
work, or whether it is the parallelization scheme or machine
model (or both) that should be improved. As a consequence, poor
results may not reflect any inherent limitations of the STP model,
but rather the way it was applied.

The goal of this paper is to identify potential sources of
speculative parallelism in programs. To search through a large
space of parallelization schemes effectively, we work with simple
machine models and a relatively simple trace-driven simulation
tool.

We define anoptimal STP machine that incurs no overhead in
executing the parallel threads and can delay the computation of a
thread perfectly to avoid the need to rollback any of the
computation. To keep the experiments simple and relatively fast,
the STP machine is assumed to be a simple machine in all other
aspects. Many different optimizations have previously been
proposed to minimize rollbacks, such as adding synchronization
operations to the code statically[2] or inserting them dynamically
as rollbacks are detected, for example[13]. We can use the
optimal machine to derive an upper bound on the performance
achievable using any possible synchronization optimizations.
The optimal machine serves as an effective tool for filtering out
inadequate parallelization techniques, since techniques that do
not work well on this machine will not work well on any real
machine of a similar design. We vary the resources available on
our optimal STP machine in the experiment, supporting 4, 8, or
an infinite number of concurrent threads.

We also define abase STP machine that is similar to the optimal
version but makes no attempt to eliminate rollbacks through
synchronization. The machine simply executes the instructions of
each thread in sequence; if the data used is found to be stale, and
the value was not correctly predicted, the machine restarts the
thread. The performance of a particular synchronization scheme
should thus fall between the bounds established by the optimal
and base machines.

To explore the potential of various parallelization schemes in an
efficient manner, we have created a trace-driven simulation tool
that can simultaneously evaluate multiple parallelization choices.
We also use this tool to collect useful statistical data, providing
important insights and explanations of the parallel behavior of the
program.

Our experiments have led to the following contributions:

• We found that it is inadequate to exploit only loop-level
parallelism, the form of parallelism that is used almost
exclusively in many prior studies. Our tool simultaneously
evaluates all possible choices of which level in a loop nest to
speculate on. Even with optimal loop-level choices for

In Search of Speculative Thread-Level Parallelism

Jeffrey T. Oplinger David L. Heine Monica S. Lam

Computer Systems Laboratory
Stanford University, CA 94305

{jeffop, dlheine, lam}@cs.stanford.edu

Abstract
This paper focuses on the problem of how to find and effectively
exploit speculative thread-level parallelism. Our studies show
that speculating only on loops does not yield sufficient
parallelism. We propose the use of speculative procedure
execution as a means to increase the available parallelism. An
additional technique, data value prediction, has the potential to
greatly improve the performance of speculative execution. In
particular, return value prediction improves the success of
procedural speculation, and stride value prediction improves the
success of loop speculation.

1. Introduction

Researchers have been exploring the use of speculative threads to
harness more of the parallelism in general-purpose programs
[1][6][8][12][15][17][19]. In these proposed architectures,
threads are extracted from a sequential program and are run in
parallel. If a speculative thread executes incorrectly, a recovery
mechanism is used to restore the machine state. While a
superscalar processor can only extract parallelism from a group of
adjacent instructions fitting in a single hardware instruction
window, a thread-based machine can intelligently find parallelism
among many larger, non-sequential regions of a program’s
execution. Speculative threads can also exploit more parallelism
than is possible with conventional multiprocessors that lack a
recovery mechanism. Speculative threads are thus not limited by
the programmer’s or the compiler’s ability to find guaranteed
parallel threads. Furthermore, speculative threads have the
potential to outperform even perfect static parallelization by
exploiting dynamic parallelism, unlike a multiprocessor which
requires conservative synchronization to preserve correct
program semantics.

Several hardware designs have been proposed for this speculative
thread-level parallelism (STP) model [1][6][8][12][15][17][19],
but so far the speedup achieved on large general-purpose integer
code has been limited. However, it is important to note that these
experiments evaluated not only the proposed hardware, but also
the choices made by the researcher or the compiler as to where to
apply speculative execution. The decision on where to speculate
can make a large difference in the resulting performance. If the
performance is poor, we gain little insight on why it does not

This research is supported in part by DARPA contracts
DABT63-95-C-0089 and MDA904-98-C-A933.

©1999 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

speculation and optimal data dependence synchronization,
the speedup obtained is low. This is due to a combination of
the limited parallelism of loops in non-numeric code and the
time spent in sequentially executed code found outside of the
parallelized loops.

• We found that procedures provide a useful source of
speculative parallelism. In procedural speculation, another
thread speculatively executes the code following the return of
the procedure at the same time the procedure body is itself
being executed. Procedure boundaries often separate fairly
independent computations, and there are many of them in
most programs. Thus, procedure calls provide important
opportunities for parallelism and can complement loops as a
source of thread-level parallelism.

• We also evaluated the potential of using prediction to
improve speculative parallelism. In particular, predicting the
value returned by a procedure (return value prediction) can
greatly reduce the data dependences between the procedure
execution and the following computation. Value prediction
can also eliminate important data dependence constraints
across iterations of speculatively executed loops.

This work suggests that there is significant potential in an STP
machine that supports speculation on both loops and procedures.
Defining a complete machine design based on this computation
model is beyond the scope of this paper. This work serves an
important function in showing the limits of certain parallelization
schemes, such as parallelizing only loops, and pointing out ideas
worthy of further attention such as procedural speculation and
value prediction.

The rest of this paper is organized as follows. In Section 2 we
describe the STP machine model in more detail, followed by the
simulation methodology in Section 3. In Section 4 we present
results on using the optimal STP model to exploit loop-level
parallelism. We investigate the use of procedural speculation in
Section 5. Section 6 contains the results of combining loop-level
and procedure-level speculation. In Section 7 we present the
performance results of both the optimal and base machines with
finite resources. Related work is discussed in Section 8 and we
conclude in Section 9.

2. The STP Machine Model

In the STP machine model, the program explicitly specifies when
the threads are to be created. To preserve correct sequential
execution semantics, the side effects of each speculative thread
are saved in a separate speculative state. Each thread can observe
all the writes of threads that occur earlier in the sequential
execution sequence, use the latest values at each point, and detect
dependence violations. There are two forms of dependence
violation:

• (true) data dependence. A thread detects a dependence
violation if it discovers that an earlier thread has generated a
value that it needs after it has already speculatively computed
with an outdated value. This is the only form of data
dependence violation. Anti-dependences (or storage
dependences) do not cause a violation. That is, write
operations by a later thread do not affect the values read by

an earlier thread, and therefore these operations need not be
ordered. Similarly, actions of earlier threads have no effect on
a later thread that first writes then reads the same location.

• control dependence. A thread detects a control dependence
violation if the control flow of an earlier thread causes the
subsequent thread not to be executed at all. For example, an
early exit taken by an iteration of a loop would render the
speculative execution of all subsequent iterations useless.

If a violation occurs, the processor throws away the speculative
state and, in the case of a data dependence violation, restarts the
thread; if none occurs, it commits the speculative state when all
threads coming earlier in the sequential execution have
committed. There have been several proposals that implement
this model[3][17][19], which are discussed in Section 8.

Value prediction[11], a concept receiving much recent attention,
is particularly relevant to STP as it enables a program to run
faster than the dataflow limit determined by data dependences.
We examine two simple schemes of value prediction. The last-
value prediction (LVP) scheme predicts that the loaded value will
be the same as the value obtained from the last execution of that
load instruction. The stride-value prediction (SVP) scheme
predicts that the loaded value will be the same as the last loaded
value plus the difference between the last two loaded values. By
using value prediction, a speculative thread need not be rolled
back upon detecting a true data dependence violation if the
predicted value matches the newly produced value. To find the
upper bound of the impact of value prediction on STP, we assume
that the machine automatically uses value prediction whenever it
attempts to read a value that has not yet been produced. As this is
a limit study, we also assume that the machine has a buffer large
enough to hold all predicted values needed by any thread.

3. Simulation

We use a trace-driven simulation tool to evaluate the performance
of different speculative execution schemes under different
machine models. For the sake of simplicity, we assume that each
processor takes one cycle to execute each instruction. Also, to
focus on the potential of the different parallelization schemes, we
assume that the system has a perfect memory hierarchy. All
memory accesses can be performed in a single clock and stored
data is immediately available to all processing elements in the
next cycle. There is no overhead in the creation of threads and no
additional cycles are needed to restart a thread once a violation is
detected.

The execution of a single instruction per cycle in our simulations
raises the issue of how thread-level parallelism interacts with
instruction-level parallelism (ILP). Note that the STP model is
designed to execute relatively coarse-grain threads, so we expect
that the threads in the STP model can still benefit significantly
from ILP. The average thread size across our benchmarks was 56
instructions, roughly corresponding to a 224-instruction window
on a 4-way machine and a 448-instruction window on an 8-way
machine. Still, further studies are necessary to determine the
effect of combining STP and ILP.

To explore the STP design space, we vary our simulations based

upon the types of regions speculation is applied to (single-level
loops, multi-level loops, procedures, loops and procedures),
whether or not dependence synchronization is employed, the
maximum number of concurrent threads allowed to execute, and
the value prediction policy for memory loads and register reads.
The parameters to our simulator are summarized in Table 1 and
Table 2.

We use the ATOM tool[18] to augment the optimized program
binaries and generate a user-level trace that includes events of
interest: loads and stores, procedure entries and exits, and loop
entries, exits, and iteration advances. (System calls are not
captured in the trace.) The simulation clock normally advances
one cycle per instruction. Procedure and loop entries signal the
potential forking of a speculative thread, depending on the
parallelization scheme used. When a speculative thread fork is
encountered, the simulation time is stored and the first thread
executes. When the later thread(s) from the fork begin to execute,
the simulation time is set back to the time of the fork. When a
store or register write occurs, the current simulation time is
recorded for that memory/register location. Execution continues
as normal, except threads are delayed or squashed if they try to
read a value that was written at a time greater than the current
simulation time. Delays are avoided in the models employing

Table 1: STP Parallelization Schemes

Region(s) Description
loops a single loop in each nest is chosen for speculation
multi-level
loops

all loops in each nest are chosen for speculation

procedures procedure bodies execute in parallel with the code
following them

loops and pro-
cedures

speculation on a single loop in each nest as well as
on procedures

Table 2: STP Machine Model Parameters

 Parameter Description
Synchronization Policy
optimal all operations delayed optimally to avoid rollback
base no operations are ever delayed, threads are rolled

back as soon as a violation is detected
Resources
Infinite no limit on the number of concurrent threads
8-way resources to execute 8 concurrent threads
4-way resources to execute 4 concurrent threads
Return Value Prediction
none no return value prediction
LRVP last value prediction of return values

whenever procedural speculation is used
LVP last value prediction of return values

whenever procedural speculation is used
SVP stride value prediction of return values

whenever procedural speculation is used
Value Prediction for Memory Loads and Register Reads
none no value prediction
LRVP no value prediction (except for return values as

above)
LVP last value prediction
SVP stride value prediction

value prediction whenever the values are correctly predicted.
Value prediction is implemented by keeping an array of the last
two loaded values for each load and register use in the program,
and by keeping another array of the last two returned values for
each procedure in the program. The value prediction employed is
rather idealistic, in that we presume perfect “confidence
estimation”—when the prediction is incorrect, the machine
simply behaves as if prediction were not employed at all, so
misprediction never causes any performance penalty.
Additionally, because the simulation is based on the sequential
program trace, there is no notion of the value predictor being
updated “out of order” as would undoubtedly happen in a real
speculative machine. A prediction is always based on the last one
or two instances of that instruction in the sequential trace. Thus
the performance results with prediction should be considered as
an upper bound on the benefit that prediction could provide.

In simulations of finite-processor models, a resource table is used
to track usage of the individual processors. A thread must obtain
execution cycles from a resource table before it is allowed to
execute. Threads closer to the sequential execution are given
priority and may preempt lower priority threads in progress if
resources are exhausted. Preempted threads are delayed until the
next available cycle and are re-executed from the start.

When the actual number of loop iterations is not knowna priori,
a real STP machine would end up wasting some resources
executing beyond the end of the loop. To account for the wasted
cycles on mispredicted iterations, which do not show up in our
sequential trace, our simulator treats the end of a loop as a barrier
to parallelization in simulations of finite machines. That is, the
machine is not allowed to speculatively execute computation that
logically follows the loop in the original sequential execution.
No such barrier exists in the procedural case because only one
new thread is created at each procedure call.

One final consideration is that the code generated by the compiler
for a uniprocessor machine includes many “artificial”
dependences. For example, the multiple threads in an STP
machine operate on multiple stack frames at the same time, so
they need not obey the dependences due to global and stack
pointer updates in the sequential program. Similarly, since the
threads have separate register files, they are not constrained by
the dependences introduced by callee-saved register operations.
Our simulator ignores dependences originating from a register
restore operation (e.g. the dashed arrow in Figure 1), and instead
observes the true dataflow dependence that the save/restore code
is preserving (e.g. the solid arrow in Figure 1).

3.1. Benchmarks

We evaluate the performance of our various speculative thread
models using the 8 benchmarks from the SPECint95 benchmark
suite. Table 3 lists the programs, input sets, and execution
characteristics. Throughout the paper, speedups are calculated
relative to a single cycle per instruction sequential execution of
the program.

All the programs were compiled using the Compaq Alphacc
compiler with optimizations using the-O2 flag. To perform the
simulation, we use ATOM to annotate the binaries with

information such as the entry and exit points of loops as well as
locations forsetjmp and longjmp calls. The annotation tool
analyzes the binary code directly, extracts control flow graphs
from the code and calculates the singly entry and potentially
multiple exits of the loops using standard compiler algorithms.
Recognizing all induction variables in the binary, however, would
require an interprocedural analysis that we have not implemented,
so induction variables are not recognized. Note that machines
employing stride value prediction will effectively recognize the
induction variables and ignore most of their dependences. For
machines with last value or no value prediction, the loop iteration
counting code generated by a typical uniprocessor compiler will
result in at least one data dependence across iterations that needs
to be synchronized, even if the loop is otherwise parallel.

4. Speculative Loop Parallelism

Loop iterations are the traditional target of parallelization and an
obvious candidate for thread-level speculation. Each iteration of a
loop can be turned into a speculative thread that runs in parallel
with the other iterations of that loop. The only form of control
dependences shared between iterations are loop termination
conditions, and the outcomes are highly skewed in favor of
continuation. The remainder of the control flow in each iteration

Figure 1. Dependences Induced by Callee-Saved
Register Operations

Table 3: Benchmarks Executed

Program
Lines

of Code Input Set
Dynamic

 Instr Description
compress 1K train 47M File

compression
gcc 192K train 286M The GNU

compiler
go 29K train 54M Game of go
ijpeg 28K train 183M Image

compression
li 7K train 136M Lisp

interpreter
m88ksim 18K test 134M Processor

simulator
perl 23K train

(primes.pl)
5M Perl language

interpreter
vortex 52K train 963M Database

Thread 1 Thread 2

r0 <- ...
...
foo(); /* body of foo */

/* callee register save */
stack <- r0
...

/* callee register restore */
r0 <- stack
return;

... <- r0

is independent; thus failure to predict a branch within an iteration
does not affect other threads. The degree of parallelism available
in a loop is governed by the presence of data dependences that
cross loop iteration boundaries. If the iterations operate on
disjoint sets of data, the degree of parallelism can be equal to the
number of iterations of the loop. In the following, we first focus
on the common model of applying speculation to one loop at a
time. We then look at the performance and hardware implications
of allowing multiple loops to speculatively execute in parallel.

4.1. Single-Level Loop Speculation

When we restrict speculation to a single loop in a nest, the critical
decision is which loop in the nest to speculate on. There are two
factors that need to be considered when selecting the best loop.

• Degree of Parallelism: there must be sufficient data
independence between the iterations to achieve parallelism.
If the iterations are totally independent (a DoAll loop), then
the potential degree of parallelism is equal to that of the
number of iterations. If there are dependences across
iterations (a DoAcross loop), the degree of parallelism is
dependent upon the ratio of the length of the recurrence cycle
to the length of the iteration.

• Parallelism Coverage: If we parallelize an inner loop, then
all the code outside will run sequentially. Thus, it may be
desirable to choose an outer DoAcross loop with less
parallelism over an inner DoAll loop if speculation can only
be applied to one loop at a time. We refer to the percentage of
code executed under speculative execution as the parallelism
coverage. By Amdahl’s Law, low parallelism coverage
necessarily results in poor performance.

To select the best loop, we developed a separate trace-driven tool
called MemDeps[15]. This tool presumes that only one loop in
any given dynamic loop nest can be speculatively parallelized.
(Note that loops in a dynamic nest need not be defined in the
same procedure.) MemDeps evaluates the speedup for each of the
possible choices, and chooses the best performing loop in each
dynamic nest to compute the overall speedup. At the end of the
MemDeps simulation, we calculate the overall frequency with
which each loop was dynamically chosen as the best loop. These
overall frequencies are then used to make static choices for loops
in our simulations of the various STP machine models.

We evaluate the performance of the one-level loop speculation
model on several variants of the optimal STP machine using the
SPECint95 benchmark suite. Figure 2 presents the experimental
results of this study. Machines are denoted by their
synchronization policy and memory load prediction scheme, if
any, as described in Table 2.

The largest speedup of 5.2 is achieved byijpeg , an image
compression program, with stride prediction enabled (Optimal-
SVP). The significant performance improvement seen with stride
prediction is due to the elimination of induction variable
dependences across iterations. (Last-value prediction has no
effect on these variables.) Had the code been compiled for an STP
machine explicitly, the compiler would recognize many of these
induction variables and would eliminate their dependences from
the program. If an STP machine used induction variable

recognition but not general value prediction, its performance
would be bounded by the Optimal and Optimal-SVP results.

It is not surprising thatijpeg performs well as its algorithm is
very parallel. M88ksim and vortex are the only other
programs with speedups over 2, with the rest of the benchmarks
performing only between 1 and 1.6 times better than sequential
execution. Note thatli andperl are relatively unaffected by
value prediction.

Despite the optimal STP machine’s ability to speculate loops
perfectly, the overall harmonic mean of speedup achieved across
the benchmark suite is only 1.6. With the exception ofijpeg ,
the results are rather disappointing especially when considering
that the optimal STP machine uses an unbounded number of
processors, delays every operation optimally, and has zero-
communication cost. Moreover, the loop choices are made by
analyzing the execution of the program with the same input set.
Unless large changes are made to the code, speculating at only
one level in each loop nesting will not yield significant speedup
on a realistic STP machine. Different code generation or
instruction scheduling could provide a potentially higher limit,
however.

To gain more insight into the performance results, we
instrumented the code and the simulator to collect various
characteristics of the individually speculatively parallelized
loops[15]. We determine the computation time of the loops
speculated on, whether the loops are innermost or outer loops,
and whether the loops are DoAcross or DoAll loops. We
summarize the findings of those experiments here.

• Poor overall performance due to poor parallelism coverage.
Many of the programs have loops that show fairly impressive
speedups when speculatively executed. However, the lack of
parallel coverage, shown in Table 4, results in overall
performance that is much lower. For example,m88ksim
with stride prediction achieves an impressive 34.4-times
speedup on 71% of the program, but the serialization in the
other 29% of the computation drags down the overall

Figure 2. Optimal STP Speculation on
Single-Level Loops

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal Optimal-LVP Optimal-SVP

performance. To illustrate the importance of coverage, we
also present the Amdahl’s Law limit on the overall speedups
in Table 4, which assumes infinite speedup of the covered
portions of the programs and sequential execution elsewhere.
Even if the all the parallelized code was executed in a single
cycle, most programs would still show relatively modest
overall speedups.

• Trade-off between speedup and coverage. In many cases,
choosing the best loops for overall program speedup
presented a distinct trade-off. Inner loops tended to have
higher speedups but lower parallel coverage, while outer
loops covered more of the program but had lower speedups.

• Lack of DoAll loops. Only the two best performing programs
(ijpeg and m88ksim) spend more than 10% of their
execution time in DoAll loops. Most of the integer programs
have only DoAcross loops, which tend to have a lower
degree of parallelism.

• Size of the speculative state is limited. In all but three of our
benchmarks (the three beingli , vortex , and gcc), the
maximum amount of speculative state needed per thread was
relatively small, approximately three kilobytes. Indeed,
Steffan and Mowry found that threads needed less than 5KB
of buffering on average (usually significantly less), and that a
two-way set associative data cache with a small fully-
associative victim cache was sufficient to retain almost all
speculatively-accessed lines[19].

The analysis of the above suggests that it is important to find
other sources of speculative parallelism. Doing so will not only
increase parallelism coverage, but will also enable the machine to
exploit parallel inner loops more effectively.

4.2. Multi-Level Loop Speculation

Speculatively executing multiple loops in a nest seems to be an
obvious approach to improving single-level loop performance,
but there are many difficulties in practice. First, the relatively
small number of processors we are targeting (4 or 8 in our later
experiments) make it difficult to assign them to multiple loops at
a time. In addition, because the number of iterations in a loop is
not always knowna priori, some loops would occupy the entire
machine with “potential” iterations. Finally, our thread
prioritization favors the most-sequential threads, so inner loop
threads would tend to force outer loop threads out of the machine.

Table 4: Coverage and Maximum Theoretical
Speedup for Single-Level Loops

Program
%

Parallelized
Amdahl’s Law
Max Speedup

compress 27% 1.4
gcc 77% 4.4
go 67% 3.0
ijpeg 99% 100.0
li 45% 1.8
m88ksim 71% 3.5
perl 85% 6.7
vortex 93% 14.3

Despite these difficulties, we wish to find a bound for this
approach. In this experiment, we consider the extreme case where
the optimal STP machine uses an unbounded number of
processors to simultaneously execute all the iterations of each
loop in a nest that it encounters. The results are shown in
Figure 3.

Even with all its idealistic characteristics and its use of a very
aggressive speculation model, the optimal STP machine’s
performance is still relatively poor. The harmonic mean improves
only modestly from 1.6 to 2.6 (with stride prediction) when
speculatively executing all loops simultaneously, while the
machine design becomes much more difficult.

4.3. Summary of Speculative Loop Level Parallelism

Our results show that speculatively executing one loop at a time
will not yield significant speedup under the STP model. Moreover
the performance is highly sensitive to the way the code is written.
Most integer codes have DoAcross loops which have limited
parallelism. The ability to speculate on just one loop in each nest
limits the parallel coverage which produces a lower overall
speedup. Parallelizing multiple loops simultaneously increases
the coverage and the overall performance, but would be very
difficult to effectively support in a real machine. Overall, the
performance on a very idealistic system is still modest. This result
strongly suggests that loop-level speculation needs to be
complemented with other sources of parallelism.

5. Procedure Level Speculation

Procedures are the programmer’s abstraction tool for creating
loosely-coupled units of computation. This suggests that it may
be possible to overlap the execution of a procedure with the code
normally executed upon the return of the procedure. A
characteristic that makes speculative procedure execution
particularly attractive is the lack of control dependence between
the sequential and speculative threads. Procedures are expected to
return under normal execution, and thus it is seldom necessary to
discard the speculative work because of control flow. The only

Figure 3. Optimal STP Speculation on
Multi-Level Loops

0

1

2

3

4

5

6

7

8

9

1 0

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal Optimal-LVP Optimal-SVP

exceptions are when the procedure raises an exception or uses
unconventional control flow operations such aslongjmp . These
unusual circumstances can easily be handled by simply aborting
the speculative threads and discarding their speculative states.

Unlike loops, procedures have not been a very popular target of
parallelization. They have generally been used in more functional
programming environments where there are fewer memory side
effects in procedures and recursion is more common[5][7]. In
typical imperative programming environments, procedures tend
to share more data dependences with their callees. Also, as
recursion is less predominant in imperative programs, the
available parallelism is not scalable. These limitations, however,
are much less important to the STP model. The speculative
execution hardware can handle the memory dependences that
might exist across procedures. Furthermore, a real STP machine
is likely to have hardware support for only a small number of
concurrent threads. The prevalence of procedure calls throughout
programs provides a potentially effective source of parallelism
for complementing loop-level parallelism.

To speculate at the procedure level in the STP model, we
concurrently execute the called procedure with the code
following the return of the procedure. Notice that it is the latter
that executes speculatively. We propose to use a new thread to
execute the called procedure and have the original thread execute
the rest of the caller code speculatively. A data dependence
violation occurs if the code following the return reads a location
before the callee thread writes to that location. The same
mechanism that is used for loop-level parallelism can be used to
ensure that the data dependences are satisfied. By customizing the
procedure calling convention to support speculation, the overhead
of creating a new thread could be minimized. Furthermore, if the
threads have their own private registers, there would be no need
to save and restore registers at procedure boundaries. (Our study
does not take advantage of this optimization opportunity.)

While loop level speculation can occupy an arbitrarily large
number of processors by assigning a new iteration to each
processor, each instance of procedural speculation creates work
for only one additional thread. To create more opportunities for
parallelism, this concept of procedural level speculation can be
applied recursively. In the recursive case, note that the order of
thread creation is not the same as the sequential order that the
threads will retire in. The sequential ordering of the recursively
created threads can be easily determined as follows. If thread A
creates a speculative thread B at a call site, then B comes after A,
and inherits from A all of its sequential ordering relationship with
all other threads.

Because the return value is often used immediately upon the
return of a procedure, speculatively executing the code following
the procedure body could result in a large number of rollbacks. To
avoid these rollbacks, we propose predicting the value that will be
returned. Return value prediction is implemented by keeping a
cache of past values returned by each procedure, if they exist. The
caller thread continues to execute the code following the
procedure call using the predicted return value. When the callee
thread returns, the actual return value is compared to the
predicted value. If the values are different, the machine would

generate a data violation signal, discard the speculative state, and
restart the thread.

5.1. Predictability of Return Values

To verify that speculation with return value prediction has
potential, we first look at the predictability of those values. We
experimented with two simple schemes of prediction: last-value
prediction and stride-value prediction. The results are shown in
Figure 4. We classify procedure returns into three categories: (1)
those that have either no return values or whose return values are
not used, (2) those whose return values are used and are correctly
predicted, (3) those whose return values are used and are
mispredicted. For each program, we show two sets of data, one
that uses last-value prediction labelled “L” and one that uses
stride-value prediction labelled “S”.

First, we observe that both last-value and stride-value prediction
give similar results, with those of last-value prediction being
slightly better for half of the programs. Misprediction of return
values occurs less than 50% of the time for all programs, with
vortex andm88ksim having almost no mispredictions. The
benchmarks where return value prediction most often fails
typically return pointers or other memory/storage related values.
For example,compress makes many calls to a hash function
whose results are highly unpredictable. Those that are extremely
predictable tend to return quantities like status/error conditions,
as invortex for example. Finally, note that just because a return
value is correctly predicted does not imply that much of the callee
and caller computation will be overlapped; if the procedure
modifies global variables or reference parameters after the caller
has speculatively read such data, and the values read are not
predictable, then the caller thread will be rolled back.

5.2. Evaluation of Procedural Speculation

Our next experiment evaluates the speedups of the procedural
speculation model on optimal STP machines with different value
prediction policies.

The results are shown in Figure 5. First, by comparing the
performance of Optimal and Optimal-LRVP we observe that

Figure 4. Predictability of Procedure Return Values

0%

20%

40%

60%

80%

100%

co
m

pr
es

s
L S

gc
c

L S
go

 L S

ijp
eg

 L S
li

L S

m
88

ks
im

 L S

pe
rl

 L S

vo
rte

x
L S

Benchmark, (S)tride or (L)ast Value Prediction

S
pe

ed
up

Mispredicted Correctly Predicted Unused Return Value

result value prediction has a significant positive effect on the
performance of procedural speculation. As expected, programs
with highest numbers of used and correctly predicted return
values (vortex , m88ksim , as well asgo andgcc to a lesser
extent) benefit significantly. Conversely,compress , whose
return values are not predictable, shows almost no improvement.
ijpeg shows essentially no improvement with return value
prediction because its most frequent routines (discrete cosine
transforms) do not return any values.

Value prediction on regular data accesses is useful for almost all
the programs, and can sometimes make a dramatic difference to
the performance as in the case ofvortex and to a lesser extent
m88ksim and gcc . To gain some insight on this issue, we
analyzed the code form88ksim , a program that simulates a
microprocessor. We found that the load instruction that benefits
most from stride value prediction is a load of the simulation’s
program counter (at the beginning of thedatapath()
procedure). Since the program counter typically increments by 4
each timedatapath() is called, stride value prediction is
perfect for eliminating this dependence. Just as a processor
benefits greatly from prefetching consecutive instructions, this
speculative execution enablesm88ksim to run much faster.

We also investigated the behavior ofvortex , which has
abundant parallelism when prediction is enabled. The dominant
procedure invortex , Chunk_ChkGetChunk , accounts for
about 18% of the total execution time. The procedure verifies that
a memory chunk access was valid and sets a call-by-reference
parameter,status , to indicate the type of error if any. The
return value is a boolean version ofstatus . Given that the error
conditions rarely occur, this is an excellent procedure for
speculation. Note that prediction of both the return value and the
call-by-reference out parameter is needed to make the threads
completely parallel.

Overall, the experiments suggest that procedures are a good
source of speculative parallelism in many programs. With the use
of return value prediction, speculating at procedural boundaries
delivers a performance comparable to that of executing all loops

Figure 5. Optimal STP Speculation on Procedures

0

2

4

6

8

10

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal Optimal-LRVP Optimal-LVP Optimal-SVP

40
.2

41
.5

speculatively on the various Optimal STP models. Value
prediction of regular memory accesses improves the overall
speedup for almost all programs and has a major impact on
specific programs.

6. Speculating at Both Procedural and Loop
Boundaries

We next investigate the effect of combining both procedure and
loop-level speculation. The experimental results for the various
optimal STP models are shown in Figure 6, and they are much
more encouraging. Most of the programs improve significantly
over speculation on loops or procedures only, showing benefits
from both forms of speculation. All butcompress andperl
have at least a 4.5-times speedup under the Optimal-SVP model.
This includes programs, such asgcc , which have been very
difficult to parallelize previously. As noted before, value
prediction can have a significant effect on specific programs.

7. Experimenting with More Realistic Models

Having shown that speculation at all loop and procedure
boundaries exposes a reasonable amount of parallelism in an
optimal STP machine, we now experiment with this software
model on more realistic machine models. In the following
sections, we first evaluate the speculative scheme on an optimal
STP machine with a finite number of processors, and then on the
base STP machines that may require rollbacks.

7.1. A Finite Number of Processors

An optimal STP machine with an unbounded number of
processors favors the creation of as many threads as possible. In
the degenerate case where every single instruction is a thread of
its own, the results would be identical to those reported by
previous oracle studies where each operation is issued as soon as
its operands become available[22]. Speculating at all procedure
and loop boundaries can easily generate more threads than a
reasonable implementation could maintain.

Figure 6. Optimal STP Speculation on Loops
and Procedures

0

2

4

6

8

10

12

14

16

18

20

22

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal-LRVP Optimal-LVP Optimal-SVP

43
.0

42
.5

48
.3

On a machine with support for only a finite number of threads,
we must have a strategy to prioritize among the available threads.
We adopt the simple strategy of prioritizing the threads according
to their sequential execution order; a thread earlier in the
sequential execution order has a higher likelihood of success and
is thus given higher priority. In the presence of recursive
procedural speculation, a newer thread may have a higher priority
than an existing thread. When that happens, the machine frees up
a processor for this thread by terminating the speculative
execution of the thread with the lowest priority and discarding its
speculative state. When the machine has some free resources, it
will (re)start the execution of the thread with the highest priority.
With this strategy, speculation on inner loops can occupy all
available resources and thus prevent any speculative execution
progress in the outer loops. In cases where the coverage or
parallelism of the outer loop is more compelling, allowing inner
loop speculation to “preempt” outer loop speculation would not
be desirable. To address this, we suppress the speculation of all
inner loops if they are estimated to have less parallelism than
outer loops. We estimate the degree of parallelism of each
individual loop by measuring the ratio of the average iteration
length to the average length of the critical recurrence across
iterations. This value is derived dynamically using the MemDeps
simulator described in Section 4.1.

Figure 7 and Figure 8 show the performance achieved with 4-
way and 8-way STP machines. As expected, the speedups are
lower than those found with infinite processors.M88ksim ,
vortex , and ijpeg perform quite well, delivering over a 5-
times speedup on an 8-way machine and roughly 3-times speedup
on a 4-way machine (both with stride prediction). Value
prediction continues to benefit the same programs that saw
improvement in the infinite processor case, but the gains are
much more realistic and limited. The programcompress suffers
little degradation, but its performance with infinite processors
was quite low to begin with. Overall, the harmonic mean of the
speedups is 3.2 for 8 processors, and 2.3 for 4 processors.
Achieving a performance of 3 and 4 for the larger programs,gcc
andvortex , respectively, on an 8-way machine is particularly
encouraging.

7.2. Machines with Rollbacks

The most unrealistic aspect of the optimal STP machine is that it
automatically delays every operation by the optimal amount,
guaranteeing that there are no dependence violations to cause
rollbacks. In this section, we present an experiment where we
remove this fundamental assumption. We evaluate 4-way and 8-
way machines that insert no delays into their executions, and
upon detection of a dependence violation, must squash the thread
and roll back the computation. This causes a performance
degradation when the machine speculates on threads that try to
read data before it is written and are unable to predict the value
correctly.

In Figure 9 and Figure 10, we show the results for 4-way and 8-
way Base STP machines, respectively. As expected, the
performance of each Base machine is lower than that of the
corresponding Optimal machine. Nonetheless, the results are
surprisingly good given that the machines use no synchronization

operations at all to minimizing rollbacks. Harmonic mean
speedups range from 1.7 to 2.1 for a 4-way base machine
depending on the value prediction employed.

It should be noted that the finite-processor Base STP machines
are still rather idealistic. For example, the communication
between threads incurs no overhead and thread creation and
rollback is instantaneous. While more realistic models would
result in lower performance, there are still many optimizations
that could improve the performance as well. Implementing
additional techniques to suppress poorly performing threads
could provide a significant benefit. Other possibilities include
introducing static or dynamic synchronizations[13] into the
program in order to reduce the number of rollbacks. Further
research on specific software and hardware mechanisms is
necessary to effectively harness this form of parallelism.

Figure 7. Speculating both Loops and Procedures on
a 4-way Optimal STP Machine

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal-LRVP Optimal-LVP Optimal-SVP

Figure 8. Speculating both Loops and Procedures on
an 8-way Optimal STP Machine

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal-LRVP Optimal-LVP Optimal-SVP

8. Related Work

The STP model is based on the Multiscalar paradigm which was
the first speculative thread architecture[3][17]. The Multiscalar is
a complete architecture for executing speculative threads with
register and memory forwarding mechanisms and a mechanism
for detecting memory data dependence violations called the
address resolution buffer (ARB). The Multiscalar research group
has evaluated the base processor and extensions to the processor
that avoid unnecessary thread restarts using a number of integer
applications, showing moderate speedups[13]. The Multiscalar
group and other researchers have augmented the cache-coherency
mechanisms of a single chip multiprocessor to support
speculative threads [4][13][17]. The goal of these approaches is
to achieve lower hardware overheads and more flexibility than the
ARB approach originally proposed in the Multiscalar processor.
To select tasks for the Multiscalar[21], a compiler pass examines

Figure 9. Speculating both Loops and Procedures on
a 4-way STP Machine with Rollback

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Base-LRVP Base-LVP Base-SVP

Figure 10. Speculating both Loops and Procedures
on an 8-way STP Machine with Rollback

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Base-LRVP Base-LVP Base-SVP

the control-flow graph of the program and uses heuristics to
partition the basic blocks into threads. Speculative tasks are
supposed to immediately follow the spawning task, so there is no
nested task creation, but prediction of successor tasks is more
difficult.

Steffan and Mowry evaluate the performance potential of a
multiprocessor-based approach and show reasonably good
performance on some integer applications[19]. Unfortunately this
performance seems to be quite dependent upon extremely
aggressive and idealistic dynamic instruction scheduling.

The Trace processor is a concrete machine proposal that can
exploit similar parallelism found in multiple flows of control[16].
In the Trace processor the program is dynamically broken into a
sequence of instructions, each of which can be executed
speculatively by a separate thread of control. If an instruction
violates a data dependence, only that instruction and the
instructions dependent on it will be re-executed. The ability to
selectively re-execute only those instructions that are affected
mimics the ability of an oracle that can execute every instruction
optimally whenever its operands are ready. Unfortunately, this
ability comes with a relatively high implementation cost, as the
processor must keep track of enough information to recover from
all combinations of mispredictions. This necessarily constrains
the size of each thread––the proposed maximum thread length is
16 instructions. This limitation prevents the system from
exploiting parallelism with a larger granularity. In comparison,
the STP machine model can realistically allow longer speculative
threads than that of the Trace processor because there is only one
speculative state per thread. It can exploit parallelism between
instructions that are farther apart, and can follow more
independent flows of control because threads are explicit.
However, compared to the Trace processor, STP thread restarts
are expensive so it is more important to minimize dependence
violations.

The Dynamic Multithreading (DMT) processor[1] combines
features of the Simultaneous Multithreading machine[20] and the
Trace processor while also supporting procedural and some loop
speculation. It executes threads in a tightly-coupled SMT-like
environment. Selective recovery is performed from a trace buffer
like the trace processor, but the machine does not compact
normally executed code into traces. The speculative thread size is
limited by the need to keep all of the thread’s dynamic
instructions in the trace buffer; in their simulations, threads can
be at most 500 instructions long. They chose loop and procedure
continuations as their targets for speculative execution. Inner
loops speculation is not supported in order to work with
preexisting binaries. While our earlier work showed that
speculating only on single-level (mostly inner) loops in integer
codes is insufficient, inner loops are still a valuable contributor to
performance in certain programs. The DMT machine also does
not perform explicit return value prediction. The only prediction
employed is for registers, and it is limited to predicting that the
initial register values for a child thread are the same as the parent
thread’s register values at the time the child is spawned. The
DMT processor does have a fast-forwarding mechanism for when
register prediction fails, though there is no facility for memory

load prediction or synchronization. We believe that even greater
performance is possible if these speculative support features are
strengthened.

Hammond, Willey, and Olukotun present a sample machine
design implementing many of the ideas suggested in this paper
and elsewhere, but the results reported are not encouraging[6].
There are many factors which contribute to this, however. First, to
simplify the implementation, thread management is done largely
in software by handlers that take significant time to operate. For
example, starting a loop, committing a loop iteration, and ending
a loop all take on the order of 70 to 80 instructions, which is fairly
close to the average thread size that we observed. Additionally,
while return value prediction is implemented for procedures,
neither value prediction nor synchronization is implemented to
help cope with the other data dependences across speculative
threads. Also, communication between threads occurs in the L2
cache and costs 10 cycles. A subsequent paper by the group
showed improved results when overheads were reduced and
software was manually updated to introduce synchronization and
better code scheduling[14]. The reduced overheads were
achieved by abandoning procedural speculation, however. Our
study is intended to find the potential speculative thread-level
parallelism in programs. Whether this parallelism can be
efficiently exploited by a real machine is outside the scope of this
paper. The results from Hammond et. al. would suggest that
efficient speculation support is necessary in order to achieve good
performance.

General motivation for using multiple flows of control to increase
sequential application performance was presented by Lam and
Wilson[9]. While the value prediction we employ could result in
performance beyond the dataflow limit observed in Lam and
Wilson’s experiments, our multiple flows of control (loop
iterations and procedures) are much more restricted in nature.

9. Summary and Conclusions

We summarize our search for speculative parallelism with
Figure 11, which shows the harmonic means of the performance
results of the different experiments we performed. We started our
exploration by assuming an optimal STP machine with an infinite
number of processors that completely avoids rollbacks. We
experimented with different speculation schemes: speculating
only one loop at a time, speculating at all loop levels, speculating
at all procedural boundaries, and finally to speculating at both
loop and procedure boundaries. We found that the last scheme
delivers impressive performance on the optimal STP machine.
Having found such a scheme, we then considered more realistic
machine models. We first refined the parallelization scheme to
reduce the number of threads created, and evaluated the
performance of the programs on optimal STP machines with 8
and 4 processors. Finally, we experimented with base machines
that roll back speculative threads whenever dependence
violations are detected.

The methodology used in this paper enabled us to analyze
programs effectively and discover promising sources of
speculative parallelism. The relaxed machine model (Optimal)
allowed us to quickly identify the fundamental limitations of loop

[5] R. H. Halstead, “Multilisp: a Language for Concurrent Symbolic
Computation”,ACM Transactions on Programming Languages and
Systems, 7(4):501-538, October 1985.

[6] L. Hammond, M. Willey, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,”Proceedings of the Eighth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII), pp. 58-69, San
Jose, CA, October 1998.

[7] T. Knight, “An Architecture for Mostly Functional Languages,”
Proceedings of the ACM Lisp and Functional Programming
Conference, pp. 500-519, August 1996.

[8] V. Krishnan and J. Torrellas, “Hardware and Software Support for
Speculative Execution of Sequential Binaries on a Chip-
Multiprocessor,” Proceedings of the 1998 ACM International
Conference on Supercomputing, pp. 85-92, Melbourne, Australia,
July 1998.

[9] M. S. Lam and R. P. Wilson, “Limits of Control Flow on
Parallelism,” Proceedings of the 19th Annual International
Symposium on Computer Architecture, pp. 46-57, Gold Coast,
Australia, May, 1992.

[10] J. R. Larus, “Estimating the Potential Parallelism in Programs,”
Proceedings of the Third Workshop on Languages and Compilers for
Parallel Computing, pp. 331-349, MIT Press, 1991.

[11] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and
Load Value Prediction,”Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), pp. 138–147, Cambridge,
MA, October 1996.

[12] P. Marcuello, A. González, and J. Tubella, “Speculative
Multithreaded Processors,”Proceedings of the 1998 ACM
International Conference on Supercomputing, pp. 77-84, Melbourne,
Australia, July 1998.

[13] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi,
“Dynamic Speculation and Synchronization of Data Dependences,”
Proceedings of the 24th Annual International Symposium on
Computer Architecture, pp. 181–193, Denver, CO, June 1997.

[14] K. Olukotun, L. Hammond, and M. Willey, “Improving the
Performance of Speculatively Parallel Applications on the Hydra
CMP,” Proceedings of the 1999 ACM International Conference on
Supercomputing, Rhodes, Greece, June 1999.

[15] J. Oplinger, D. Heine, S. Liao, B. A. Nayfeh, M. S. Lam, and K.
Olukotun, “Software and Hardware for Exploiting Speculative
Parallelism in Multiprocessors,” Computer Systems Laboratory
Technical Report CSL-TR-97-715, Stanford University, February
1997.

[16] J. E. Smith and S. Vajapeyam, “Trace Processsors: Moving to Fourth-
generation Microarchitectures,”Computer, vol. 30, pp. 68–74,
September 1997.

[17] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar Processors,”
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pp. 414–425, Ligure, Italy, June 1995.

[18] A. Srivastava and A. Eustace, “ATOM: A system for building
customized program analysis tools,”Proceedings of the ACM
SIGPLAN '94 Conference on Programming Language Design and
Implementation, pp. 196–205, Orlando, FL, June 1994.

[19] J. G. Steffan and T. Mowry, “The potential for using thread-level data
speculation to facilitate automatic parallelization,”Proceedings of
the Fourth International Symposium on High-Performance
Computer Architecture (HPCA-4), Las Vegas, NV, February 1998.

[20] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,”Proceedings of
the 22nd Annual International Symposium on Computer
Architecture, pp. 392-403, Ligure, Italy, June 1995.

[21] T. N. Vijaykumar and G. S. Sohi, “Task Selection for a Multiscalar
Processor,”Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-31), pp. 81-92, Dallas,
TX, November-December 1998.

[22] D. W. Wall, “Limits of Instruction-Level Parallelism,”Proceedings
of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IV),
pp. 176-188, Santa Clara, CA, 1991.

level speculation. We were able to develop a variety of analysis
and simulation tools that isolated parallelism coverage as an
important factor in the lack of performance. This result led us to
locate alternative sources of speculative parallelism, namely
procedural speculation. The gradual refinement of the machine
models from the optimal STP machine, first with an infinite
number of processors, then to a finite number of processors, and
finally to machines with rollbacks increased our understanding of
the different factors that affect performance.

This paper shows that the combination of loop and procedural
speculation (with result value prediction) is a promising
parallelization scheme for speculative thread-level parallel
machines. This scheme achieves at least a 4.5-times speedup for
six of the eight SPECint95 programs on the optimal STP machine
with an infinite number of processors, a 2.4 times speedup on an
8-way machine that rolls back, and a 2.0 times speedup on a 4-
way machine. While much research remains to be done to define
suitable hardware mechanisms, to develop new software
optimization techniques and to calculate evaluate the
effectiveness of specific systems, our results suggest that STP is a
potentially effective technique for speeding up general-purpose
applications.

References

[1] H. Akkary and M. A. Driscoll, “A Dynamic Multithreading
Processor,”Proceedings of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-31), pp. 226-236, Dallas,
TX, November-December 1998.

[2] R. Cytron, “Doacross: Beyond Vectorization for Multiprocessors,”
Proceedings of the International Conference on Parallel Processing,
pp. 836–844, 1986.

[3] M. Franklin and G. S. Sohi, “The Expandable Split Window
Paradigm for Exploiting Fine-Grain Parallelism,”Proceedings of the
19th Annual International Symposium on Computer Architecture, pp.
58-67, Gold Coast, Australia, May 1992.

[4] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi, “Speculative
Versioning Cache,” Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture (HPCA-4),
pp. Las Vegas, NV, 1998.

Figure 11. Summary of the Harmonic Mean Speedups

0

1

2

3

4

5

6

8 way 4 way 8 way 4 way

Software Model (above), Machine Model (below)

S
pe

ed
up

Hmean (LRVP) Hmean (LVP) Hmean (SVP)

Single
Level
Loops

Multi
Level
Loops

Procedures Loops + Procedures

Optimal Base

