startup time t0(p).

4 Testing methodology

The programs were written in standard C and compiled with the C Solaris
compiler for PowerPC from Motorola, version 1.5.1, with optimization level -O5.
The PowerXplorer partitions were fully dedicated, minimizing interferences from
the OS and avoiding conicts with other users.

The experimental procedure followed several rules:

{ only one user process was assigned to each processor in all experiments; all
processes were engaged in all collective operations; the number of processes
(nodes) used were 2, 4, 8, 12 and 16; the message sizes, where appliable, are
powers of 2, from 22 to 216;

{ to gather data for each experiment the minimum measured time value was
selected out of 5 runs, minimizing interference from the OS [1];

{ for collective operations, each processor measured its local time to complete
the communication; the maximum time across all processors is considered
to be the time to complete the collective operation;

{ each experiment repeats the communication operation 20 times to �lter out
any eventual interference from the OS; the average time is considered to be
the one which most accurately reects the typical time to completion;

{ for asynchronous collective operations a barrier synchronization is performed
between any two successive communications to ensure that no operation
begins before the total completion of the previous one.

According to the PARKBENCH Committee recommendations the funda-
mental measurement in any benchmarking is the elapsed wall-clock time. The
Committee proposes two benchmarks, TICK1 and TICK2, to measure the res-
olution and check the absolute value of the computer clock [6, 7].

On the PowerXplorer TICK1 showed that the clock ticks at least once be-
tween successive timer calls, suggesting that there is no need for a repeat loop
on low-level benchmark measurements. The number of clock ticks between two
successive timer calls is a time measurement overhead and must be subtracted
from the values obtained on further measurements.

TICK2 con�rms that the absolute values returned by the computer clock
are correct, by comparing its measurement of a given time interval with that
of an external wall-clock, like the benchmarker's wristwatch. The PARIX timer
subroutine was veri�ed to accurately measure wall-clock time.

Before any time measurements 5 iterations of the communication operation
are performed to avoid measurement errors due to warmup overheads of the
message-passing system. These overheads include, among others, code loading
into memory and bu�ers and cache initialization.

The time between two consecutive calls to the timer subroutine is measured
and later deduced from all time measurements.

The ping-pong method is used to measure the point-to-point communication
time; this is similar to the COMMS1 benchmark proposed by the PARKBENCH
Committee; this approach correctly handles both synchronous and asynchronous
message-passing modes; in our experiments the distance between nodes varies
between 1 and 6 hops;

The code is organized as follows:

get time1

get time2

time overhead = time2 - time1

local time = 0;

for (i=0 ; i<20 ; i++)

barrier synchronization

get start time

perform collective operation

get end time

local time += end time - start time - time overhead

local time = local time / 20

communication time = maximum reduce (local time)

5 Results

The measured time values �ll 13 tables (available on [9]), covering the several
types of communication and operating environments. To summarize, and to ex-
tract useful information, the results are presented in tables 1 and 2 using a
least-squares �tting technique. t(n; p) can be obtained applying equation (3) to

the expressions presented for t0(p) and r1(p). The results obtained with the
curve �tting technique closely match the experimentally measured time values.

Table 1 shows the curve �tting results for point-to-point operations. p repre-
sents the number of processors in the path of the message, i. e., the number of
hops plus 1.

t0(�s) r1(MB=s)

Virtual Links (PARIX) 41 + 42p 1:05
Random (PARIX) (n � 1024) 153 + 141p 0:63 � 0:26 ln(p)
Random (PARIX) (n > 1024) 413 + 273p 1:05
PVM 169 + 146 ln(p) 1:05
MPI 231 + 126 ln(p) 1:05

Table 1. Curve �tting results for point-to-point communication

PARIX uses two di�erent mechanisms for random communication depending
on the message length. If it is greater than 1024 bytes a virtual link is internally
created between the two communicating processes. Thus two di�erent expres-
sions for t(n; p) are obtained, depending on the message length.

Table 2 shows the results for collective operations.

t0(�s) r1(MB=s)

PVM Broadcast 256 + 101p1:22 0:019 + 2:31
p1:38

Barrier 118 + 144p+ 3:19p2 � 0:004p3 |

Broadcast 35:7 + 451 ln(p) 0:2 + 2:16
p1:36

Gather 118 + 135p 0:017 + 2:08
p1:34

MPI Scatter 269 + 137p 0:018 + 2:2
p1:36

AllGather �704 + 775p� 38p2 + 1:94 � p3 �0:05 + 0:18
ln(p)

Barrier �329 + 409p� 52p2 + 2:52p3 |
Reduction �110 + 277p� 20:4p2 + 0:64p3 |
Scan �902 + 712p� 56:6p2 + 2:16p3 |

Table 2. Curve �tting results for collective operations

For MPI Allgather the measured time values for larger values of n and p are
several orders of magnitude larger than those for small values of n and p. The
�tting method tends to be slightly dominated by these larger values, leading to
poor approximations in the region of the n�p space where n is large and p small.

MPI Barrier presents a maximum value for p = 12 (1478�s) and then a
smaller value for p = 16 (1286�s). This suggest that a di�erent mechanism is used

for p > 12. As this is an undocumented feature the results were approximated
for p 2 [2; 12].

6 Analysis of results

Analyzing point-to-point communications, table 1 shows that PARIX virtual
links o�er better performance than random communications, independently of
message size. For the former communication mode the obtained values are very
similar to those presented by Parsytec [3]. The best achieved bandwidth was
1.05 MB/s and Parsytec claims 1.06 MB/s. For message lengths larger than
1024 bytes random communications present longer startup times than virtual
links due to the added cost of establishing a virtual link for every communication.
These longer startup times are reected on n 1

2
(equation 2), which indicates that

messages should be larger in order to achieve a satisfying bandwidth (4 times
n 1

2
to achieve 80% of r1). It is interesting to note that the three environments,

PARIX, PVM and MPI, have r1 = 1:05MB=s, independently of the distance
between the communicating processes. Also interesting is that MPI presents a
somewhat higher latency than PVM, while it exhibits better performance on
broadcasts and barriers.

Looking at collective communications, MPI's broadcast presents better per-
formance than PVM's broadcast, due to a smoothly latency degradation with
p (table 3 and �gure 1); r1 has the same behavior for both environments;
MPI Scatter performs worst than MPI Gather; this is not expected as both
operations should present a similar communication pattern; notice from table 2
and �gure 2 that the larger cost of scatter is due to latency; this di�erence in
performance fades away as n increases due to r1.

Fig. 1. Latency (t0(p)) in �s for PVM and MPI broadcast

Analyzing collective computations, MPI's barrier performs better than PVM.
As stated before the expression presented for MPI Barrier's latency only holds
for p 2 [2; 12]. The reduction and scan operations can not be compared because
PVM 3.2.6 does not support them (pvm reduce is included in PVM 3.3).

Fig. 2. Latency (t0(p)) in �s for MPI gather and scatter

6.1 Identifying weaknesses

Operation PARIX PVM MPI
t0 r1 t0 r1 t0 r1

point-to-point / (p) / (1) / (ln(p)) / (1) / (ln(p)) / (1)
broadcast | | / (p1:22) / (p�1:38) / (ln(p)) / (p�1:36)
gather | | | | / (p) / (p�1:34)
scatter | | | | / (p) / (p�1:36)
allgather | | | | / (p3) / ((ln(p))�1)
barrier | | / (p2) | / (p3) |
reduction | | | | / (p) |
scan | | | | / (p3) |

Table 3. Proportionality of t(n; p) with respect to p

Table 3 summarizes all results, showing how t(n; p) evolves with respect to
p, p 2 [2; 16] (the symbol / means 'proportional to').

Although PARIX virtual link point-to-point communications are the most
e�cient ones, one would expect their latency to be / (ln(p)) as MPI and PVM.
PVM's broadcast latency is / (p1:22) which is quite inne�cient when compared
with MPI. MPI Scatter and MPI Gather latency are both / (p). However,
MPI Scatter presents worst completion times due to added constants. In prac-
tice, n 1

2
is larger for MPI Scatter. pvm barrier is / (p2), while MPI Barrier is

/ (p3), which suggests that the later's scalability could be improved. MPI re-
duction presents a latency with the same behavior as scatter and gather. This
is an expected result, as the communication pattern is identical for all these
operations.

Xu and Hwang [1] present results for MPI on a IBM SP2. The asymptotic
bandwidth found is larger than for the PowerXplorer, since the SP2 interconnec-
tion network { High Performance Switch (HPS) { provides a peak bandwidth of

40MB=s whereas a Transputer link has a peak bandwidth of 1:8MB=s. How-
ever the degrees of proportionality they present for the asymptotic bandwidth of
broadcast, scatter and gather are better for all communication operations than
the ones found for the PowerXplorer, which may be due to two reasons: the MPI
implementation used on the IBM SP2 is more e�cient and/or the architecture
of the HPS { a multi-stage Omega network with wormhole routing, allowing
direct connections between any pair of nodes { is better suited for collective and
point-to-point operations.

7 Concluding remarks

The results of this work help to understand the performance of some communica-
tion primitives on a 16 node parallel system, running 3 communication environ-
ments (PARIX, PVM and MPI). Quantifying communication costs is essential
to support informed decision making when designing operating environments
and parallel applications. The obtained results show that PowerMPI 1.1 com-
munication primitives only achieve better performance than PowerPVM 1.1 on
collective operations.

The current poor asymptotic bandwidth is essentially due to the peak band-
width of the Transputer links. Current Parsytec MPP systems support a High-
Speed link with a peak performance of 0.6 Gb/s.

Future work will include evaluation of a larger machine (� p), di�erent MPP
architectures and the dependence of computer performance on communication
bottleneck (POLY3 benchmark from PARKBENCH).

References

1. Zhiwei Xu and Kai Hwang. Modeling communication overhead: MPI and MPL
performance on the IBM SP2. IEEE Parallel & Distributed Technology: Systems &

Applications, pages 9{23, 1996.
2. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming

with the Message Passing Interface. MIT Press, 1995. ISBN 0-262-57104-8.
3. Parsytec. PARIX 1.3.1. Parsytec Eastern Europe GmbH, May 1995.
4. GENIAS Software GmbH. PowerPVM for Parsytec Computers, 1994.
5. GENIAS Software GmbH. PowerMPI for Parsytec PowerPC Systems, 1995.
6. R. Hockney and M. Berry. Public international benchmarks for parallel computers.

Technical report, PARKBENCH Committee, February 1994.
7. R. Hockney. The Science of Computer Benchmarking. Society for Industrial and

Applied Mathematics, 1996. ISBN 0-89871-363-3.
8. R. Hockney. The communication challenge for MPP: Intel Paragon and Meiko CS-2.

Parallel Computing, 20:389{398, 1994.
9. Lu��s Paulo Santos, V��tor Castro, and Alberto Proen�ca. Evaluation of the

communication performance on a parallel processing system - time tables.
http://www.di.uminho.pt/ psantos/RESEARCH/PUBL/pvmpi97/tempos.html,
May 1997.

This article was processed using the LATEX macro package with LLNCS style

